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Holomorphic immersions and
equivariant torsion forms

By Jean Michel Bismut at Orsay and Xiaonan Ma at Palaiseau

Abstract. We compute the behaviour of the equivariant torsion forms of a Kéahler
fibration under composition of an immersion and a submersion. This extends previous re-
sults by the first author.

0. Introduction

The Quillen metric [Q2], [BGS3] is a natural metric on the determinant of the coho-
mology of a holomorphic Hermitian vector bundle, which one constructs using the Ray-
Singer analytic torsion [RaS]. This metric has a number of remarkable properties [BGS3].
In particular the curvature of the corresponding holomorphic Hermitian connection on the
determinant of a direct image is given by an explicit local formula, which is compatible
with the theorem of Riemann-Roch-Grothendieck at the level of differential forms.

In [BL], Bismut and Lebeau have studied the behaviour of Quillen metrics under em-
beddings. In their formula, the additive R genus of Gillet-Soulé [GS1] appears. Using this
result, Gillet and Soulé have established in [GS2] an arithmetic Riemann-Roch theorem for
the determinant. In [B5], the result of Bismut-Lebeau was extended to the analytic torsion
forms constructed in [BGS2|, [BK]. This result was used by Roessler [R] to establish an
arithmetic Riemann-Roch theorem for all the Chern classes.

In [B3], Bismut has obtained an equivariant version of the genus R, the genus R(0, x).
It was conjectured in [B3] that this genus should appear in an arithmetic Lefschetz formula.
In [B4], an equivariant version of the Quillen metric was defined, and an equivariant ana-
logue of the embedding formula of [BL] was obtained.

In [KR1], Kohler and Roessler proved a Lefschetz formula in Arakelov Geometry
for the determinant. Various applications of this formula have been given in [KaK], [KR2],
[KR3]. In [KR2], they also conjectured a higher degree version of their formula.

The purpose of this paper is to extend the main result of [B5] to the equivariant set-
ting. We could also say that our paper extends the formula of [B4] for the determinant to
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higher Chern classes. The present paper provides the analytic arguments which should lead
to the proof of the formula conjectured in [KR2]. Applications of this formula have been
given in [K], [MR].

Let us now describe the geometric setting in more detail. Let i : W — J be an em-
bedding of smooth complex manifolds. Let S be a complex manifold. Let 7y : V' — S be a
holomorphic submersion with compact fibre X, whose restriction 7y : W — S is a holo-
morphic submersion with compact fibre Y. Then we have the diagram of holomorphic

maps:
Y w
AN
X V

Ty
Let # be a holomorphic vector bundle on W. Let (&, v) be a holomorphic complex
of vector bundles on ¥/, which together with a holomorphic restriction map r : &y, — 7,
provides a resolution of i,7.

—_

S

Let G be a compact Lie group acting holomorphically, fibrewise on W, V', whose
action lifts holomorphically to ((£,v),7).

Let Rny &, Roy.n be the direct images of &,7. We make the assumption that the
R'my.n are locally free. Then Rry.¢ is also locally free, and moreover we have a canonical
isomorphism of Z-graded G-holomorphic vector bundles on S,

(0.1) Rny.E ~ Ruy.n.

Let H(X,¢|y), H(Y,n|y) be the hypercohomology of ¢£|,, and the cohomology of #|,.
Then we have the canonical identification of G-bundles on S,

(0.2) Rny.l ~ H(X,¢|y), Rawan~H(Y,nly).

Let ", " be real, closed, G-invariant (1, 1) forms on ¥, W which, when restricted
to the relative tangent bundles TX, T'Y, are the Kihler forms of Hermitian metrics 27, hTY
on TX,TY. By identifying the normal bundles Ny, ~ Ny,y to the orthogonal bundle to
TY in TX|y, Ny x inherits a G-invariant metric A"/x. Let h%, ... h% h" be G-invariant
Hermitian metrics on &, ..., <&, 7.

By identifying H(Y, 7|y ) to the corresponding fibrewise harmonic forms in Q(Y, 7|y ),
the Z-graded vector bundle H(Y,#|y) is naturally equipped with a suitably normalized L,
metric A7 (Y-1ly)|

For ge G, set Vy={xeV,gx=x}, Wy={xe W,gx =x}. Then ny, : V, — S,
nw, : Wy — S are holomorphic submersions with compact fibre X, Y. Let Td,(TX,h™Y)
be the Chern-Weil g-Todd form on V, associated to the holomorphic Hermitian connection
on (TX,h™X) [B4], §2a). Other Chern-Weil forms will be denoted in a similar way. In par-
ticular, ch,(n, ") denote the g-Chern character form of (i, h").
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Let PS be the vector space of smooth forms on S, which are sums of forms of type
(p, p). Let P50 be the vector space of the forms o € P% such that there exist smooth forms
B,7 on S, for which « = 0p + dy. We define P"s, P"+:? in the same way.

Let Ty(w”, h<), T,(w" k') € PS be equivariant analytic torsion forms constructed in
[Ma], Definition 2.11, which generalize the construction of Bismut-Gillet-Soulé [BGS2] and
Bismut-Kohler [BK], which are such that

(03) 3 Tyf@" W) = chy(H(Ynly), i) — [ Td,(TY, BT chy(, 1)
Y,

Let (Q(X,&|y), 0% +v) be the family of relative Dolbeault double complexes, whose
cohomology coincides with the hypercohomology H(X,¢&|y). Let hff (X.¢lx) be the corre-
sponding L, metric on H(X,¢|y). Put chy(&,h°) = S (=1)" ch,(&;, h%). Then we can con-

i=0
struct the equivariant analytic torsion forms T,(w",h¢) € PS as in [BGS2], §2, [BK], §2,
[Ma], §2, such that

00 .
(0.4) ﬂTg(a)V,hé) = chy (H(X,&|y), i X))
— [ Tdy(TX, k™) chy(&, h%).
Xy
In the sequel, we assume that the metrics 4%, ..., h verify assumption (A) of [B2],

§1b), with respect to hNr/x i, By [B4], Proposition 3.5, such metrics do exist.

Let T,(¢, /<) be the Bott-Chern current of [B4], §6, on V, such that

00 ) - .
(05) 3 Ty(&hE) = (Tdy) ™ (Ny e, I¥00) iy 7,13 3y — chy (€, 5°).

Let ’i:ag(TY, TX|WU,hTX) e P /P70 be the Bott-Chern class of [BGSI1] asso-
ciated to the exact sequence of holomorphic Hermitian vector bundles on W,
0—-T7Y — TX]Wq — Ny,x — 0, such that

00

(06 - Td,(TY, TX|,, . h™)

= Tdy(TX |y, h"™) = Tdy(TY, ") Tdy(Nyx, A1),

Recall that H(X,&|y) =~ H(Y,n|y). Let chy (H(Y,5|y), R0 pH 1)) ¢ pS/pS0 be
the Bott-Chern class of [BGS1], Theorem 1.29, such that

(07) i AB‘I(H( Y)’]‘Y)vhH(XéIX)>hH(Y’”‘Y))

_. C
2in

=ch, (H( Y,;7|Y)’hH(Y,ﬂ\y)) — ch, (H(X, f|X),hH(X’é‘X)).
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Let {(0,s),1(0,s) be the real and imaginary parts of the Lerch series, i.e.

0.8) (0,5) = 5280 g gy = §5SIn0),
n=1 n n=1 n

Recall that R(6, x), defined in [B3], is given by the formula

S on x"
09  RO9= X iS00+ 25 0n)

n 1 o X"
- 2 (B0 age-n) ]
n odd

Then R(0, x) is just the Gillet-Soulé’s series R(x) [GS1]. We identify R(0,-) to the corre-
sponding additive genus.

Over V,, TX splits as direct sum TX = @ TX?, where the 0 € [0, 2x[ are distinct and
locally constant, and g acts on 7X ? by multiplication by . Set R,(TX) = 3 R(0, TX"|,, ).
We use a similar notation for R,(7Y). 4 ‘

The purpose of this paper is to prove an extension of [B4], Theorem 0.1, [B5], Theo-
rem 0.1.

Theorem 0.1. The following identity holds:

(0.10)
ch, (H(Ya’7|Y)vhH(X’é‘X)ahH(YﬂlY)) - Tg(a)W,h”) + Tg(wyvhé)

) Td,(TY, TX|,, , hT*
= [ Tdy(TX,h™)T,(&,h°) o L )

_ h h”
i [ g\&» 7, ng(NY/X,hNY/X) C g(m )

+ [ Tdy(TX)R,(TX)chy(¢) — [ Tdy(TY)R,(TY)chy(n) in PS/PS°.

Assume now that for j > 0, R/ny.&, =0 (0 < k <m), Rimy.n =0. Then we have
an acyclic complex of holomorphic G-vector bundles #" on S,

0.11) A :0— H(X,&,) = HY(X, &) — H'(X, &) = H(X,&y) — 0

Let h” be the obvious L, metric on #". Let ch,(#,h”) € PS/PS be the Bott-Chern class
of [BGS1] such that

0.0) 2L Gh (o, = e (HO(Y. ] ) A1)
— SS(= 1) ehy (HO(X, &), hT ),
i=0

The following theorem is an extension of [B5], Theorem 0.2.



Bismut and Ma, Equivariant torsion forms 193

Theorem 0.2. The following identity holds:
0.13)  T,(@",h%) =S (=1)'Ty(w”, h%) — chy(#, k") =0 in PS/PSO.
i=0

The references [B4], [B5] provide all the techniques what we need in this paper. The
main point of this paper is to explain how to put these papers together to get our results.
While the general organization of our paper follows [B5], we will use at certain key point
the arguments of [B4].

Our paper is organized as follows. In Section 1, we recall the construction of equiv-
ariant torsion forms. In Section 2, we describe the basic geometric setting, and the objects
which appear in Theorem 0.1. In Section 3, which corresponds to [B4], §8, [B5], §6, we prove
Theorem 0.1. The proof is based on several intermediate results whose proof occupies Sec-
tions 4-7. Finally in Section §, we prove Theorem 0.2.

The results contained in this paper were announced in [BMal].

The authors are indebted to a referee for his careful reading of the manuscript, and
also for helpful suggestions.

1. Equivariant analytic torsion forms

In this section, we briefly describe the construction of the equivariant analytic torsion
forms. This section is organized as follows. In Section 1.1, we recall elementary results on
Clifford algebras and complex vector spaces. In Section 1.2, we construct the Levi-Civita
superconnection in the sense of [B1]. In Section 1.3, we construct the equivariant analytic
torsion forms.

1.1. Clifford algebras and complex vector spaces. Let /' be a complex Hermitian
vector space of complex dimension k, let V' be the conjugate vector space. If z € V, z rep-
resents Z = z + Z € Vg, so that |Z|* = 2|z|*. Let J € End(V5) be the complex structure of
Vk.

Let ¢(Vg) be the Clifford algebra of V. Then A(V*) and A(V*) are Clifford mod-

ules. Namely if X e V, X' e V,let X* € V*, X"* € VV* correspond to X, X' by the Hermi-
tian product of V. Set

(1.1) c(X) =V2X'A, e(X) = =V2ix,
¢X)=V2iy,  éX')=—V2X"A.

Note that our conventions in (1.1) for ¢ differ from the conventions in [BL], §5a), and are
the same as in [B5], §2.2.

Then if U, U’ € Vi ®iC,
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(1.2) c(U)e(U") + ¢e(UNe(U) = =2<U, U",
¢(0)e(U") +¢(UNe(U) = =2<U, U".

A~

Also ¢(U), ¢(U) act as odd operators on A(V*) @ A(V*). If U, U’ € Vg ® C, then
(1.3) c(U)e(U") 4+ ¢(UNe(U) = 0.

1.2. The Levi-Civita superconnection of a Kahler fibration. Let7z: 1} — S be a holo-
morphic submersion with compact fibre X. Let TV, T'S be the holomorphic tangent bun-
dles to V,S. Let TX be the holomorphic relative tangent bundle 7V /S. Let JT* be the
complex structure on the real tangent bundle T X.

Let w” be a real, closed smooth (1,1)-form on V such that
WMXX,Y)=0"(J™*X,Y) (X,Y e TpX)
defines a Hermitian metric 4™¥ on TX. For x € M, set
(1.4) THYV ={YeT,V; forany X e T, X, 0" (X, Y) = 0}.

Then THV is a sub-bundle of TV such that we have the C* splitting TV = THV @ TX.
Also (m, h™  TH V) is a Kéhler fibration in the sense of [BGS2], Definition 1.4, and o"”
an associated (1, 1)-form.

If U e TS, let U be the lift of U in TV, so that n, U = U.

Let & be a complex vector bundle on V. Let h° be a Hermitian metric on &. Let
VT V< be the holomorphic Hermitian connections on (TX,A"), (& h¢). Let R™ R¢
be the curvatures of VTX Ve Let VAT be the connectlon induced by VTX on
A(TONX). Let VAT X)®¢ be the connection on AT OVX)® ¢,

(1.5) yATOIN@E _ yATCIN) @1 4 1 @ VE

Definition 1.1. For 0 < p < dim X, s € S, let E? be the vector space of smooth sec-
tions of (A?(T**VX) @ &)|y. over Xj. Set

dim X

(1-6) E; = @Esp’ E;':@ESP, E;:@Ef
p=0

p even p odd

As in [B1], §1f), [BGS2], §1d), we can regard the E;’s as the fibres of a smooth Z-
graded infinite dimensional vector bundle E over the base S. Smooth sections of E over S
will be identified with smooth sections of A(T**1VX) ® & over V.

