publi.html

作者:sudyam(2025-04-28)

Analytic Torsion Forms and Eta Forms

  • Formes de torsion analytique et familles de submersions,I. Bull. Soc. Math. France 127 (1999), 541-621 [pdf],II.  Asian J. Math. 4 (2000), 633-667 [pdf],announced in C. R. Acad. Sci. Paris Série I 324 (1997), 205-210.

  • Submersions and equivariant Quillen metrics [pdf]Ann. Inst. Fourier (Grenoble) 50 (2000), 1539-1588.

  • Flat vector bundles and analytic torsion forms [pdf],Séminaire de Théorie Spectrale et Géométrie, Vol. 19, Univ. Grenoble I, Saint, 2001, 25-40.

  • Functoriality of real analytic torsion forms [pdf],Israel J. Math. 131 (2002), 1-50.

  • With J.-M. BismutHolomorphic immersions and equivariant torsion forms [pdf],J. Reine Angew. Math. 575 (2004), 189-235.announced in C. R. Math. Acad. Sci. Paris 334 (2002), 893-897.

  • With J. BrüningAn anomaly formula for Ray-Singer metrics on manifolds with boundary [pdf],Geom. Funct. Anal. 16 (2006), 767-837.announced in C. R. Math. Acad. Sci. Paris 339 (2004), 193-198.

  • With G. MarinescuGeneralized Bergman kernels on symplectic manifolds [pdf],Adv. Math.  217 (2008), 1756-1815.<a href='/_upload/article/files/bd/79/c3ddcc854c988d44e0e33c4705af/64439743-836f-43e5-9e9a-2587fee83632.pdf' ' TARGET='blank'>announced in C. R. Math. Acad. Sci. Paris 339 (2004), 493-498.

  • With G. MarinescuToeplitz operators on symplectic manifolds, [pdf], J. Geom. Anal.  18 (2008), 565-611.

  • With G. MarinescuThe first coefficients of the asymptotic expansion of the Bergman kernel of the spin^c Dirac operator [pdf], Internat. J. Math. 17 (2006), 737--759.

  • With W. ZhangBergman kernels and symplectic reduction [pdf],Astérisque 318 (2008), 154 pp.announced in C. R. Math. Acad. Sci. Paris 341 (2005), 297-302.

  • With W. ZhangToeplitz quantization and symplectic reduction [pdf],Differential Geometry and Physics. Eds. M.-L. Ge and W. Zhang, Nankai Tracts in Mathematics Vol. 10, World Scientific, 2006, 343-349.

  • With K. LiuA remark on 'Some numerical results in complex differential geometry' [pdf].Math. Res. Lett. 14 (2007), 165-171.

  • With W. ZhangSuperconnection and family Bergman kernels [pdf],announced in C. R. Math. Acad. Sci. Paris 344 (2007), 41-44.Math. Annalen. 386 (2023), 2207-2253.

  • With K. LiuAsymptotic of the operators Q_k [pdf], Appendix to 'Calabi flow and projective embeddings' by J. Fine, J. Differential Geom. 84 (2010), 489-523.

  • With W. ZhangGeometric quantization for proper moment maps: the Vergne conjecture [pdf], Acta Mathematica 212 (2014), 11-57.announced in Geometric quantization for proper moment maps [pdf],C. R. Math. Acad. Sci. Paris 247 (2009), 389-394.

  • With W. ZhangTransversal index and $L^2$-index for manifolds with boundary [pdf],Metric and Differential Geometry,a volume in honor of Jeff Cheeger for his 65th birthday. Edited by X. Dai and X. Rong. Progress in Mathematics 297, Birkhäuser Boston, Inc., Boston, MA. 2012, 299-316.

  • With G. MarinescuBerezin-Toeplitz quantization of Kahler manifolds [pdf], J. Reine Angew. Math. 662 (2012), 1-58.

  • Geometric quantization on Kahler and symplectic manifolds [pdf],  Proceedings of the International Congress of Mathematicians.Volume II, 785--810, Hindustan Book Agency, New Delhi, 2010.

  • With G. MarinescuBerezin-Toeplitz quantization and its kernel expansion [pdf], the Proceedings of GEOQUANT school 2009 (Luxembourg).Travaux mathématiques 19 (2011), 125-166.

  • With X. Dai and K. LiuA remark on weighted Bergman kernels on orbifolds [pdf],Math. Res. Lett. 19 (2012), 143-148.

