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1. Introduction

The purpose of this paper is to study the convergence speed of the zero-divisors of 
random sequences of holomorphic sections in high tensor powers of a holomorphic line 
bundle endowed with a singular Hermitian metric.

Distribution of zeros of random polynomials is a classical subject, starting with the 
papers of Bloch–Pólya, Littlewood–Offord, Hammersley, Kac and Erdös–Turán, see e.g., 
[3–5,25] for a review and complete references. After the work of Nonnenmacher–Voros 
[19,20], general methods were developed by Shiffman–Zelditch [26] and Dinh–Sibony 
[15] to describe the asymptotic distribution of zeros of random holomorphic sections 
of a positive line bundle over a projective manifold endowed with a smooth positively 
curved metric. The paper [15] gives moreover a good estimate of the convergence speed 
and applies to general measures (e.g., equidistribution of complex zeros of homogeneous 
polynomials with real coefficients). These methods were extended to the non-compact 
setting in [16]. Some important technical tools for higher dimension used in the previous 
works were introduced by Fornæss–Sibony [17].

In [8] it was shown that the equidistribution results from [15,26] extend to the case of 
a singular Hermitian holomorphic line bundle with strictly positive curvature current.

We will start with an abstract statement. For an arbitrary complex vector space V
we denote by P(V ) the projective space of 1-dimensional subspaces of V . For v ∈ V

we denote by [v] its class in P(V ). Fix now a vector space V of complex dimension 
d + 1. Recall that there is a canonical identification of P(V ∗) with the Grassmannian 
Gd(V ) of hyperplanes in P(V ), given by P(V ∗) � [ξ] �−→ Hξ := P(ker ξ) ∈ Gd(V ), for 
ξ ∈ V ∗ \ {0}. If V is endowed with a Hermitian metric, then we denote by ωFS the 
induced Fubini–Study form on projective spaces P(V ) normalized so that σFS := ωd

FS is 
a probability measure. We also use the same notations for P(V ∗).

Fix an integer 1 � k � n. We consider on P(V ∗)k the Haar measure σMP associated 
with the natural action of the unitary group on the factors of P(V ∗)k (cf. (3.10)). If 
ξ = (ξ1, . . . , ξk) is a point in P(V ∗)k, denote by Hξ the intersection of the hyperplanes 
Hξi in P(V ). The following extension of Theorem 3.2 stated below can be obtained using 
the ideas in [16] and [15]. This is a version of Large Deviation Theorem in our setting.

Theorem 1.1. Let (X, ωX) be a compact Kähler manifold of dimension n and let V be 
a Hermitian complex vector space of dimension d + 1. Let Φ : X ��� P(V ) be a 
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meromorphic map. Then, there exist c > 0 depending only on (X, ωX) and m > 0
depending only on k such that for any γ > 0 there is a subset Eγ of P(V ∗)k with the 
following properties

(a) σMP(Eγ) � c dme−γ/c.
(b) For ξ outside Eγ , the current Φ∗[Hξ] is well-defined and

‖Φ∗[Hξ] − Φ∗(ωk
FS)‖−2 � γmk−1, (1.1)

where mk denotes the mass of the current Φ∗(ωk
FS) (cf. (3.1), (3.2) for the definitions 

of the semi-norm ‖ · ‖−2 and mass on currents).

Consider now a holomorphic line bundle L → X on a compact Kähler manifold 
(X, ωX) endowed with a singular Hermitian metric hL. Let KX be the canonical line 
bundle on X with the metric induced by ωX . Let (F, hF ) be an auxiliary Hermitian 
holomorphic line bundle endowed with a smooth metric hF . These metrics and the 
volume form ωn

X induce an L2 scalar product (2.7) on the space of sections of Lp ⊗ F

and we denote by H0
(2)(X, Lp⊗F ) the space of holomorphic L2 sections (cf. (2.8)). These 

spaces are finite dimensional Hilbert spaces endowed with the scalar product (2.7).
This induces Fubini–Study metrics ωFS and probability measures σFS on the spaces 

P(H0
(2)(X, Lp ⊗ F )) and also multi-projective metrics ωMP and natural probability mea-

sures σp := σp,MP on P(H0
(2)(X, Lp ⊗ F ))k (see (3.10)). Consider the probability space

(Ωk(L,F ), σ∞) :=
∞∏
p=1

(
P(H0

(2)(X,Lp ⊗ F ))k, σp

)
. (1.2)

Although we don’t indicate explicitly, these spaces depend on hL, hF . If F is trivial we 
just write (Ωk(L), σ∞).