Let dvy be the Riemannian volume form on X associated to 27%. Let * be the Hodge
operator attached to the metric /7%, Let { ) A(T-0.1 x)g¢ be the Hermitian product induced
by /™X h¢ on A(T*OVX) ® & If 5,5' € E, set

1.7 == ! cdvy = =— e
( ) $s,87 (27[) A_[<S7 s >A(T 0N xY)@E AUX (27[) ,\I<s A kS >/1~
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Definition 1.2. If U € TS, if s is a smooth section of E over S, set
(1.8) VEg — yMIOInes
. U° — Vyu .

By [B1], §1f), V¥ is a connection on the infinite dimensional vector bundle E. Let V'
and VZ" be the holomorphic and anti-holomorphic parts of VZ.

For se S, let 0% be the Dolbeault operator acting on Ej, and let 0** be its formal
adjoint with respect to the Hermitian product (1.7). Set

(1.9) D¥ = 0% 4 0%,
Let 4775 be a Euclidean metric on TxS. Let V7#5 be the Levi-Civita connection on
(TS, hT#S). Let VI?V = 7*VT»S @ V72X be the connection on TV = THYV @ TrX. Let

T be the torsion of V&V,

Let PTX be the projection TV ~ THV @ TX — TX.If U, V are smooth vector fields
on S, then

(1.10) (U vH) = —p™X[uf vH.
By [BGS2], Theorem 1.7, we know that as a 2-form, 7 is of complex type (1, 1).

Let fi,..., f>m be a base of TgS, and let f,..., /" be the dual base of TjS.

Definition 1.3. Set

(L.11) o(T)=5 2 ) LfPe(TU 1),

o3

N =
IIA

IIA

Then ¢(T) is a section of (A(TﬁS)@End(A(T*(O*l)X)®§))Odd Similarly,

if 719 701 denote the components of 7 in TWOX TODX, we also define
c(THY, ¢(TOD) as in (1.11), so that

(1.12) o(T) = o(THOY 4 ¢(TO),
Definition 1.4. For u > 0, set

c(T(1’0>)
2V2u

c(TOD)
2V2u

(1.13) B! = \Jud* + vt

B,=B. + B

Then B, is the Levi-Civita superconnection constructed in [B1], §3, [BGS2], §2a).
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Let Ny be the number operator defining the Z-grading on A(T**VX) ® & and on E.
Ny acts by multiplication by p on A?(T*OVX)® & If U, V e TgS, set

(1.14) o (U, V) =" (U, V).
Definition 1.5. For u > 0, set

- H
(1.15) N, =Ny +2—.
u

1.3. Higher analytic torsion forms. First, we assume that the direct image R*z.& of &
by = is locally free. For s €S, let H(X;,{|y) be the cohomology of the sheaf of holo-
morphic sections of |y . Then the H(Xj, |y )’s are the fibres of a Z-graded holomorphic
vector bundle H(X,¢|y) on S, and R°7.& = H(X, &, ). So we will write indifferently R*7,.&
or H(X,¢|y).

For s € S, set
(1.16) K(X;,¢ély) = Ker DY

By Hodge theory, K(X,&[y ) ~ H(X;,¢|y, ). So the K(Xj,¢|y ) are the fibres of a smooth
vector bundle K(X,¢|y) over S. By [BGS3], Theorem 3.5, this isomorphism induces a
smooth isomorphism of Z-graded vector bundles on S

Then K(X,¢&|y) inherits a Hermitian product from (E,< »). Let 2#(X:¢lx) be the corre-
sponding smooth metric on H (X, ¢&|y). Let V#X:¢lv) be the holomorphic Hermitian con-
nection on (H(X,¢[y), hHX:¢lx)),

Let G be a compact Lie group. We assume that G acts holomorphically on V', and
preserves the fibres X. Also we assume that the action of G lifts to a holomorphic action on
&. Suppose that w", h¢ are G-invariant. Then R*7.¢ is also a G-equivariant vector bundle
over S, and the metric #77(X-¢l¥) is also G-invariant.

For g € G, set

(1.18) Vy={xeV,gx=x}.

Then we have a holomorphic submersion 7, : V;, — S with compact fibre Xj,.
Let @ be the homomorphism of A% (T3S) into itself: o — (2irr) %4,
Let 1,e™ ... e (0 < 0; < 27) be the locally constant distinct eigenvalues of g act-

ingon TX on V,. Let TX 0 TXO . . . TX% (6p = 0) be the corresponding eigenbundles.
Then TX splits holomorphically as an orthogonal sum

(1.19) TX =TX"®---®Tx"%.
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6, 6, .. . .
Let h™X* .. h™" be the Hermitian metrics on TX% ... T X U induced by
h™ . Then V¥ induces the holomorphic Hermitian connections VX" ... VI*™ on

, ! e e, "“). Le “,..., " be their curvatures.
TX % pTX° TX" h™™"). Let R™" ... R™" be th t

If 4 is (¢, q) matrix, set

] —eA

A
(1.20) Td(A4) = det( ),
e(A) = det(A4), ch(4) = Trlexp(A4)].
The genera associated to Td and e are called the Todd genus and the Euler genus.

Definition 1.6. Set

—RTX"\ 4 Td [~ RTY"
1.21 Td (TX,h ™) =T — i0;
( ) dé/( 7h ) d( 2”_[ j];[] e 217‘[ + 10] 9
0 —RTY"
! TX\ _
ng(TX,h )_% Td im +b>
7 Td _RTX”/
x]_[?( im +10,—|—b> ;
J=1 b=0
0

Then the forms in (1.21) are closed forms on V,, and their cohomology class
does not depend on the g-invariant metric 27%. We denote these cohomology classes by
Tdy(TX), Td,(TX),...,chy(&). In the same way, set

dim X .
(1.22)  chy(H(X,&ly), hTH<) = P (=1) chy (H* (X, &), 410,

dim X
ch) (H(X,¢|y), k" Xen)) = kzo (—1)*k chy (H* (X, &|), hHX-E0),

In [Ma], §2d), we constructed an equivariant analytic torsion form T,(w",h¢) € PS
which generalized the construction of [BK], §2 to the equivariant case. Moreover,

00

in

(1.23) Ty, 1) = chy (H(X, &), A1) — [ Td(TX, h™) chy(&, h°).

X!I
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More precisely, put

o
«

1.24 C,= | =—

( ) l,g J‘ o

X

Td,(TX,h™) ch, (&, h%),
= [(=Td(TX,h™) + dim X Tdy(TX,h"™)) chy(&, h°).
Xy

Then, by [Ma], (2.27),

! C_ du
(1.25) T, (0" he) = J"<<I>Trq gNyexp(—B )}—%—Cé,g)—

0 u
s 2 / H(X.Ely))) W
— lf (® Tr[gN, exp(—B;)] —chg(H(X,é|X),h ey ))7

+ Cog+T'(1)(Cp , — chy (H(X, Ely), hHXEYY

Here Cj , = Co 4 in P5/PS°.

2. Resolutions, Bott-Chern currents, and equivariant analytic torsion forms

This section is the obvious extension of [B5], §3, to the equivariant case. When S is a
point, the corresponding result was obtained in [B4], §3, §6.

This section is organized as follows. In Section 2.1, we describe the geometric setting.
In Section 2.2, we construct the equivariant analytic torsion forms of the family of double
complexes. In Section 2.3, we give various assumptions on the metrics on 7X, TY, & 5. In
Section 2.4, we describe the Bott-Chern currents of [BS5].

2.1. A family of double complexes. Let i: W — V' be an embedding of smooth
complex manifolds. Let S be a complex manifold. Let 7y : V' — S be a holomorphic sub-
mersion with compact fibre X of complex dimension /, whose restriction 7y : W — Sis a
holomorphic submersion with compact fibre Y.

Let # be a holomorphic vector bundle on W. Let

v

(2.1) (E0):0—¢&, D&, o 5E—0

m
be a holomorphic complex of vector bundles on V. We identify ¢ with €@ ¢;. Let
i=0
r: &l — 1 be a holomorphic restriction map. We make the assumption that (&, v) is a
resolution of i,x, or equivalently that we have the exact sequence of (), sheaves

(22) 0— @V(ém) _D) 0V(émfl) i) T i) 0[/(60) - l*(QW(”) — 0.

Then for every s € S, (&, v)|y, provides a resolution of i.z|y .
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Let Ny be the number operator of &, i.e. Ny acts on &, by multiplication by k. Let
Ny, Ny be the operators defining the Z-grading on A(7*®D X)), A(T**VY).

Definition 2.1. Forse S,0=<p =< 1,0 <i < m,let E? be the vector space of smooth
sections of A?(T* 1D X) ® ¢; on the fibre X;. Set

(2.3) E,= @ E’, EE= @ E’, E=E . QE_.

p—ieven p—iodd

Then E is the set of smooth sections of A(7*®DX) ® & on X. It is Z-graded by the
operator Ny — Np.

Forse S, 1 < ¢ <dim Y, let F¥ be the set of smooth sections of AY(T**VY) ® 5]y
on the fibre Y. Set

(24) F+,s = @ qu; Ff,s = @ qu7 Fv = F+,s ® Ff.,s~

q even q odd

Let H(X,,¢|y) be the hypercohomology of (O, (¢y),v), let H(Y,n|y) be the
cohomology of Oy,(n|y ). For any se S, the map r: Oy, (é|X) — Oy,(n]y,) is a quasi-
isomorphism, and so

(2.5) H (X, <ly,) = H(Ys,nly,)-

Let 0%, 07 be the Dolbeault operators acting on E, F. Then 0% + v is a chain map on E. By
[BL], Proposition 1.5, for every s € S,

(2.6) H(E;, 0" +v) ~ H(X,&|y), H(F,0")~

v.)-

We extend r to a morphism &|j, — 7, with r =0 on &;, i > 0. For s € S, let r, be the
restriction map r : « € E; — (i* @ r)o € Fj.

S

Now we recall a result in [BL], Theorem 1.7.

Theorem 2.2. The map r : (E,0% +v) — (F,0Y) is a quasi-isomorphism of Z-graded
complexes. It induces the canonical identification H(E,0% +v) ~ H(Y,n|y).

In the whole paper, we assume that dim H'(X,¢|y) (i = 0) is locally constant. Then
the H(Xj,¢|y )’s are the fibres of a holomorphic vector bundle H(X,¢[y) on S. By (2.5),
the H (Ys,l’]’Y> s also are the fibres of a holomorphic vector bundle H(Y,#|,) on S. By
(2.5), (2.6), Theorem 2.2, we get the identification of holomorphic Z-graded vector bundles
on S,

(2.7) H(X,Ely) ~H(Y,nly), H(E,0% +v) =~ H(Y,nly).

2.2. The equivariant analytic torsion forms of the double complex. We now extend
the equivariant setting of Section 1.3. Let G be a compact Lie group. We assume that G
acts holomorphically fibrewise on V' and preserves . Also we assume that the action of G
on V and W lifts to holomorphic actions on the chain complex (&,v) and on #, and the
restriction map r : &y|y — # is G-invariant.
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Then G acts naturally by chain maps on (E, 0¥ +v) — (F,0Y). Therefore G acts on
H*(X,&|y) (0<i<m), H(E,0* +v) and H*(Y,7|y). Finally the canonical identifica-
tion H(E,0% +v) ~ H(Y,n|y) is an identification of G-vector bundles on S.

Let ", 0" be real, closed, G-invariant smooth (1, 1) forms on V', W which, when
restricted to each fibre X, Y, are Kéhler forms of metrics /7%, h"Y on TX, TY. To 0", 0",
we associate the objects considered in Section 1, to distinguish them from one another, we
will often denote them with a superscript V' or W.

Let h¢ = @ h%,h" be smooth G-invariant Hermitian metrics on ¢ = @5,,;7 We
=0

equip the fibres of £ (resp. F) with the Hermitian product (1.7) associated to hTX h¢ (resp.
hTY h"). Let v* be the adjoint of v with respect to h°. Let 0% (resp. 0¥*) be the formal
adjoint of 0% (resp. 07) with respect to the Hermitian product { » on E (resp. F). Set

(2.8) DX =X + 0¥, DY =0V +0V, V=v+0v.
For g € G, set
Vy={xeV,gx=x}, W,={xe W,gx=x}.
Thenny, : Vy — S, nw, : Wy — S are holomorphic submersions with compact fibres X, Y.