  • With G. MarinescuRemark on the off-diagonal expansion of the Bergman kernel on compact Kahler manifolds [pdf],Communications in Mathematics and Statistics. 1 (2013), 37-41.

  • With J. DanielCharacteristic Laplacian in sub-Riemannian geometry [pdf]. International Mathematics Research Notices. 24 (2015), 13290-13323.

  • With T. Barron, G. Marinescu and M. PinsonnaultSemi-classical properties of Berezin--Toeplitz operators with C^k symbol [pdf],Journal of Mathematical Physics 55 (2014), no.4, 042108, 25pp.

  • With G. MarinescuExponential Estimate for the asymptotics of Bergman kernels [pdf],Math. Annalen. 362 (2015), 1327-1347.

  • With G. Marinescu and S. ZelditchScaling asymptotics of heat kernels of line bundles [pdf],Contemp. Math. 644 (2015), 275-202, volume in honor of Phong for his 60th birthday (Paul Feehand, ed.).

  • With Tien-Cuong Dinh and G. MarinescuEquidistribution and convergence speed of zeros of holomorphic sections of singular Hermitian line bundles [pdf],Journal of Functional Analysis 271 (2016), no.11, 3082-3110.

  • With D. Coman and G. MarinescuEquidistribution for sequences of line bundles on normal Kahler spaces [pdf],Geom. Topol. 21 (2017), 923-962.

  • With Tien-Cuong Dinh and Viet-Anh Nguyen,Equidistribution speed for Fekete points associated with an ample line bundle [pdf],Ann. Sci. Ec. Norm. Super. (4)  50 (2017), 545-578.

  • With Semyon Klevtsov, G. Marinescu and Paul WiegmannQuantum Hall effect and Quillen metric [pdf]Comm. Math. Phys. 349, (2017), 819-855.

  • With Tien-Cuong Dinh and Viet-Anh Nguyen,On the asymptotic behavior of Bergman kernels for positive line bundles [pdf]Pacific Journal of Math. 289 (2017), 71-89.

  • With W. Lu and G. MarinescuDonaldson's $Q$-operators for symplectic manifolds [pdf] SCIENCE CHINA Mathematics.  60 (2017), 1047-1056.

  • With H. Auvray and G. MarinescuBergman kernels on punctured Riemann surfaces [pdf] Math. Annalenannounced in C. R. Math. Acad. Sci. Paris 354 (2016),1018-1022[pdf].

  • With Y. Kordyukov and G. Marinescu Generalized Bergman kernels on symplectic manifoldsof bounded geometry[pdf] Comm. Partial Differential Equations. 44 (2019), 1037--1071.

  • With W. Lu and G. MarinescuOptimal convergence speed of Bergman metrics on symplectic manifolds [pdf] Journal of Symplectic Geometry. 18 (2020), 1091--1126.

  • With L. Ioos, W. Lu and G. Marinescu Berezin-Toeplitz quantization for eigenstatesof the Bochner-Laplacian on symplectic manifolds [pdf]  arXiv:1703.06420, J. Geom. Anal. 30 (2020), 2615--2646.

  • With Chin-Yu Hsiao and G. Marinescu Geometric quantization on CR manifolds [pdf] Commun. Contemp. Math.  25 (2023), Paper No. 2250074, 73pp.

  • From local index theory to Bergman kernel: a heat kernel approach [pdf] Progress in Mathematics, Vol. 333 (2020), 265-286.

  • Quantization Commutes with Reduction, a Survey [pdf] Acta Math. Sci. Ser. B (Engl. Ed.), 41 (2021), 1859-1872.

  • Remarks on the equivariant analytic torsion forms and the immersion formula [pdf] Proceedings of the London Mathematical Society 425-431. Appendix of 'an arithmetic Lefschetz-Riemann-Roch theorem', by Shun Tang, 122 (2021), 377-433.

  • With H. Auvray and G. MarinescuQuotient of Bergman kernels on punctured Riemann surfaces [pdf]  Math. Z. 301 (2022), 2339-2367.

  • With D. Coman, W. Lu and G. MarinescuBergman kernels and equidistribution for sequences of line bundles on Kahler manifolds [pdf], Adv. Math. 414 (2023), Paper No. 108854, 34pp

    Talks

    Séminaire Bourbaki, Exp. No. 1130, 11 mars 2017: Geometric hypoelliptic Laplacian and orbital integrals, [after Bismut, Lebeau and Shen] [pdf]Astérisque 407 (2019), 333-389.

    Books