We have the following equidistribution result with speed estimate for the zeros of 
random L2 holomorphic sections of big line bundles endowed with semipositively curved 
metrics. For a holomorphic section s of a line bundle we denote by Div(s) the associated 
divisor and by [Div(s)] the current of integration on Div(s). We refer to Definition 3.1
for the notion of convergence speed of currents.

Theorem 1.2. Let (X, ωX) be a compact Kähler manifold of dimension n, and let L be 
a holomorphic line bundle endowed with a singular metric hL such that c1(L, hL) ≥ 0
on X.

(i) Assume that L is big and let h̃L be a singular Hermitian metric on L with c1(L, ̃hL) ≥
εωX for some ε > 0. Assume that hL � A ̃hL for some constant A > 0. Then for 
σ∞-almost every sequence ([sp]) ∈ (Ω1(L), σ∞), ( 1

p [Div(sp)]) converges to c1(L, hL)
on X as p → ∞ with speed O

( 1 log p
)
.
p
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(ii) Let U ⊂ X be an open set such that c1(L, hL) ≥ εωX on a neighborhood of U
for some ε > 0. Then for σ∞-almost every sequence ([sp]) ∈ (Ω1(L, KX), σ∞), 
( 1
p [Div(sp)]) converges to c1(L, hL) on U as p → ∞ with speed O

( 1
p log p

)
.

The assumption hL � A ̃hL in (i) means that hL is less singular than the positively 
curved metric h̃L. Note that the assumptions in (i) and (ii) are necessary. Without them 
there could be very few sections in H0(X, Lp) or H0(X, Lp ⊗KX), respectively, that is, 
their dimension could be bounded independently of p.

We consider next continuous Hermitian metrics on ample line bundles. Let L be an 
ample line bundle over a compact Kähler manifold X of dimension n. Let hL

0 be a smooth 
Hermitian metric on L such that α = c1(L, hL

0 ) is a Kähler form. Let hL be a continuous 
Hermitian metric on L which is associated with a continuous function ϕ by hL = hL

0 e
−2ϕ. 

We call ϕ a global weight of h. We do not assume that the curvature current c1(L, hL)
is positive (it is not of order 0 in general).

Define the equilibrium weight ϕeq associated with the continuous weight ϕ as the 
upper envelope of all α-psh functions (cf. (2.1)) smaller than ϕ on X,

ϕeq : X → [−∞,∞), ϕeq(x) := sup∗
{
ψ(x) : ψ ∈ PSH(X,α), ψ ≤ ϕ on X

}
(1.3)

where the star denotes upper semi-continuous regularization. (The upper semi-continuous 
regularization of a function ψ is ψ∗(x) = lim supy→x ψ(y).) The equilibrium first Chern 
form is defined by

ωeq := α + ddcϕeq . (1.4)

The equilibrium metric on L is given by hL
eq = hL

0 e
−2ϕeq ; it satisfies c1(L, hL

eq) = ωeq. Note 
that here ϕeq is bounded on X since ϕ is bounded and α is a Kähler form, so constant 
functions are α-psh. Therefore, the wedge-products ωk

eq, 1 ≤ k ≤ n, are well-defined [1]. 
The equilibrium measure is given by μeq = ωn

eq. When X is the projective line P1 and 
L is the hyperplane line bundle O(1), the measure μeq is a minimizer of the weighted 
logarithmic energy [24].

The following result generalizes a result by Berman [2] where smooth weights ϕ were 
considered. It shows that the equilibrium weight of a global Hölder weight can be uni-
formly approximated by global Fubini–Study weights, with speed estimate.