For u > 0, let BV< (0 i <m), B) be the superconnections on E;, F associated to
(w”,h%) and to (w",h"), whose construction was given in Definition 1.4. Then we can
construct the equivariant analytic torsion forms T (w",h%) and T,(w" k") as in (1.23).
By (1.23),

(2.9) j—aT (" ) = chy (H(Y gl ), h7010) = [ Td,(TY,h™) ch, (n, h").
Y,

To describe the analytic torsion forms associated to (w”,4¢), we modify the con-
structions of Section 1.3. For s € S, by Hodge theory, we have a canonical identification of
Z-graded vector spaces H (X, &y ) ~ K/ = {f € E,, (DX + V)f = 0}. Let h¥X-<lx) be
the corresponding metric on H (Xj, &| x,) as in Section 1.3. Set

_ - oe(T00)
2.10 B" = /u(0¥ +v)+VE —L,
(210) [ = V(@ + ) o
— —= ’ T(O’U)
B/V: uaX*+U* +VE _C( 7
w =Vl ) eV
B =B +B.
For u > 0, set
V,H

(2.11) N/ =N — Nu+
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Put

(2.12) chy (&, h%) = So(=1)" chy(&, h),

i=0
ch/ (& h°) = g(_1)"ichg(@,h<f),
dim X

chy (H(X, ¢l ), 1) = (—1)* chy (H* (X, &[), FXA0),
=0

dim X
ehy (H (X, &), hC50) = 52 (=1) ey (H (X, ¢l ) 7E00).

If (o), is @ family of smooth forms on S, we will write that as u — 0, o, = O(u* 1)
if for any compact set K — S, and any p € N, there is C > 0 such that the sup of o, and its
derivatives of order < p on K are dominated by Cu**!.

Then by combining the techniques of [BGS2], Theorems 2.2 and 2.16, and [B6], The-
orems 4.9-4.11, the following analogue of [Ma], Theorem 2.10, holds.

Theorem 2.3. Asu — 0
(2.13)  ®Trgexp(—B)?)] = [ Td,(TX,h™)ch,(&,h¢) + O(u).

X.‘/

There are forms Djt/g e PS (j = —1) such that for k e N, as u — 0

(2.14) ® Try[gN ) exp(~B)"?)] = ZID.I’/guj + O(u*.
=

Also

0)

TX
T, (TX, h ™) ch, (€, ),

(2.15) D',

]
D), = )J(cthTd X) = Td,(TX)) chy(&)

— [ Tdy(TX)ch/(&) in P5/PSC.

X,

Asu — +o0

(216)  ®Trlgexp(~B)2)] = chy (H(X, &), i) + ¢ (L)

5

‘ —_
<

@Trs[gzvf exp(—B, %)) = ch) (H(X,¢&|y), h X<y + @(
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By replacing in (1.25), B, by B/, N, by N}, as in (1.25), we construct a form

u >

T,(w”,h¢) € PS such that the analogue of (1.23) holds, i.e.

QA7) 2Ty ) = chy (H(X, &) A7) — [ Tdy(TX BT chy(E, 1),
X,

g

A simple modification of the argument of [Ma], §2¢), shows that the analogue of the
anomaly formulas [Ma], Theorem 2.13, still holds.

2.3. Assumption on the metrics on 7X,TY,&,n. Let Ny y be the fibrewise normal
bundle to Y in X. Let Ny be the normal bundle to W in V. Clearly, Ny, ~ Ny,x. We
identify Ny, y as a smooth vector bundle to the orthogonal bundle to 7Y in TX|,, with
respect to hT¥Iw. Let h"7/* be the metric induced by 27l on Ny /.

In the sequel, we assume that the metrics 4%, ..., h%" verify assumption (A) of [B2],
§1b), with respect to hNv/x h. We describe this assumption in more detail.

On W, we have the exact sequence of G-equivariant holomorphic vector bundles
(2.18) 0—TW — TV|y — Ny;x — 0.

For y e W, let Hy(, v) be the homology of the complex (¢,v),. If ye W, U e TV,
let dyv(y) be the derivative of v at y in the direction U in any given holomorphic trivi-
alization of (&, v) near y. By the arguments of [B2], §1b), [B4], §3d), [B5], §3d), we know
that:

a) The H,(&,v) are the fibres of a holomorphic Z-graded vector bundle H(&,v) on
W . The map 0yv(y) acts on H,(,v) as a chain map, this action does not depend on the
trivialization of (£, v), and only depend on the image z of U in Ny, , = Ny/x . From
now on, we will write 0.v(y) instead of dyv(y).

b) Let n be the projection Ny,xy — W. Then over Ny,y, we have a canonical identi-
fication of Z-graded chain complexes of bundles

(2.19) (7" H(&,v),0.0(p)) ~ (2" (A(Ny,x) @ 1), V—1ic).

The group G acts on both complexes in (2.19) by holomorphic chain maps, and (2.19) is an
identification of G-bundles.

By finite dimensional Hodge theory, we know that there is a canonical isomorphism
of Z-graded vector bundles over W

(2.20) H(Ev) ~ {fe&uf =0,v°f =0}

Let 111(%%) be the metric on H(¢,v) induced by 4¢ by identification (2.20). Let hA(NY*/X)*@'7 be
the metric on A(Ny, ;) ® n induced by 4™/ and A”. Then the metrics pHE) ANy ) ©n
are G-invariant.
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We say that the metrics 4%, ..., h% verify assumption (A) with respect to 2Nv/x b’ if
the identification (2.19) also identifies the metrics.

By [B4], Proposition 3.5, given G-invariant metrics 2"7/x h"_ there exist G-invariant
metrics 1%, ..., h% on &y, ..., &, which verify assumption (A) with respect to h™Nv/x ",

2.4. A singular Bott-Chern current. In this section, we make the same assumptions
and we use the same notation as in Section 2.3.

- m . m
Let V¢ = @ V< be the holomorphic Hermitian connection on (&, /<) = @(&;, h<).
For u > 0, set =0 i=0

(2.21) C, =V +uV.
Then C, is a G-invariant superconnection [Q1] on the Z,-graded vector bundle & on V.
Take g € G. Then we construct forms @ Tr,[g exp(—C?)], ® Tr,[gNn exp(—C?)] and

T,(&,h¢) as in [B4], §6, on V. Let oy, be the current of integration on W,. Then by [B4],
Theorem 6.7, T,(¢, h°) is a sum of currents of type (p, p) over V,, such that

00

in

(2.22) Ty(&h*) = (ng)il(NY/XahNy/X) chy(n, K)o 1w, — chy(&, h°).

More precisely, we have the formula,

(2.23)
. 1 di
T,(&h%) = [ @ Tr [gNu(exp(~C) — exp(=G7))] 5
0
e 2 —1\/ N 7 du
+ f ((I)Trs[gNHexp(—Cu)]—i—(ng ) (Ny/X,l’l vxX) chy(n, h )5{%})7
i

= T'(1)(chy (&, h%) + (Td; ") (Ny x, A7) chy(n, h")o ).

3. A proof of Theorem 0.1

This section is an extension of [B5], §4, §6, to the equivariant setting, and of [B4], §3,
§8, to the case of general S.

This section is organized as follows. In Section 3.1, we state our main result. In Sec-
tion 3.2, we introduce a contour integral. In Section 3.3, we state five intermediate results,
the proofs of which are delayed to the next sections. In Section 3.4, we establish our main
result.

In this section, we use the assumptions and notation of Section 2. We fix g € G in the
rest of our paper.
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3.1. The main theorem. Recall that by (2.7), we have the canonical isomorphism of
G-equivariant holomorphic Z-graded vector bundles on S

3.1) H(X,E|y) =~ H(Y,n|y).

From now on, we identify H(X,¢|,) and H(Y,#|y) by (3.1). Also, in Section 2.1, smooth
G-invariant Hermitian metrics /2%(X:¢lx) and AH(Y:1lv) were constructed on H(X,¢|y)
and H(Y,n|y). Then h#¥:<lv) can be considered as a metric on H(Y,n|y). Let
chy (H(Y,n|y), hHXen) p1nl)) € pS/PS:0 be the Bott-Chern class of [BGS1], Theorem
1.29, such that

00 ~ .
(32) ﬁchg(H(Y,;7|Y)7hH(X,c|X>7hH<Y,n\y>)
— chy (H(Y,n|y), h"TO10) — chy (H(X, &), hTHE0),

Consider the exact sequence of holomorphic G-equivariant Hermitian vector bundles
on Wy,

(3.3) 0—TY - TX|y — Ny;x —0.

Let Td,(TY, TX|y,,h"™) e P%:/PV+" be the Bott-Chern class constructed as in [BGSI],
Theorem 1.29, such that

(3.4) j—aTd (TY, TX |y, ,h™) = Tdy(TX |y, ,h"™)

—Tdy(TY,h"") Tdy(Ny,x, h™rv).
For ye R, s € C, Re(s) > 1, set

t% cos(ny)
n=1 n’

(3.3) {y,s) =

% sin(n
oy =3 o

n=1 n
Then for a fixed y € R\2znZ, both functions in (3.5) extend to a holomorphic function of s
for Re(s) < 1. If y € 2nZ, {(y,s) has a simple pole at s = 1.

Following [B3], Theorem 7.8, we introduce the following genus R(&, x).

Definition 3.1. For 0eR, and xeC are such that |x|<2zn if 0e2nZ
|x] < ]ing |0 + 2kn| if 0 € R\27Z, let R(0, x) be the convergent power series
€

n

(3.6) RO = % ’<Zl Sn(0.-m) +29 0 —n))%
n 1 ac x"
+ X (Sja0m 25 0n) T

n odd
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Then for x € C, |x| < 27, R(0, x) is the Gillet-Soulé’s power series R(x) [GS1]. For
0 € R, we identify R(0, -) with the corresponding additive genus.

On W, Ny,x splits holomorphically as an orthogonal sum of holomorphic vector

bundles, N% (0<0;,<2m,j=1,...,q). Let b " be the metrics on N'¥ induced by hVx,
Let R¥” be the curvature of the holomorphic Hermitian connection on (N %, A" ’) Set

_RNO/

q )
Ry(Ny . hN) = 2 R(0;, N hV").
j=1

(3.7) R(O;, N% ") = Tr

I

Then the cohomology class of the closed form Rg(Ny/X,hNY/X) does not depend on the
metric 2¥7/¥. We denote this class by Ry(Ny/x).

Let Ry(TX) e H*(V,,C), Ry(TY) € H*(W,, C) be the cohomology classes of TX, TY
defined as (3.7).

By [B4], Remark 6.8, the wave front set of 7,(¢& h¢) is included in
N*q/V R NY X, R It follows from [H], Theorem 8.2.12, that the integral along the fibre

[ Tdy(TX, k™) T, (&, k%) lies in PS.
X,

Theorem 3.2. The following identities hold.

(3.8) c~hg (H(Ya’7|Y)ahH(X’éIX)>hH(Y’”|Y)) - Tg(wwahq) + Tg(wyahé)

) Td,(TY, TX |, ,h™%
= [ Td,(TX,h™)T,(&, k%) — | o b, h )

h, h
X, ‘ v, Tdy(Ny,x, k") chy n: )

[ Tdy(TY)Ry(Nyx) chyln) in PS/PSY,

¥

&g(H(Y77]’Y)’hH(nglX)7hH(Y1”‘Y)) _ Tg(wW,h”) + Tg(a)V,hg)

Td,(TY,TX|, ,hT%
= [ Tdy(TX,h™)T,(&, k) ol AL

B n
oo \ v, Tdg(Nysx,h"rx) chy (17, 1)

+ [ Tdy(TX)R,(TX)chy(&) — [ Tdy(TY)R,(TY)chy(n) in P5/PS°.

Y,
Proof- The remainder of this section is devoted to the proof of Theorem 3.2. [

By the anomaly formula of [Ma], Theorem 2.13, one verifies easily that we only need
to establish Theorem 3.2 for one single choice of @' . In the sequel, we will assume that

" =i*w", and we will prove Theorem 3.2 in this case.

3.2. A contour integral. Foru >0, T > 0, set
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(3.9) Ayr=BL+TV; B,r=Ayur;

iV

vV _ nX
N, =Ny +
Then A, 7, B, r are superconnections on E.

Let d,, 7 be the standard de Rham operator acting on smooth forms on R} x R}.

Theorem 3.3.  Let B, 1 be the form on R} x R xS,

du dT
(3.10)  Bur=- Tr[g(N,, — Nu)exp(—B, )] — - Tr:lgNn exp(—B; 1)]-

The following identity holds:

(3.11)  dy 1B, =udT du {5% {Trs BgNuZ exp(—B, ; — bv*)}

1 o
Try |— -B>,. —b—B"
T patwen (<8, b 280 )|

0 | 5
+ 6% {Trs [ugNuz exp(—B, 7 — bv)]

1 a "
Try |— -B>_ —b—B )
o1 oo (<85, -0 )|}

Proof.  The proof of Theorem 3.3 is identical to the proof of [B5], Theorem 4.3. []

Take ¢,4,T),0<e<1=4<+00, 1 =Ty < +w. Let I' =T, 4,7, be the oriented
contour in R} x RY,

u
P}
A ,,,,,,
n A n

ol n

0 1 T, T
The contour I" is made of the four oriented pieces Iy, ..., s indicated above. Also I

bounds an oriented rectangular domain A. For 1 < k <4, set

(3.12) )= [®B, .

1—‘k
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Definition 3.4. Let y,0 be the forms on S
I e A T A
A 0D :

1 ) 0 _y
+ Try [T gNu exp <_Bu7 T — b%Buz )] }bo dT du,

0
5 { Tl exp(- 82 - )

1 ) 0 yr
+ Tr, [T gNHu exp (—Bm T — b%Bug )] }b=0 dT du.

Theorem 3.5. The following identity holds:
4
(3.14) Z @3y + 86).

Proof. This follows from Theorem 3.3. [

As in [BS5], the proof of Theorem 3.2 will consist in making 4 — +o0, Ty — +00,
¢ — 0 in this order in identity (3.14).

3.3. Five intermediate results.

Definition 3.6. For 7 > 0, we denote by <, > the Hermitian product on E asso-
ciated with the metrics 27X, h her /T? ... hon/T*" on TX, &, ..., <&, respectively. Set

(3.15) Kr={se E; (0% +0)s =0,(0" + T?v*)s = 0}.

Let Py be the orthogonal projection operator from E on Ky with respect to the Her-
mitian product {, >7.

By Hodge theory, for any T > 0, there is a canonical isomorphism of G-equivariant
Z-graded vector bundles,

(3.16) Kr =~ H*(E,0* +v).

Let hH X-¢lv) be the G-invariant metric on H (X,¢&|y) inherited from the metric
o7 restrlcted to Kr. Let VHXC‘X) be the holomorphic Hermitian connection on

(H(X, &]y), hy ey,

We now state five intermediate results contained in Theorems 3.7-3.11, which are the
obvious extension of [B4], Theorems 8.4-8.8, [B5], Theorems 6.5-6.9. The proofs of The-
orems 3.7-3.11 are deferred to Sections 4-7.

Theorem 3.7. For any compact set K < S, for any uy > 0, there exist C > 0,0 €10, 1]
such that on K, foru = uy, T =1,
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(317)  [Trlg(V: = Nuw)exp(—B2 1)) = Tr[gN,! exp(~B )]

lIA

IA
Ja Fa

w 2)}

3
u?

1 ..
Try[gNu exp(—B, 7)] = 5 dim Ny, x Tr[gexp(-B

Theorem 3.8. For any compact set K = S, there exists C > 0 such that on K, for
u=1,T=1,

(3.18)  |Tr,[gN,} exp(—B2 ;)] — Tr,[gPr Ny Prexp(—Vy 2]

lIA

=l =1a

|Tr,[gNu exp(—Bi )] — Trs[gPrNuPr exp(—V;I(X’él“V)’z)H

lIA

Theorem 3.9. For any compact set K = S, there exist C > 0, y €10, 1], such that on
K, foruel0,1],0 < T < 1/u, then

(3.19) O Tr,[gNuexp(—A2 )] — [ Tdy(TX,h™)® Tr,[gNu exp(—C7-)]
: i
S Cu(1+1)).

There exists C' > 0, such that on K, foruel0,1,,0 < T =<1,

(3.20) | Tr[gNn exp(—A;, 1)] — TrfgNuexp(—4; )]| < C'T.

In the sequel, we use the notation of [B4], §7, applied to the exact sequence
(3.3). In particular, for u > 0, we consider the operator ,@5 of [B4], Definition 7.4, and
Try[gNu exp(—%3.,)] is the generalized supertrace in the sense of [B3], Definition 2.1 (cf.

[B4], Definition 7.5). We denote by By(TY, TX|y, ,h"") € P the generalized analytic
torsion forms associated to (3.3) as in [B3], §6 (cf. [B4], Definition 7.9). Then

Tdy(TX]y,,h"™)
ng(NY/XahNY/X).

(3.21) %Bg(TY, TX |y, h™) = Tdy(TY,h"") -
Theorem 3.10. For any T > 0, the following identity holds:

(3.22)  lim @ Tr,[gNuexp(—A, 7,,)] = [ © Tr,[gNuexp(—#7.)] chy (7, h").
Y!l

u—0

Theorem 3.11.  For any compact set K = S, there exist C > 0, 0 € |0, 1], such that on
K, foruel0,1, T 21,

1 . C
(3.23) Trs[gNu exp(—Ai /)] — 3 dim Ny, x Trygexp(—B)?)]| < Ik

u?

In Sections 47, we will assume for simplicity that .S is compact. If S is not compact,
then we consider instead the compact subsets K = S, and the various constants C > 0 de-
pend explicitly on K.
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3.4. The asymptotics of the Ig’s. Because of the formal analogies with [B5], Theo-
rems 6.5-6.9, which were indicated before, the discussion of the asymptotics of the I’s for
k=1,34as 4 — +o0, Ty — 400, ¢ — 0 can be formally transferred from [B5], §6.4, §6.5.
Then we obtain I for k = 1,3,4 formally as in [B5], §6.4. For k = 2, by [B5], Theorem

6.10, which gives us the asymptotics of h?(X‘é‘X) as T'— +o0. Then by using [B5], Theorem
6.10, as in [BS5], pp. 77-78, we get

+oo
(324) I=I= | (I)<Tr5[gPTNHPTexp( vHX clo.2y)
1

Lp? dTr
— 5 dim Nyyx Trlg eXp(—VH‘Y'”Y)’z)]> T
1 ~ .
—5 Chg( (Y 77’ ) X,¢ly) hH Y.ly )) in PS/PS’O,

If S is compact and Kihler, P5:? is closed under uniform convergence. In the case,

4 4
since Y I? € P50, then " I} € PS°.
k=1 =

In the case of a general S, PS5 is not necessary closed. In [B5], (6.170), an explicit

4
. . 3
formula is given for kE 1Ik as

) i _
(3.25) S IR = (0 4 0v) — %qm,
k=1

and the same proofs for u3,v3, 23 as in [B5], §6.6-§6.8, work as well. To keep this paper
short, we will not discuss x>, v3, 2* in more detail.

Ultimately, we obtain an extension of [B4], Theorem 8.12, [B5], Theorem 6.22:

Theorem 3.12.  The following identity holds in PS/P5°:

(326) &19 (H( Yv77|Y)?hH(X’ﬂX)vhH(Ylm”) - T!/(wW7hn) + T.f/(wVvhé)

= J‘qu(TthTX)Tq<éahé)+ J‘BG<TY7 TX’Wg7hTX)Chg(777h”)

Xy ¥,

Td’

Y,

By [B4], Theorem 7.14, (7.38), (8.26), we know that, in P"s/P"::0

(327)  By(TY,TX|y ,h™) = —Td, (Ny/x,h"¥) Td,(TY, TX|,, , hT¥)

/

+ ng(TY){Rg(NY/X) +T'(1) (ii (Ny/x) — 5 dlmNY/X) }
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Let iy : Wy, — V, be the obvious embedding. Then we have the identities in H* (W, C),

i Tdy(TX)

(3.28) T4,(TY) = L

Ry(Ny)x) = ié*Rg(TX) — Ry(TY).
Now the identity (3.8) follows from Theorem 3.12, (3.27) and (3.28).

The proof of Theorem 3.2 is completed. []

4. A proof of Theorems 3.7 and 3.8

In this section, we give a proof of Theorems 3.7 and 3.8. This proof relies essentially
on the results of [B5], §9, where the corresponding results were established when G is trivial.
Theorems 3.7 and 3.8 are the obvious extension of [B4], Theorems 8.4, 8.5, [B5], Theorems
6.5, 6.6.

This section is organized as follows. In Section 4.1, we recall the construction of an
extension of T# W to V' [B5], §7.6. In Section 4.2, we give a proof of Theorems 3.7 and 3.8.

4.1. An extension of T W to V. In the discussion which follows, we will assume for
simplicity that S is compact. We proceed as in [B5], §7.6.

If ye W, ZeNy)x g, letteR—x, = expyX(tZ) € V be the geodesic in the fibre
dx[

X “rt
h dt |,_,

Xz, () with respect to , such that xo = y, =Z.

For ¢>0, set B, ={Ze Ny)xr,|Z| <e&}. For & >0 small enough, the map
(»,Z) € Ny)x.r — exp}’,( (Z) € V is a diffeomorphism from B,,, on a tubular neighbourhood
Uy, of Win V. From now on, we use the notation x = (y, Z) instead of x = expyX (Z). We
identify y € W with (y,0) € Ny, x r. Since g € G is an isometry which preserves W, g pre-
serves the geodesics in the fibre X, (,) which are normal to Y. Of course, under this iden-
tification, g acts linearly in the fibre of Ny, x .

As explained in [B5], §7.5, in general, T V|, & TH W. This is a potential source of
difficulties. Thus we are forced to modify the horizontal bundle 7V near W.

Recall that V7 is the holomorphic Hermitian connection on (7X,/47%). Let VTS
be the trivial connection on 7}, TS along the fibres X. We equip TV = TH#V @ TX with the
connection along the fibres X, V7" = V&S @ V¥ Now the tensor T'" is defined in Sec-
tion 1.2.

Definition 4.1. If (y,Z) € Ny x g, if A € TS, let A" € TrV be the solution of the
differential equation along 7 € R — x, = exp;’ (tZ),

(4.1) VA +T] (A/%) =0,
dt

Ay =Aa™"".
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Let y : R — [0, 1] be a smooth function such that
(4.2) (@) =1 fora=<1/2,
=0 foraz=1.

Z . . . . .
Then y(’) can be considered as a smooth function on V' with values in [0, 1], which
o

vanishes on V\%,,.

Definition 4.2. If 4 € TS, set

(4.3) ATV = inUA +<1 G§5>AHW,

AH,Ny/X :AH’W—AH’V.

Let T"W be the smooth subbundle of TV which is the image of TS by the map
A— AW,

By (4.1), it is clear that T# W extends G-equivariantly the given vector bundle 77 W
on W to the whole V.

Let fi,..., fm, be a locally defined basis of TrS, and let f!,..., /2™ be the corre-
sponding dual basis of Tj;S. Let ey, ..., ey be an orthonormal basis of TpX.

Definition 4.3. Foru >0, T > 0, set

@) A —ep{-r s e 1o

T
B = exp{ et bplexn 11 et
Vo

W =exp{ o) IEexnd 1l

Ar = A\, Ar=Ar.

4.2. A proof of Theorems 3.7 and 3.8. In our context, all the constructions of [B5],
§7, §8, §9, are G-invariant. The same arguments as in [B4], §9, [B5], §7, §8, §9, give us the
proof of Theorems 3.7 and 3.8.

5. The analysis of the two parameters operator g exp( —Ai r) in the range

uel0,1], T e [0, 1]
u

The purpose of this section is to prove Theorem 3.9. This section is the obvious exten-
sion of [B4], §11, where we work on the case that S is a point, and of [B5], §11, where Theo-
rem 3.9 was established when G is trivial.



212 Bismut and Ma, Equivariant torsion forms

This section is organized as follows. In Section 5.1, we prove (3.20), which is the easy
part of Theorem 3.9. In Section 5.2, we show the proof of Theorem 3.9 is local on the fibres
X. In Sections 5.3 and 5.4, we construct a coordinate system near W, and a trivialization
of 75, A(TS) ® A(T* D X) ® . In Section 5.5, following [B5], §11.7, we make a Getzler
rescaling [Ge] on the operator A}y. In Section 5.6, we explain the matrix structure of the
new rescaled operator L;é?}/ T In Section 5.7, we introduce graded Sobolev spaces with
weights. In Section 5.8, we prove Theorem 3.9.

We use the notation and assumptions of Sections 2, 3—4.
5.1. The limit as u — 0 of Tr,[gNy exp(— A}, p)].

Proposition 5.1. Let T)€[0,+o]. There exists C >0 such that for ue)0,1],
Te [0, T()]J

(5.1 ® Tr,[gNu exp(—42 ;)] — [ Td,(TX,h™)® Try[gNu exp(—C2,)]| £ Cu,
: X,

g

|® Trs[gNu exp(—AiT)] — O Try[gNu exp(—AiO)H < (CT.

Proof. By combining the local families index theorem of [B1] and [B4], §2 (cf. [Ma],
§2e)), one finds that for any 7= 0, asu — 0

(52)  @TrfgNuexp(—4, ;)] = [ Tdy(TX,h™)® Try[gNu exp(—C7.)] + O(u).
X,

g

Since T only plays the role of a parameter, one obtains the existence of C such that the first
inequality in (5.1) holds.

Also

0 0
(53) == TrlgNuexp(—42 )] = - {TrlgNuexp(—42 ; — bldu 1, V])]} o

Again, by using the techniques of [B1] and [B4], §2 (cf. [Ma], §2¢)), one finds that for u — 0,
the right-hand side of (5.3) converges boundedly for 7" < T;. Thus we get the second in-
equality in (5.1). [

5.2. Localization of the problem. Let d*,dY be the Riemannian distance along the

fibre (X,hTX),(Y,hTY). Let a®,aY be the infimum of the injectivity radius of the fibres
1

X, Y. We take ¢y > 0 as in Section 4.1. Let ¢, « € R, be such that ¢ € 0,5 inf(a®,a”, &)/,

v €]0,¢/8]. If x € V, let BX(x,¢) be the open ball along the fibre X of centre x and radius e.

In the sequel, we always assume that given ¢ > 0, o > 0 is chosen small enough so
that if x € X, d* (g 1x,x) < o, then d¥(x, X,) < ¢/16, and if ye Y, d¥ (g7 'y, ) < «, then
dY (v, ¥,) < &/16.

Let f be a smooth even function defined on R with values in [0, 1], such that
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(5.4) f(t)=1 forlt =a/2,

0 for |tf] = o
Set
(5.5) g9() =1 - 1(1).