Theorem 1.3. Let (X, ωX) be a compact Kähler manifold, (L, hL
0 ) be an ample line bundle 

endowed with a smooth metric hL
0 such that c1(L, hL

0 ) is a Kähler form. Let hL = hL
0 e

−2ϕ

be a singular metric on L, such that ϕ is Hölder continuous on X. Then the equilibrium 
weight ϕeq is continuous on X. Moreover, the global Fubini–Study weights ϕp given by 
(4.4) converge to ϕeq with estimate

‖ϕp − ϕeq‖∞ = O

(
1 log p

)
, p → ∞ , (1.5)
p
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where ‖ · ‖∞ denotes the supremum norm on X. In particular, for any 1 ≤ k ≤ n we 
have 1

pkω
k
p → ωk

eq on X as p → ∞ with speed O
( 1
p log p

)
.

Corollary 1.4. Let (X, ωX), (L, hL) be as in Theorem 1.3. Let 1 ≤ k ≤ n. Then for 
σ∞-almost every sequence (Sp) ∈ (Ωk(L), σ∞), Sp = ([s(1)

p ], . . . , [s(k)
p ]), the sequence of 

currents of integration on the common zeros 1
pk

[
s
(1)
p = . . . = s

(k)
p = 0

]
converges to ωk

eq
on X as p → ∞ with speed O

( 1
p log p

)
.

The paper is organized as follows. In Section 2 we recall the notions of Bergman kernel 
and Fubini–Study currents in the context of singular Hermitian metrics. In Section 3 we 
describe a general setting for the equidistribution of zeros, which also delivers precise 
information about the convergence speed. In Section 4 we apply these results to semi-
positive Hermitian metrics and prove Theorem 1.2. Finally, in Section 5 we consider the 
case of arbitrary singular metrics and prove Theorem 1.3 and Corollary 1.4.

2. Preliminaries

Let X be a complex manifold. We assume that the reader is acquainted with the 
notion of plurisubharmonic (henceforth abbreviated psh) function ϕ : X → [−∞, ∞), 
see [13, Ch. I (5.1)]. Recall that psh functions are locally integrable ([13, Ch. I (4.17), 
(5.3)]). A function ϕ : X → [−∞, ∞) is called quasi-psh if it is locally given as the sum 
of a psh function and a smooth function.

We also assume that the reader is familiar to the notion of positive current (in the 
sense of Lelong, i.e., non-negative, see [13, Ch. III (1.13)], [18, B.2.11]). For a positive 
current β we write β ≥ 0. If α is a closed real current of bidegree (1, 1) on X we define 
the space of α-psh functions as

PSH(X,α) :=
{
ϕ : X → [−∞,∞) : ϕ quasi-psh, ddcψ + α ≥ 0

}
. (2.1)

Here dc = 1
2πi (∂ − ∂), hence ddc = i

π∂∂.
Let (X, ωX) be a compact Kähler manifold of dimension n and consider a holomorphic 

line bundle L → X. Let U ⊂ X be an open set for which there exists a local holomorphic 
frame eL : U −→ L.

Let hL be a smooth Hermitian metric on L. Recall that the first Chern form c1(L, hL)
of h is defined by

c1(L, hL) |
U
= −ddc log |eL|hL = i

2π RL, (2.2)

where RL is the curvature of the holomorphic Hermitian connection ∇L on (L, hL).
If hL is a singular Hermitian metric on L then we set

|eL|2hL = e−2ϕ, (2.3)



T.-C. Dinh et al. / Journal of Functional Analysis 271 (2016) 3082–3110 3087
where the function ϕ ∈ L1
loc(U) is called the local weight of the metric h with respect to 

the frame eL (see [10], also [18, p. 97]). The curvature of hL,

c1(L, hL) |
U
= ddcϕ , (2.4)

is a well-defined closed (1,1) current on X. The cohomology class of c1(L, hL) in 
H1,1(X, R) does not depend on the choice of hL. This is the Chern class of L and 
we denote it by c1(L).

We say that the metric hL is semipositively curved if c1(L, hL) is a positive current. 
Equivalently, the local weights ϕ given by (2.3) are (equal almost everywhere) to psh 
functions. Recall that a line bundle L is said to be pseudoeffective if it admits a (singular) 
semipositively curved metric hL (see [10]).