Definition 5.2. Foru€]0,1], a € C, set

+0o0 _ 42
(5.6) F.(a) = j exp(itav/2) exp (Tt)f(ut) j—zt_n,
+00 2
Gy(a) = 7[ exp(itav/2) exp< 5 )g(ut)jzt_n

The functions Fy(a), G,(a) are even holomorphic functions. So there exist holo-
morphic functions F,(a), G,(a) such that

(5.7) F,(a) = F,(a®), Gy,(a) = Gu(az).
The restrictions of F,, G,, F,, G, to R lie in the Schwartz space S (R).

From (5.6), we deduce that
(5-8) eXp(—AiT) = Fu(AiT) + Gu(AziT)'

Theorem 5.3.  There exist ¢ > 0, C > 0 such that for ue0,1], T = 1, then

(5.9) ITr[gNuGu (A )] < cexp<_uc>.

Proof.  The same proof of [B5], Theorem 11.3, gives us Theorem 5.3. [

Let F, (/fu 7)(x,x") (x,x" € X) be the smooth kernel of F, (A~u r) Wwith respect to

dvy(x")/(2n) dmX Gince A2 7 1s a second order elliptic operator whose principal symbol is
given by 12|&|%/2, using finite propagation speed [CP] §7.8, [T], §4.4, and (5.6), we see that
for uel0,1], if xe V, F, (Au 7)(x,x") vanishes for x’ ¢ BX(x o) and only depends on the
restriction of A? rto BX (x, ). Clearly,

(5.10) TrS[gNHFu(AiT)] = TrS[gNHEt(/IiT)]

dvy(x)

_ITI'YQNHF(A (o', )}W

S _ dvy(x)
= J Trs[gNHFu(AiT)(g 'x, x)] S dmX
xeX,d(x,Xy)<¢/8 (27‘[)
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By Theorem 5.3, we find that the proof of Theorem 3.9 has been reduced to a local problem
near V.

In the rest of this section, we fix ¢ > 0, « € ]0,¢/8].

5.3. A rescaling of the coordinate Z € Ny,x,. In the sequel, if xe X, Z e (TrX),,
reR— x, =expX(1Z) e X denotes the geodesic along the fibre X such that xy = x,
dx

= Z. A similar notation will be used on Y, X,.
=0
Let Ny, /x, Ny, x, be the (ﬁbrew1se) normal bundles to X, Y, in X, X,. We identify
Ny, /x, to the orthogonal bundle to 7Y, in TX, with respect to hTX As in (1 19), we have
the holomorphlc orthogonal splitting T X = TX(, @ Ny, x. Let h™s hNxx be the metrics
on TX,, Ny /x induced by h"¥. Let h™" , V"% be the metrics on T Y,, Ny, x, induced by
h™™,

First, we identify a neighbourhood of W, in V; to a neighbourhood of W, in Ny, /x, r
using geodesic coordinates normal to W, Slnce X 1s totally geodesic in X if ye Wg,
Z € Ny,/x,.r,y> |Z] < ¢, we can identify (y, Z) with expy "(Z) We denote by %.(Y,/X,) the
corresponding neighbourhood of Y, in X,. Also we identify a neighbourhood of V in V' to
a neighbourhood of ¥, in Ny, /x r using geodesic coordinates normal to X, in X

Thus (_)/,ZZ) (qu(NY R@NX/XR))_)GP (Z)

neighbourhood of W, in Ny, /x r to an open neighbourhood of W, in V. Since X, is totally
geodesic in X, and since g preserves the geodesics in X, the action of g near y is given by

(Z’) identifies an open

(5.11) 9(2,2") = (Z,9Z").

Let dvy,,dvy, be the Riemannian volume forms on X, Y, with respect to
R BT, Let vaY jx,» 40Ny, be the Riemannian volume forms on the fibres on
(NY/anh M), (NX/X h X"/X) For ye Wy, Z € Ny, /x, my» Z' € Nx,/x,r.y> |Z],|Z] < 5
let k(y,Z,Z'),k'(y,Z) be defined by

(5.12) dvx(y,Z2,2") = k(y,2,Z") dvx,(y, Z) dvy,, , (Z');

deg(y,Z) =k'(y,2) dvyg(y) vayg/Xg (Z2)=k'(y,2) dvTXg,y(Z).

Then k(y,Z,0) =1, k'(»,0) = 1.

Let ey, ..., ey be an oriented orthonormal basis of TrX,, and let el " be the
correspondmg dual basis of TpX,. If € A(T3V,), let ™ be the form in A(T S) which
factors e! ... e*" in the obV10us expansion of f.

Definition 5.4. For 7' = 0, x € V, let f(x) € A(TS) such that

1

W = {ng(TX,hTX)(I) Try[gNu eXp(—C%z)]};naX,

(5-13)  fr(x)
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The key result of this section is the following extension of [B4], Theorem 11.7, [B5],
Theorem 11.5.

Theorem 5.5.  There exists y € |0, 1] such that for any p € N, there exists C, > 0 such
1
that ifue]O, 1}, T e |:1 :| Yo € Wq, Z GNy/X(/ R, 0> ‘Zo’ < 8T/2

(5.14)
1 P A2 -1 Z Zy
TzdimNYg/X_q |Z|£I"8/8 Trs gNHFU(Au,T) <g (yovTaz)v <y07T72)>

ZeNx, xR, (5, 2y/T)

ZO dUNX;,/x (Z) ZO
k(y()?T’Z)W_ﬂT y0,7
< GU+1Zo) " (w1 + 1))

Remark 5.6. From (5.10), to prove (3.19), we only need to estimate

(5.15)
. Ny, /x y4 dUX, X

f{ | Tr[gNuFu(4] 1) (97" (x,2), (x, Z))]k(x, Z)(ﬁimu_ﬁﬂx)}%-

T\ jzizers (27) / (2m) "

In the same way as in [B4], Remark 11.8, we decompose the above integral as
I+ | . By Theorem 5.5, we find that | is dominated by
Uspy (Yo Xg) X\ Uepp(Yy/Xy) Uspp(Yo/ Xy)
C (u(l +T ))/ . Using again Theorem 5.5 for W, =0, we get a similar estimate for
. Using now Proposition 5.1, we have thus proved Theorem 3.9.
X \Uea(Yy/ Xy)

5.4. local  coordinate  system near Wg and a ftrivialization of
n, A(Tg, S) RAT*OVX)® &, Let ViiTa 2S)OAMT™VX) e the connection on

e A(TES) ® ATV X)

along the fibres X, which is induced by yAT X)) et

1Vn;A(TD;S)®A(T*<°vUX> zvn;A(TRfs)®A(T*<°~‘>X)

)

be the connections on 7} A(T5S) @ A(T*%VX), along the fibres X defined in [B5], Defi-
nition 11.7.

Foru >0, let y, : A(TRS) — A(TS) be the map
(5.16) o e A(TES) — u%%q e A(TES).

For u > 0, let 2V A TaS)OMT " X).u 16 the connection on 1 A(TES) @ A(T*%D X) along
the fibres X (cf. [B5], Definition 11.9)

(5.17) 2yt AT ) @ATOVX) u _ v, 2y AT S)OA(T !//_
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In the sequel, we will use trivializations with respect to the connection
2Vn;A(TD§S)®A(T*<0~1>X),u

* It will be often more convenient to trivialize with respect to
2Vn;A(TD§S)®A(T*<° D x)

, and to apply afterwords the operator v,,.

In [B4], §9, [BL], §8f), a G-invariant orthogonal splitting of Z-graded vector bundles
E=¢Y@E of ¢ near W was obtained. Let P be the orthogonal projection operators
from é on &%, Let V< be the connection on &% which is the orthogonal projection of V¢
on ¢*. Set Vf = V< @ V< . Then V¢ is G- 1nvar1ant

Take yo € W,. Let B/*(0,¢) be the open ball in (TrX), of centre 0 and of radius e.
The ball B/*(0,¢) is then identified to B¥(}y,¢) using the map exp;) .

We fix Zye Ny, x, ry» |Zol <¢/2. Take Ze(TpX),, |Z| <&/2. The curve

1€[0,1] = Zy+1Z lies in BI*(0,¢). We identify (n;A(Ty S) ® A(T*0D 'X)) 517 tO

(25 A(T3S) ® ATV X)) 7 (resp. ¢z,.7 to &z,) by parallel transport with respect to the
connection 2V ATESIOAT X, u (resn VE) along 1 € [0,1] — Zo + 1Z.

When Zy € Ny, /x, &, |Zo| < &/2 is allowed to vary, we identify
(7 A(T5S) @ ATV X)),

(resp. (TrX)z,,<z,) to (nT/A(T[RTS) %;9]A(T*(O’l)z\’))y0 (~reysp. (TwX),,<y,) by parallel trans-
port with respect to V”;?(Tﬁ&@/\m( Vx) (resp. VI*¥ V<) along ¢ € [0, 1] — tZ,. Therefore
the fibres of 7}, A(T;S) ® A(T**V X) at Zy + Z and yy are identified by parallel transport

1
along the broken curve 1 € [0,1] — 2tZ,, 0 <t < 1/2, Zy + (2t — 1)Z, 3 <tr<1.

Let H,, be the vector space of smooth sections of (7} A(T3S) @ A(T**VX) ® )
over (TrX),, 5 Let AT¥ be the ordinary flat Laplacian of T} RX Then A™ acts naturally on

H,,. Let y be a smooth function defined on R considered in (4.2). If Z € (T X),, put

(5.18) pZ) = y("%')

We now fix Zy € Ny,/x, ry, |Zo| <¢/2. Recall that the considered trivialization of
1 A(TES) @ A(T*OVX) ® & depends on Zy. Therefore the action of D¥ also depends
on Zy.

Definition 5.7. Foru >0, T >0, let Lll,,’ 70 M% be the operators acting on H,,,,

(5.19) L7 = (1-p*(2) (%MATX + szf?o) +pA(2)AL (2o + 2),

2
u ~
Mul,Zo _ _5(1 —pz(Z))ATX —I—pz(Z)BJ/z"Z(ZO —|—Z)

Let F,(L 1ZO)(Z Z'") (2,72 € (TrX),,,|Z'| <¢/2) be the smooth kernel associated
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to F, (L1 7o) with respect to dvy(Zo + Z')/ (27)*™X By using propagation finite speed
[CP], §7.8, [T], §4.4, we see that for any y € Wy, Zo € Ny, /x, Ry 1 20| S €/2, Z € (TrX),,,
1Z| = ¢/2,

(520) El(/IiT)((yO?ZOv IZ) (yOaZ()vZ)) ( IZO)(g_IZ Z)

5.5. Rescaling of the variable Z and of the Clifford variables. For u > 0, let F,, be the
linear map

(5.21) heH, — F,heH,; FhZ)=hZ/u).
Foru>0,T =0, set
(5.22) Lyf =F 'Ly PF,,

2,70 _ 141,20
M>% = F'\M}AF,,

Let eq,..., ey be an orthonormal basis of (TrY), )yo, let ey, ..., ey be an ortho-
normal basis of Ny, /x, wr.y,, let exyri1,..., ey be an orthonormal basis of Ny, xR,y Then
er,...,ey is an orthonormal basis of (TRX ),,- Let el ¢ be its dual basis of (T3X),,-

For U € (TrX)y,, lettU Z0(Z) be the parallel transport of U with respect to V¥ along the
curve 1€ [0,1] = Zy+tZ. For 1 £i <2/, put

(5.23) é = 1ed(Zy), 14¢i(Zo+ Z) = 1 (Z).

As X, is totally geodesic along X, it is important to observe that under the con-
sidered identification of (T X), with (TpX )yp’ at Zy € Ny,x, r,y, Which represents an
element of X, é1,...,éyn (resp. éyniy,...,éy) is an orthonormal basis of (TrX,), Z (resp.

(Nx,/x,®)z,)-

Definition 5.8. Foru >0, T > 0, set

V2el u
5.24 e =Y A L 1<j<al,
( ) ¢ 7T(e_l) u A \/zl/a =)=
2e/ T
cun(C’j) = \/_—; A —u\/—jigj, 21" +1 <j= 21",
' u

Let Op be the set of scalar differential operators acting on smooth functions on
(TRX)}’O

Definition 5.9. Foru >0, T > 0, let

L7 My 7" e (my A(T3S) ® End(A(T3X,) ® &) ® ¢(Nx,/x r)),, ® Op
be the operator obtained from Li %0 M>% by replacing the Clifford variables
clej) (1 =j=<2I") by the operator ¢, r(e;), while leaving unchanged the c(e;)
QU'+1=j=2).
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The complicating fact with respect to [B5], §11.7, is that the c(e;) (21" +1 = j < 2I)
are not rescaled. However, the rescaling is the same as in [B4], Definition 11.10.

Let F, (L) ZO)(Z VAN VAVANS (TRX)}U, |Z'| < ¢/2) be the smooth kernel associated
to F,,(L3 70y calculated with respect to k'(yo, Zo) dv(rx), (Z')/ (27)9™¥_ Note that, at

Z' =0 (representing (yo,Z)), this last density comc}des ‘with dvy /(27) dmX " Here
FALyP)Z,2') lies in (mj,A(T3S) ® End(A(T3X,) ® &) ® c(Ny, x, R)),,- Moreover
g acts naturally on (A(N;‘//X) ®f)yo as an element of (c¢(Ny,/x r) ®End(f))
gF(Ly7)(Z,Z') lies in (mj, A(T3S) ® End(A(T3X,)) ® ¢(Nx,/x.») ® End(¢)),

Now we use the notation of [B5], (11.57). Namely, F,(L S%O)(g‘lZ, Z) can be ex-

panded in the form

(5.25)
FLyPNg'Z.2)= S e aner nig iy, ® Q197 Z,2),
1<iy<<iy <21" ! !
1< ji<<jy <21"
o ]lj(g’lz Z) e (nyy (T[%S)®C(NX,J/X,R)®End(é))yU
Set
(5.26) [Fu(Ly ) (g7 2, 2)]™ = 01..20(97' 2, Z)

e (m, A(T3S) ® ¢(Nx,/x,r) ® End(é))yﬂ.
The following theorem extends [B4], Proposition 11.12, [B5], Proposition 11.16:

Proposition 5.10. [ Z € Ny, /x g, y,, the following identity holds:

(5.27) TrlgNuF(L, 7) (9" Z, Z)Ik(v0, Zo, Z)

T2 dim NYg/Xz/

- 1 AN
- dim X 3,Z 9
= D N 1T |:9NH|: u(Ly, ”)(T,;ﬂ ]

Proof.  As in the proof of [B4], Proposition 11.12, note that since g preserves the
geodesics and the obvious connections on

Ty AT3S) @ A(T*OVX) @ & =~ (r, A(T3S) @ ATV X) ®¢)
g just acts as the obvious constant linear map on (n}, A(T3S) ® A(T**VX) ® ¢),,- Since
g acts like the identity on A(7"*VX,), g e ¢(Ny,x, r),,- Therefore the rescahng of the
Clifford variables in (5.24) has no effect on g. Identity (5 27) is now a trivial consequence

of [BL], Proposition 11.2. ]

By (5.20), (5.27), we find that for Zy € Ny, /x, .y, |Zo| < eT/2,
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(5.28)
1 ~ byl —1 ZO ZO
m 7| %68 Tt [gNHE4<Au,T) <g (yO’Taz)a(y(JaT,Z))]

ZE€Nxy xR, (15, 2y/T)

k é 7 dUny/X(Z>
Jo, T’ (Zn)dimNXg/X

| i don,, (Z)
.\ dim X, S g ' i
_ (—l) im X, |Z|<J"/8 Tr.y[gNH[Fu(Lu, TO/ )(g IZ’ Z)}ma ](275);%
s¢/ou |
ZeNx,/x. 1. (3. 2/T)

Let N"%/% be the number operator of A(N ;;g / X(). Then N™%/% acts naturally on
A(TpX)|y,. For Ue(TrX),, let Vy be the standard differential operator acting on
smooth functions on (7rX), . Set

(5.29) R =R¢ +% Tr[RT¥].

Let C be a smooth section of T3 X ® End (7 A(T3S) @ A(T**VX) ® &). We use
the notation

e; e;

Let
RLX|, € A*(TV,) ® End(TX), R} |, € A*(TV,) ® End(¢),
(V<V(20)ly, € T*V, ® End(&)
be the restrictions of RZTj( ,R/ZéO,Vi V(Zy) in the direction V. By using [B5], Proposition

11.8 and Theorem 11.11, LS 70 can be extended by continuity at u = 0. As in [B5], (11.60)—
(11.65), we have the formula,

12

1 RS
Z(Vé[ +§<R§OX|V¢/27 ei>)

(530)  Ly7(Z) = T—NNYg/Xy{ .
: i=1

£ Nyy/xq
+RE |, + T(VV(Z0))ly, + T2V2(ZO)}TN K

By [B3], (3.16)—(3.21), one finds easily that

(5.31)

(=)™ % [ TrfgNulexp(—Ly 7 ) (g™ 2, 2)]™
ZENX!//X,R

dUNXy/ X (Z)

W = Br(y0,Zo/T).
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In view of (5.27), (5.28) and (5.31), Theorem 5.5 follows from the following result.

Theorem 5.11. There exist y€0,1], C >0 such that for any pe N, there is
Co >0, re N, such that for uel0,1], T € [1,1/u], yo € Wy, Zy € Ny,/x, r.yo> |Z0| £ eT/2,
Z,7" € (TrX), , |Z|,|Z'| < ¢/8u, then

(532)  |[(B(Ly?'") —exp(~Ly 7'M)) (2, 2"))|
< Co(1+1Zo)) (1 + |Z] + |Z')) exp(—C|Z = Z'|P) (u(1 + T))".

Proof. The remainder of the section is devoted to the proof of Theorem 5.11, which
is similar to [B4], Theorem 11.13. [

5.6. The matrix structure of the operator L3 Z "I T Asin [B5], §11.8, we calculate the
asymptotic expansion of the operator L3 ZO/ as u — 0. The basic difference is that here,
the operators c(e;) (21" +1 < j < 21) are not rescaled. This does not create any difficulty.
To the contrary while the rescaled operators ¢, r(e;), 1 < j<2/" are not uniformly
bounded as u — 0, the operators c(e;), 2/"” + 1 < j < 2/ remain constant. These operators
improve the estimates with respect to [B5], §11.8. In the limit as u — 0, they disappear, as is
made clear in equation (5.30).

If Ce (nyA(T3S) ® ¢(TiEX) ® End(€)) let

Zy+2°
Ci'r € (riyA(T3S) ® End(A(T3X,) © &) ® e(Nx, x.w)),,

be the operator obtained from C by the trivialization indicated in Section 5.4, and by
making the Getzler rescaling in Definition 5.8. By [B5], (11.66), as in [B5], (11.67), we get

(5.33) LypT =Myt
3)
+ pz(uZ){ (T2 V2 + Tf“VfH wV + Z uTe(z%/Té;)Ve s ) (Zo/T + uZ)}
u,T
+72(1- pz(uZ))Pgo,
Comparing with [B5], §11.8, there is an extra term

21 (3)
{ZuTc( 20T8) (V. ><zo/T+uz>} ,

20"+1 u, T
but it does not introduce any extra difficulty, because u7 < 1.

5.7. A family of Sobolev spaces with weights. Set
(5.34) APUTEX,), = N (TRY,), ® ANy, x, 8)

Let I, be the set of smooth sections of (nj;, A(TS) ® A(TpX,) ® AN {,/X) ® )
over (TrX), . Let I, 4.y, be the set of smooth sections of
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(7N (TS) @ AT X,) @ ANy /y) ® é),,

over (TrX )yo. As in [B5], §11.9, we introduce a family of Sobolev spaces with weights.
These weights are strictly similar to the corresponding weights in [B5], Definition 11.17.
The results contained in [BL], Proposition 11.24—Theorem 11.30, remain valid, essentially

because the operator L;:?O/ " which is considered here has the same structure as in [B5],
§11.8.

5.8. Proof of Theorem 5.11. We have the following analogue of [B4], Theorem
11.14, in our context.

Theorem 5.12. There is C >0 such that for pe N, p' e N, there exist Cy >0,
reN such that for any uel0,1], T e€[l,1/u], yoe W, Zo € Ny, /x, Ry 20| <&T/2,
Z,Z" € (TpX),,, |Z|,|Z'| < &/6u, then

plool+a]

(5.35) (1+1|Zo|)?  sup F(LYPT)(z,2")

Joa o | <p’ W
< Go(1 42|+ 1Z')) exp(=C|Z - Z'|7).

Proof. At least formally, the problem treated here is the obvious analogue of the
problem considered in [B4], §11h), with extra Grassmann variables f*. One can then pro-
ceed formally as in [B4], §11h) and obtain (5.35). As in [B4], §11h), the Sobolev norms in
Section 5.7 play a key role in proving the required estimates. Of course, here we deal with
the kernel of F,(L; L ZO/ ™, while in [B4], §11h), the kernel exp(— L3 ZO/ T) was considered.
For ¢ > 0, set

Im? A
(5.36) VC:{AEC,ReAg = _62}.

Then ¥V, = {/%,|Im /| < ¢}. Now from (5.6), for m,m’ € N, there exists C,, ,» > 0 such that
foraeC, |Ima| < ¢,

(537) ‘Cl‘m‘Flgm/)(a)‘ < Cm,m’-
So given k € N, there is a unique holomorphlc function Fu k(/l) defined on a neighbourhood
of V. such that F, ;(1) — 0 as 1 — +oo and F,(1) = ()L)/(k — 1)!. Then by (5.37),
(5.38) suIIB |}L|"’\Fu",i (D] £ Cpor-

Then F,(L; L ZO/ ") can be interpreted as a contour integral similar to [BL], (11.117). By the
argument in [B4] p. 125, we get (5.35) with C = 0.

For g e N*, set

(5.39) Ko y(a) = T: exp(it/2a) exp <‘7’2) f(ut)g (é) dt.
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There is a holomorphic function K, ,(a) such that K, ,(a) = K, ,(a*). Now as in [B4],
(11.53), we find that for any ¢ > 0, there exists C > 0 such that for m,m’ € N, there exists
C' > 0 such that for ¢ > 1,

(5.40) sup |4]"|K\")(2)] < C'exp(—Cq?).
eV,

By proceeding as in [B4], p. 127, we get (5.35) with C > 0. [

Observe that Fy(a) = exp(—a?). Moreover by [B5], (11.82), for any p e N, u €10, 1],

-C
(5:41) sup [ul?| (@) — exp(—a?)| < ¢ p<—>

[Im(a)| <e

So by (5.41) and by the analogue of [BL], Theorem 11.36, we get the analogue of [B4],

(11.62) for the estimate of a natural norm of FM(L3 70y —exp(—L 3 0) By proceeding as in
[B4], §11i), when u — 0,

(5.42) F(Ly 7" (2,2") — exp(—Ly 7T )(2,2")

uniformly for Z,Z’ in any compact set. By (5.42), (5.35) is also true for u = 0. By using
again Theorem 5.12, as same as in [B4], §111), we get Theorem 5.11. [

6. The analysis of the kernel of gF,,(Ai i) for T>0asu—0

The purpose of this section is to prove Theorem 3.10. This section is the obvious
extension of [B5], §12, where Theorem 3.10 was established when G is trivial, of [B4], §12,
where the case where S is a point was treated.

This section is organized as follows. In Section 6.1, we show that the proof of Theo-
rem 3.10 is local on X. In Section 6.2, we rescale the coordlnate Zin (TrX),, and also the

Clifford variables. In Section 6.3, we calculate the asymptotics of the operator Lu’yTO/u which

was obtained from 42 0 T/u by a rescahng In Section 6.4, we prove Theorem 3.10.
We use the assumptions and notation of Sections 2, 3-5.

6.1. Localization of the problem. By (5.8), and Theorem 5.3, we see that to establish
Theorem 3.10, we just need to show that as u — 0,

(6.1) @ Tr,[gNuF, (4, )] = | @Tr[gNuexp(—2% 2,)] chy (17, ).

g

As in Section 5.2, using finite propagation speed, the proof of Theorem 3.10 has been re-
duced to a local problem near X,. As in (5.10),

(6.2) Tr,[gNuF,(A; 0 T/u)] J"Trv gNuF, (Au )0 Ly, x)] doy (x)/(2m) ™.



Bismut and Ma, Equivariant torsion forms 223

Take yo e W,. If Z e (TrX),, |Z| <e, we identify Z e (TgX),, with epr(Z) eX.
Take u > 0, if |Z| < ¢, we identify ( P A(TES) @ A(TOVX)) &4 to

(ri A(T3S) ® A(TOVX)) &,

by parallel transport with respect to the connection 2V7rA(Tx S)SA(T* V¢ along the
curve t € [0, 1] — ¢Z.

If Ue(TrX),,tU(Z) € (T rX), denotes the parallel transport of U along the curve
tel0,1] - tZ with” respect to V¥

6.2. Rescaling of the variable Z and of the horizontal Clifford variables. We use the
notation of Definition 5.7.

Definition 6.1. Foru >0, T >0, yo € W, set

(6.3) Lty — 1o

Lyo _ 1,0,
u,T/u u, T /uw Mu _Mu )

2y _ 720 2y — 220
Lu7T/u - Lu,T/u’ Mu - Mu :

Let FM(L:?/M)(Z,Z’) (Z,Z' e (TrX),,) be the smooth kernel associated to

F, (Lu yTO/ ) calculated with respect to dv(zy,) " (Z")/(2n) dim X"

Let Ny, x,Ny,/y be the normal bundles of Y, in X, Y. Then we have the holo-
morphic orthogonal splitting 7Y = TY,; ® Ny,;y. We 1dent1fy Ny,/x to the orthogonal
bundle to TY, in (TX,h™). Let k”(yo,Z) be such that for Z € Ny, )y », |Z] < ¢,

(6.4) dvx (yo, Z) = k"(yo, Z) do(rx), (Z).
Then as (5.20), for |Z] < ¢

(65)  Fuldy 1) (30,97 2), (30, 2))K" (y0, Z) = Fu( L)) (07 Z, Z).

Let ey, ..., ey be an orthonormal basis of (TgY, ) Let eyirq, ..., ey~ be an ortho-
normal basis of Ny, /y g, Let eyni1,... ey be an orthonormal basis of Ny/x,r,y,- Then
er,...,ey is an orthonormal basis of (T rX),,- Let el e e+l e be the corre-
spondmg dual bases of (T Yy), , Ny X, Ry

Definition 6.2. For u > 0, set

V2e/ u
6.6 =—"A——i@,, 1Zj=<2I.
( ) cu(e]) u A \/zlela =] =

Foru>0,T >0, let

Ly, M3 e (m, A(TES) ® End(A(T3Y,) ® ) ® ¢(Ny, jx.1)), ® Op
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be the operators obtained from Li’?’/u,Mf*yO by replacing the Clifford variables

¢(¢j) (1 < j < 21') by the operator ¢,(¢;).