Let L be a holomorphic line bundle and hL
0 be a smooth metric on L. Set α = c1(L, hL

0 ). 
Let us denote by Met+(L) the set of semipositively curved metrics on L. There exists a 
bijection

PSH(X,α) −→ Met+(L) , ϕ �−→ hL
ϕ = hL

0 e
−2ϕ, (2.5)

and c1(L, hL
ϕ) = α + ddcϕ.

Let (F, hF ) be an auxiliary Hermitian holomorphic line bundle endowed with a smooth 
metric hF . We denote by

hp = (hL)⊗p ⊗ hF , (2.6)

the metric induced by hL, hF on Lp⊗F . Consider the space L2(X, Lp⊗F ) of L2 sections 
of Lp ⊗ F relative to the metric hp and the volume form ωn

X on X, endowed with the 
inner product

(s, s′)p =
∫
X

〈s, s′〉hp
ωn
X , where s, s′ ∈ L2(X,Lp ⊗ F ). (2.7)

We let ‖s‖2
p = (s, s)p. Let us denote by

H0
(2)(X,Lp ⊗ F ) :=

{
s ∈ L2(X,Lp ⊗ F ) : s holomorphic

}
(2.8)

the space of L2-holomorphic sections of Lp ⊗F . In the same way, let L2
q,r(X, Lp ⊗F ) be 

the space of L2-integrable (q, r)-forms with values in Lp ⊗ F relative to hp and ωX . We 
will add ‘loc’ for spaces of locally L2-integrable forms when X is not compact.

For a section s ∈ H0
(2)(X, Lp ⊗ F ) we denote by Div(s) the divisor defined by s (cf. 

[18, (2.1.4)]) and by [Div(s)] the current of integration on Div(s) (cf. [13, Ch. III (2.5)], 
[18, (B.2.16)]). Note that for two non-zero elements s, s′ ∈ H0

(2)(X, Lp ⊗ F ) which are 
in the same equivalence class in P(H0

(2)(X, Lp ⊗F )) we have Div(s) = Div(s′), so Div is 
well-defined on P(H0 (X, Lp ⊗ F )).
(2)
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Assume now that (L, hL) is a holomorphic line bundle endowed with semipositively 
curved singular metric. Denote by Σ ⊂ X the set of points where hL is not bounded. This 
set has zero Lebesgue mass. Let {spj}

dp

j=1 be an orthonormal basis of H0
(2)(X, Lp ⊗ F ). 

Let Bp be the Bergman kernel function defined by

Bp(x) =
dp∑
j=1

|spj (x)|2hp
, x ∈ X \ Σ , (2.9)

where hp is given by (2.6). Let spj = fp
j e

⊗p
L ⊗ eF , where fp

j ∈ O(U) and eL, eF are 
holomorphic frames of L, F on U . Let ϕ′ be the local weight of hF with respect to eF , 
defined as in (2.3). Then on U \ Σ the following holds

logBp = log
( dp∑

j=1
|fp

j |2
)
− 2pϕ− 2ϕ′ . (2.10)

The right-hand side of (2.10) is a difference of psh (hence locally integrable) functions 
on U , so defines an element in L1

loc(U, ωn
X). Therefore, logBp defines an element in 

L1(X, ωn
X).

The Kodaira map is the meromorphic map given by

Φp : X ��� P
(
H0

(2)(X,Lp ⊗ F )∗
)
,

Φp(x) =
{
s ∈ H0

(2)(X,Lp ⊗ F ) : s(x) = 0
}
, x ∈ X \Bsp ,

(2.11)

where a point in P
(
H0

(2)(X, Lp ⊗F )∗
)

is identified with a hyperplane through the origin 
in H0

(2)(X, Lp⊗F ) and Bsp = {x ∈ X : s(x) = 0 for all s ∈ H0
(2)(X, Lp⊗F )} is the base 

locus of H0
(2)(X, Lp ⊗ F ). We define the Fubini–Study currents by

ωp = Φ∗
p(ωFS), (2.12)

where ωFS denotes the Fubini–Study (1, 1)-form on P
(
H0

(2)(X, Lp ⊗ F )∗
)
. They are pos-

itive closed (1, 1)-currents obtained by pulling back the Fubini–Study form ωFS. The 
current ωp is in fact given by an L1-form on X, which is smooth outside the set of 
indeterminacy of Φp, see Lemma 2.1 below. We have

ωp |U= 1
2 ddc log

( dp∑
j=1

|fp
j |2
)
, (2.13)

hence by (2.10)

1
ddc logBp = ωp − p c1(L, hL) − c1(F, hF ) . (2.14)
2
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We used above the following basic property that we will give a proof for the reader’s 
convenience.