Let Fu(Li'}T’“/u)(Z,Z’) (Z,Z' € (TrX),,) be the smooth kernel associated to F, (L z;‘/u)

calculated with respect to dv(ry) ( "/ (2n)d‘mX We can still expand Fu(L: ? N9'Z,2)

as in (5.25), the difference being that in the right hand side of (5.25), /" is replaced by /’, and
NXg/X by NYg/X' We define

(L2072, 2)™ € (i A(T3S) ® e(Ny, x.0) ® End(9)),,

u, T/u

as in (5.26), /” being replaced by /'.

Also ¢(Ny,/x,r) ® End(&) acts on (A( Y/X) ® é) , and so the supertrace of ele-
ments in this algebra is well defined.

We now extend [B4], Proposition 12.7, [B5], Proposition 12.4:

Theorem 6.3. Foranyu>0,T >0, yoe Wy, Ze€ Ny, /x ry, Z = 8_ the following
identity holds:

(6.7) w0 T gNuFy (47 1) (97 uZ, uZ) K" (yo,uZ)
= (=)™ Tr[gNulFu(Ly 7)) (0" 2, 2)]™.

Proof.  Observe that since g acts as the identity on T'Y,, applying Getzler rescaling
on g does not change g. By using (6.5), our theorem is a trivial consequence of [BL], Propo-
sition 11.2. [

6.3. The asymptotics of the operator LY asu—0. If

u, T[u
C e (nj A(T3S) ® c(TpX) ® End(é))z,

let Ce (n5 A(T3S) ® End(A(T3Y,) ® &) ® C(NYU/X’R))}/‘() be the operator obtained
from C by the trivialization indicated in Section 5.4, and by making the Getzler rescaling
in Definition 6.2. By as in [B5], (11.67), and (5.33), we get

3,y ,
(68) Lu,}TO/u = Mu3,y0

TZ T 21 (3) T2
+ p2(uZ){ <ﬁ V24 Zfavfé'”' w V4> Tc(rei)eri V) (uZ)} + = (1- pz(uZ))Pf)o
Ju i=1 u

Let i, : W, — V be the embedding. Then we have the obvious extension of [B5], The-
orem 12.6:

Theorem 6.4. Asu — 0,

12

2
69) M=M= 33 (V4 S GRIZi) ) RS,
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Proof. We proceed as in the proof of (5.30). The main difference is that because the
Clifford variables c¢(e;) (2I' + 1 < i < 2[) are not rescaled, they ultimately disappear in the
limit. Still, we use [B5], (11.61). [

Then we have an obvious extension of [B5], Theorem 12.7, by replacing i* there by i7,
as we only rescale the Clifford variable c(e;) (1 i < 2/').

6.4. Proof of Theorem 3.10. Recall that we reduced the proof of Theorem 3.10 to
the proof of (6.1).

We have an identification of smooth vector bundles on W,
TX =TYy;® Ny,)x, Ny, x =Ny, vy ® Nyx.

Let PV/v be the orthogonal projection 7X — N Y, Y- Let R Ay ) , R be the curvatures of
the holomorphic Hermitian connections on (A (N; /x)> RNy (17,/1’7)

We claim that using Theorems 6.4 and the corresponding extension of [B5], Theorem
12.7, the proof of (6.1) is essentially identical to the proof of [B4], Theorem 8.7, given in
[B4], §12. By using the arguments of Section 5.8, the obvious analogue of [B4], Theorem
12.11, holds. Namely, we obtain uniform estimates on the kernel F, (Lu yTO/u)(Z Z') and its
derivatives.

Theorem 6.5. There exists C > 0 such that for p € N, there exist C' >0, re N, for
which if u€10,1], yo € Wy, Z,Z' € Ny, x,r, yo» | Z|,|Z'| < &/8u, then

(6.10)  |F (L)} )(Z,Z) < C'(1+|PVz)) ™

(1+|PMur Z|) exp(—C|Z — Z']%).

For M >0, p" e N, there exists C" > 0 such that for uel0,1], yoe Wy, Z,Z' € (TpX)
Z],1Z' = M,

Yo’

e+l
(6.11) sup |

|, || <p’

W&(Lﬁ;y;’/u)(z,z’) <C"

Let IJr be the Vector spaces of Section 5.7 which are associated to ¢* instead of &. We
write the operator L, ’y ° , in matrix form with respect to the splitting I,, = =1, & I+ so that
3,y0 _ LM 1 L 5

uwTfu L,1 L,»
Theorem 12.7, we obtain the analogue of [BL], (12.95). Namely, as u — 0,

]. Then by Theorems 6.4 and the corresponding extension of [BS5],

A(N} = -
(6.12) Ly — 273" — ig*RyO( 2 i P RS P,

The precise sense in which (6.12) holds is made explicit in [BL]. By the argument in
[BL], §12f), the analogue of [BL] Theorem 12.16, holds. Namely for 7> 0, yo € W,
JeU=1{)eC,Re(l) £5Im?*(1) — A4}, if 4> 0 is large enough, and if 5 > 0 is small
enough, as u — 0, in the sense of distributions,



226 Bismut and Ma, Equivariant torsion forms

(6.13) (A= Ly, = Poo(h—#3" —iRL) ™ Po,

Let 072(Z,2") (Z,Z' € (TrX),,) be the smooth kernel associated to exp(—%?f’“) with re-
spect to dory(Z')/(27)*™X . By (5.41), Theorem 6.5 and (6.11), as in [B4], §12h), we find

that as u — 0, uniformly over compact sets in (7TrX), x (TrX),,

(6.14) Fu(Lj;yTo/u)(z, Z') = O(Z,Z')exp(—R?).

We decompose the integral in (6.2) by I + J . Asin Remark 5.5, the first
d(x,ij)ng/ii d(x,)g’j)X;a/S

integral converges to (6.1). If we apply the above argument to W, = 0, we get &~ = 0 and

the right hand side of (6.13) is 0. Thus the second integral converges to 0 as u — 0.

The proof of (6.1) is completed. []

7. The analysis of the two parameter operator gexp(—Ai 7) in the range u €10,1], 7 2 1/u

The purpose of this section is to prove Theorem 3.11. This section is the extension of
[BS], §13, where Theorem 3.11 established when G is trivial, and of [B4], §13, where it was
considered when S is a point.

This section is organized as follows. In Section 7.1, we show that our problem is lo-
calized globally near W, and we prove Theorem 3.11 by using Theorem 7.2. In Section 7.2,
we construct a coordinate system and a trivialization of 75 A(T5S) ® A(T**DVX) ® &. In
Section 7.3, we rescale the coordinate Z € (TrX), , and we use a Getzler rescaling on cer-
tain Clifford variables. The operator Ai 7/ 18 then replaced by an operator Eu%‘%“. In Sec-
tions 7.4—7.6, we summarize very briefly the content of key subsections of [B5], §13.6-13.8,
and we indicate the difference here. In Section 7.7, we establish key estimates on the kernel
of Fu(ﬁfj 2%, and we prove Theorem 7.2.

We use the notation and assumptions of Sections 2, 3—6.

7.1. The problem is localizable near W. We use the notation of Section 5.2. Recall
that ¢, o > 0 are constants taken as in Section 5.2. Now we fix ¢ > 0. The precise value of «
will be determined in Section 7.2.

If yeY, Ue(TrY),, recall that te R — y, = expyY(lU) € Y is the geodesic in Y

y?

d .
such that yg = y, ?); = U.If U’ € Ny,x gy, we still denote by U’ € Ny, y g expy(v) the
=0 ’

parallel transport of U’ with respect to V’/* along t € [0,1] — y, € Y.
We have the following extension of [B5], Theorem 13.1:
Theorem 7.1. There exist ¢ >0, C > 0, 0 € |0, 1] such that foruel0,1, T = 1,

- 1 . ~ c -C
(7.1) CI)TrS[gNHGL,(A,i T/u)] ~3 dim Ny, x® Trs[gGu(Buwz/’z)] < T5 exp (uz>
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Proof. The proof of our theorem is essentially the same as the proof of [B5], Theo-
rem 13.1, as we pointed out in Section 4 that each step in [B5], §9, is G-invariant. []

In view of Theorem 7.1, to prove Theorem 3.11, we only need to show that there exist
C > 0,0 > 0such that forue0,1], T = 1,

. 1 " C
(7.2) O Try[gNuF, (A2 7),)] — 5 dim Ny, @ Tr,[gF,(BY )] < 75

By (6.2), we will use instead the operator Fu(ANi T /u). By the results of Section 5.2, we know
that Fu(AL%_’ 7/u) (%, X") vanishes for x’¢ B¥(x,o) and only depends on the restriction of

Ay 7, to BX(x,a).

Recall that PNx/x PN PNvix are the orthogonal projections from TX on

on W,. We

7,
TXg|Wg + TY|%
have the exact sequence of holomorphic Hermitian vector bundles on W,

Nx,/x,Ny,)v, Ny,x- Let N be the excess normal bundle N =

(7.3) 0 — Ny,/x, ® Ny,)y = Ny, ;x = N —0.

Moreover, Ny, /x, and Ny, y are mutually orthogonal in Ny, /x. As usual, we identify N (as
a smooth vector bundle) to the orthogonal bundle to Ny, y, @ Ny,,y in Ny, x. So we have
an identification of smooth vector bundles,

(7.4) Ny,ix = Ny,/x, ® Ny,;y ®N.

Let VVorxe VNvorr, V¥ be the holomorphic Hermitian connections on Ny, /y,, Ny, /v, N.
Take yo € W,. Set
(7.5) Uy = {(v0, Zo) € Ny, x. . |PM/7 Zo| < &,|PV71¥ Zy| < &}

We identify (yo, Zo) € %, to exp® (PNvixZy).
CXPy,

(PNY.L//YZO)

Let x(y0,Z0) ((»0,Z0) € Ny,/x,r), k' (y0, Zy) ((yo, Z}) € Ny,)y,r) be the smooth
functions defined by

(7.6) dvx (y0, Zo) = (v, Zo) dvy,(yo)dvny, . (Zo),
dDY(yOaZ(I)) = K/(yo,Z(/)) dUYg (yo) vay_u,/y(Z(/))'
Then  x(30,0) =x'(»,0) =1, and x’ is the restriction of x to Ny yg. Let

F,(B MV;/ Ny, y) (y,y' €Y) be the smooth kernel associated to Fu(BuV;/ %) with respect to
the volume element dvy(y')/(27)*™ Y. Clearly,
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L~ _ dvy(x)
(7.7) Wf TrgNuFu(A; 1,,)(9 lxvx)](zn)m
Cef8
1 )dimX u2dimN)q,/X
=(5 dvy, (o) or e —
<27’L’ }L’l:, ! Zye N{/g/x‘ R lem Nryx

\PMYalY 74 <e/8u
|PYY/X Zo|<ev/T/8u

Try

N, Fu /12 1< 7MPNYg/YZ +LPNY/XZ>7
9iVH ( u,T/u)(g Yo 0 \/T 0

u
<J’07 ”PNY*"/YZO + ﬁPNy/XZO)>

K(yo, uPNyQ/YZO + %pNy/xZO) duNyg/X(Zo).

Now we state an extension of [B4], Theorem 13.6, [B5], Theorem 13.2.

Theorem 7.2. If ¢, o are small enough, for any p € N, there exists C > 0 such that for

VT
uel0,1], T = 1, yo € Wy, Zy € (Ny,/x,w),,, [PV Zo| < —88 , | PN 7o) < —88 , then
g u u

L2 dim Ny,

(7.8) dim Ny

Try

L B u
g]\f]-[F,,,<A§7 T/u) (g ! (yo, uPNYy/YZ() + \/TPNY/"'ZQ> s

< C'(1+ [P Zg|) 7 exp(—C|PYo* Zo ).

u
<J’07uPNY‘“/YZO “V‘WPNY/XZO))

There exist C" > 0,6" €10,1/2] such that under the same conditions as before, we have

(7.9)
1 dimXMZdimNyg/X o, » N u N
(E) W Trs gNHFu(AuT/u) d (y(),MP y.él/yZ() +\/—TP Y/XZ()>,

u
<y07 uP™Mr Zy + \/—TPNY/XZO>>

u
K(y(), UPNY-"/YZO -+ —PNY/XZO
VT

exp(—|PVrx Zy|?) dim Ny x ( 1 >dim Y

n.dil’l’lNy/x 2 27T

Try[gF.(BY %) (97" (vo, uP™5/" Zo), (v, uP™s" Zo)) i’ (vo, uP™/* Zo)

C//
79"

lIA
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Proof. The remainder of this section is devoted to the proof of Theorem 7.2. []

Proof of Theorem 3.11. Using (7.7) and Theorem 7.2, it is clear that there exists
C > 0 such that foru e |0,1], T = 1,

5o dvy (x
T10) | T THlgNaAA )0 0]
KT (27)
dlmNY/X ~ WZ _1 dUY(y) C
R ’ <
> ,,Z/S/S‘L WTrx[gFu(Buz )(g V, y)] (271’) dmyY | = T‘Sl/z .

As before, the integrals in (7.10) are the integrals along the fibre on S. Observe that for
ye W, if y¢ U, s~ W, then dY¥(g7'y, ) = . But by using again finite propagation speed,
it is clear that

(7.11) gFu(B ") (g, 9) =0 ifd"(gly,y) za
By applying Theorem 7.2 to the case where Y = (), we find that

dvy(x) C
T /2"

(7.12) | TrlgNuFu(A4; 1097 % %) — g5
Y\ 5 (27)

lIA

By (6.2), (7.10), (7.11), (7.12), we get (7.2). The proof of Theorem 3.11 is completed. []

7.2. A local coordinate system near y,eW, and a trivialization of
1, A(THS) ® A(T**PX)® & In [BS], Definition 13.4, by parallel transport along the
geodesics normal to Y with respect to the connection V¥, from the smooth splitting
TX|y = TY @ Ny,x on W, we get a smooth orthogonal splitting 7X = TX '® TX? near

W. Let PTX', PTX? be the orthogonal projections from TX on TX', TX2.

Also a connection V7Y — y 7% ® VX on TX = TX! @ TX? is constructed in [B5],
§13.2, by projecting orthogonally V¥ on TX!, TX2. On W, V¥ l ) V¥ restrict to the holo-
morphic Hermitian connections V", VNx on (TY,h"Y), (Ny,x,h¥7/x). For details, we
refer to [B5], §13.2.

Take yo € W,. Recall that Y, is totally geodesic in Y. So if Z" € (TrY,), , then

dy
t — y,=exp, (tZ") € Y, is the geodesic in ¥, such that y|,_o = yo, = i~ =2z"

IfZ" e (TrY, ) o5 Z; € Ny, /xR, y,, We still denote by Zj € Ny, /y g, exp) (27) the parallel
transport of Z; along the curve 7€ 0,1] — epr (1Z") with respect to' the connection
VNY,/xq ® VNY,/Y ® VN

If ye W, Ze(TrY),, Z' € Ny,x ry, we still denote by Z" € Ny x g, exp) z) the par-
allel transport of Z’ with respect to VV/* along the curve ¢ € [0, 1] — exp Y(tZ)

Ultimately, if Z € (TrX),,, |Z| < &, we identify Z to

o2
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exp (PMxZ) e X.

N-
P YalY 7
p oo (sz)( )

Let #;(yo) be the open neighbourhood of y, in X, given by

We(y0) ={Z € (TaX),,|P""Z| < & |P""*Z| < &}
Clearly, there exists ag(e) > 0 such that for yoe W,, Zyoe Ny/x .y, |Zo|l <e/8, the
open Riemannian ball in X, B*(Zy,ao(¢)), is contained in #,,(yo). In particular,

0 <og(e) <e/2 <a’/4 We fix « € ]0,inf (a9 (e),&/8)] small enough.

Let k"(Zo), Zo € (TrX),,, |Z0| <&, "(Zy), Zy € (TrY),,, |Z;| < ¢ be the functions
defined by

(7.13) dvx(Zy) = k" (Zo) dvrx(Zy),
dvy(Zg) = k" (Zy) dvry (Zp).

Then by (7.6), (7.13), one easily verifies that if Zy € Ny, x, g, y,, Zy € Ny,/v, R yo>

(7.14) K"(Zo) = k(y0, Zo), 1"(Z0) = ' (30, ).

As in Section 6.2, let ey, ... ey, e 11,...,eyn and eymyy,...,ey be orthonormal
bases of (TrY, )yo, Y,/ YR,y ?fld Ny x r,y,- Then ey, ... ey is an Ofthonormal basis of
(TaX),,. Let SVl TeS)®ATX) be the connection on 75A(TES) ® A(T*DX) along

the fibres X over U, defined in [B5], Definition 13.5. Put (cf. (5.16))

(7.15) 3y AT S)®AT "V X) u %3vn PA(TES)®A(T l//_

Take ue] 1. If Z e (TrX),,, we identify (n’,}A(TﬁS)@A(T*(O’l)X))Z (resp. &) to
(my A(T3S) ® (T +(0, 1)X ))yo (resp. &,,) by parallel transport with respect to the connec-
tion 3V” ATS)®AMT " VX)u (resp V<) along the path

(7.16) tel0,3] = Pz, 011,
PNz 4 (t—1)PYrz, 1<t<2;
PYZ 4 (t—=2)PVvxz, 2<t<3.

Remark that by [B5], §13.2, for 2 < ¢ < 3, parallel transport with respect to °V¥ coincides
with parallel transport with respect to V¥,

IfUe(TrX),,Z€ "// ( o), let °zU(Z) be the parallel transport of U along the curve
(7.16) with respect to Oy 7Y

Let %,3", .4, be the operators acting on H,, defined in [B5], Definition 13.7. Let
F.(& l“’)(Z VARVAVAR- (TRX)y ) be the smooth kernel associated to Fu(,%lT“), calcu-
lated with respect to dvrx(Z')/ (2 )d‘m ¥ By using finite propagation speed, it is clear that if
Zo € Ny,/x, 1,y |Zo] < ¢/8, as in (5.20),
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(7.17) Tr[gNuFu(A, 11,) (97" (v0, Z0), (y0, Z0)) " (Z)
= Tr,[gNuF.(Z,7°) (97" (10, Z0): (70, Z0))].

7.3. Rescaling of the variable Z and of the Clifford variables. For u >0, T > 0, let
Gy, 7 be the linear map h € Hy, — G, rh € H,, such that if Z € (TrX),,,

PTYZ \/>
u

(7.18) G,.th(Z) = h< PNY/XZ)

Set

(7.19) L =a,

u,

r LG,
MY = Gl Gy
Definition 7.3. Foru >0, T > 0, let
Lo, My € (miyA(T5S) @ End(A(T3Y,) ® €) ® ¢(Ny,/x.1)),, ® Op

be the operator obtained from Zf;“,/%f%“ by replacing the Clifford variables
c(ej) (1 = j <2I') by the operators ¢,(e;) in Definition 6.2, while leaving unchanged the
le) 2+ 1= j <2)

Let F, (‘Z% T )NZ,Z') (Z,Z" e (TrX),,) be the smooth kernel associated to Fu(%?’}’o)

calculated with respect to dv(rx), (Z /(2w )dlmX We still define [F, u(yu?;‘))(g—lz ,Z)]m
in Section 6.2.

Proposition 7.4.  For any u>0, T >0, yo€ Wy, Zy € Ny, jx gy, I[P Zo| < ¢/8u,
|PNvix Z| < ey/T /8u, the following identity holds:

u2di1’1’1Nyg/X

(71200

Tr,

— u
gNHF (Au T/u) (g ! <J’07“PNY»‘//YZO +ﬁPNY/XZO)?

u u
PNy Zy 4+ —=PNvixz ) K" (uPNwz +—=PNrixZ )
(J/o 0 JT 0 0 JT 0

= (=) "™ Try[gNulFu (L2 (97" Zo, Zo)] ™.

Proof. Since g preserves the geodesics in X and Y and also the connections on the
vector bundles considered before, it is clear that g acts linearly in the coordinate Z;,. Observe
also that since g acts as identity on 7'Y,, applying Getzler rescaling on g does not change ¢.
Our theorem is now a trivial consequence of [BL], Proposition 13.17. [

7.4. A formula for &, o IfCe (2y A(T3S) ® ¢(T3X) @ End(¢)), (Z € (TrX),,),
let C2 € (n,A(T3S) ® End(A(T5Y,) ® &) ® c(Nqu/X,R))yO be the operator obtained from
C by the tr1V1ahzat10n indicated in Section 7.2, and be making the Getzler rescaling in
Definition 7.3.
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The discussion in [B5], §13.6, applies with minor modifications. The main difference is
that the Clifford variables c(e;) (2/' + 1 < i < 2/") are not rescaled, while they are rescaled
in [B5], §13. However this just introduces fewer diverging terms than in [B5], §13. In par-
ticular, [B5], Theorem 13.10, for .Z,’ 2 7 still holds. We should modify the second equation
of [BS], (13.41), as following:

(7.21)
( Tel)} ¢ < TY U 5N )
r Ve V{uP''Z+—=P"xZ
zzzl;ﬂ{ V2 e VT
21 c(e,') £ TY — 2 c(e,-) - : oy
a Ti=21’"+1 V2 (Vom VWP Z) tu Ti:g%;-rl V2 VPNY/XZVOH V(upP'"Z)

L el Ve g Ty Nox 712
+u\/>z %’:—H{ \/z }MVPNY/XZVOT(:’ V(”P Z)+@(M|P Y/XZ‘ )

After this modification, the analogues of [B5], Theorem 13.11, still holds.

7.5. The algebraic structure of the operator £, ’y *asu—0. By replacing i* by i; in
the limits, the analogue of [B5], §13.7, still holds. In part1cular by (4.3), as in [B5], (13.63),
asu — 0,

72 (w2, WENTSONT 27 gy,

— GiRIYZ, ey — <ix A7 PTYZ, P™V ey,
Here 4, is the second fundamental form of T Y < TX asin B3], (1.32). Thus as u — 0, the
operator %u 7 converges to an operator %0 7 as in [B5], (13.64).

7.6. The algebraic structure of the operator ££ 7" as T — +oo. For a fixed u > 0,
the analysis of the matrix structure of %, %O as T — +oo is the same as in [BS5], §13.8. Of
course the rescaling on the Clifford Varlables which depends on u > 0, is different, but
again, this improves the situation, since there are fewer diverging terms. In particular, the
matrix structure of the operator is unchanged with respect to [B5], Theorem 13.14.

We still define the function g,,7(Z), g,(U) as in [BS5], Definition 13.18. The algebra
(3 A(T3S) @ A(T, Yg))yo splits into

(723)  (zpA(TES) ® A(TSY,)) @( ) (A" (T S) ® AY(T Y))>

r

= ®(ry AT38) ® A(TSY,))!

r

Then we introduce the obvious modification of the system of norms | ]% Ty J = —1,0,1
of [BS], Definitions 13.19 and 13.20, adapted to the splitting (7.23). '
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In view of Sections 7.4, 7.5, it should now be clear that the functional analytic argu-
ments of [BL], §13k)—130), can be used without any change. In particular, we choose T = 1
as in [BL], Theorem 13.27.

7.7. Uniform estimates of the kernel of i‘,,(%?’Ty"). We now state an extension of
[B4], Theorem 13.14:

Theorem 7.5. There exists C >0 such that for any pe N, there exists C' >0

such that if u€0,1], T = To, yo € Wy, Zo, Zj € (TeX),,, |PN7xZy|, |PNx Zi| < VT [4u,
|PTY Zo|, |PTY Z}| < ¢/4u, then

(7.24)  |Fu(L)7)(Zo, Z{)| < C'(1+ |PVx Zo|) 7
x (14 [PTY Zo|)* exp(—C|Zy — Z}|*).

There exists C > 0 such that if p' € N, there exists C' > 0 such that if |o|, |o/| < p’, u €]0,1],
T z To, yo € Wy, Zo,Zy € (TrX),,,

'

o+

i (g
WF”( ) (Zo, Zy)

(7.25)

< C'(1 +2|)* exp(—C|Zo — Z|*).

Proof. The bounds in (7.24), (7.25) with C = 0 are easily obtained by proceeding as
in the proof of [BL], Theorem 13.32. To get the required C > 0, we proceed as in the proof
of Theorem 5.12. Using finite propagation speed, we see that there is C” > 0 such that if
|Zy — Zj| =z C"q, then

(7.26) FA L7720, Z0) = Ky (47°)(Z0, Z).

By (5.40), as in Section 5.8 and [B4], §11h), we get (7.24), (7.25). [

Let Z)° be the analogue of the elliptic second order differential operator considered in
[B5], Definition 13.21.

Let VArATEIOATIY) e the connection on 7l A(TES) ® A(T*®DY) along the
fibre Y defined in [B5], (11.32), for the fibration 7y : W — S.

If U e B]Y(0,¢), we identify
(m A(TES) @ ATV Y)) oy with (z3 A(TS) @ ATV Y)), oy,

by parallel transport with respect to the connection lpuV”?V (TaS)OAT DY 1// V" along
the path

(7.27) tel0,2] = tP™z, 0<r<;
PTYz 4 (1—1)PMurz, 1<1<2.
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Let X2 be the analogue of the operator considered in [B5], §13.11. The minor difference
with [BS5], §13.11, is that here, only the Clifford variables c¢(e;) (1 < i < 2/”) are rescaled,
while in [B5], §13.11, the Clifford variables c(e;) (1 < i < 2/") were rescaled (cf. [B4], §137)).
Now we have the obvious extension of [B5], Theorem 13.22:

Theorem 7.6. Over Byc Y(0,¢/2u), the following identity holds:

(7.28) I = B,

Again (4.3) plays an important role to get (7.28) (cf. [BS], p. 233). Using Theorem 7.5
and (7.28), and proceeding as in [BL], §13q), we get Theorem 7.2. []

8. A proof of Theorem 0.2

The proof of Theorem 0.2 is the same as the proof of [BS], Theorem 0.2. We just need
to add ¢ at each step in [B5], §14.

This concludes the proof of Theorem 0.2.
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