Lemma 2.1. Let Φ : Y ��� Z be a meromorphic map between two compact complex 
manifolds Y , Z of dimensions 
 and m respectively. Let α be a smooth (q, r)-form on Z
with 0 ≤ q, r ≤ min(
, m). Then the (q, r)-current Φ∗(α) on Y is well-defined and given 
by a (q, r)-form with L1 coefficients which is smooth outside the indeterminacy set of Φ.

Proof. Recall that for a meromorphic map Φ : Y ��� Z ([18, Definition 2.1.19], [22]) 
there is an analytic subset I of Y such that Φ is holomorphic on Y \ I and the closure 
of the graph of Φ over Y \ I is an irreducible analytic subset of dimension 
 of Y × Z, 
called the graph of Φ. The smallest set I with this property is called the indeterminacy 
set of Φ. Since Y is a manifold, I is of codimension at least two [22, p. 333]. Denote by 
Γ the graph of Φ. It defines, by integration on its regular part reg(Γ), a positive closed 
current [Γ] of bi-dimension (
, 
) in Y × Z [13, p. 140].

Denote by πY , πZ the natural projections from Y × Z to Y and Z respectively. The 
pull-back Φ∗(α) is defined by

Φ∗(α) := (πY )∗(π∗
Z(α) ∧ [Γ]). (2.15)

This is the formal definition for any current α. It makes sense when the wedge-product 
in the last expression is well-defined because here the operator (πY )∗ is well-defined on 
all currents. In our setting, since π∗

Z(α) is smooth, the current Φ∗(α) is well-defined. 
More precisely, if β is a smooth form of bidegree (
 − q, 
 − r) on Y then

〈Φ∗(α), β〉 =
∫

reg(Γ)

π∗
Z(α) ∧ π∗

Y (β). (2.16)

Note that the 2
-dimensional volume of Γ is finite [13, p. 140].
Formula (2.16) shows that the current Φ∗(α) extends continuously to the space of test 

forms β with continuous coefficients. So Φ∗(α) is a current of order 0. If V is a proper 
analytic subset of Y , then Γ ∩π−1

Y (V ) is a proper analytic subset of Γ, so Γ ∩π−1
Y (y) has 

zero 2
-dimensional volume. Therefore, the last formula implies that Φ∗(α) has no mass 
on V , in particular, this current has no mass on the indeterminacy set I.

If β has compact support in Y \ I, since πY defines a bi-holomorphic map from 
Γ \ π−1

Y (I) to Y \ I, the last integral is equal to the integral on Y \ I of the form 
(πY )∗(πZ)∗(α) ∧ β. The last expression is equal to (Φ|Y \I)∗(α) ∧ β, where (Φ|Y \I)∗(α)
is the pull-back of the smooth form α by the holomorphic map Φ|Y \I . We conclude that 
the current Φ∗(α) is equal on Y \ I to the smooth form (Φ|Y \I)∗(α). Finally, since Φ∗(α)
is of order 0 and has no mass on I, the form (Φ|Y \I)∗(α) has L1 coefficients and is equal, 
in the sense of currents on Y , to Φ∗(α). This completes the proof of the lemma. �
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Note that the lemma can be extended to meromorphic maps between open manifolds 
provided that πY is proper on π−1

Z (supp(α)) ∩ Γ. Moreover, by definition, if α is closed 
and/or positive then Φ∗(α) is also closed and/or positive.

3. Abstract setting for equidistribution

We will only consider the case of compact Kähler manifolds but it is certainly easy 
to extend the results to the case of manifolds of Fujiki class and even open manifolds 
satisfying some properties of concavity.

Let (X, ωX) be a compact Kähler manifold of dimension n. Recall that we can intro-
duce several semi-norms on the set of currents of order 0 on X. If U is an open subset 
of X, α is a strictly positive number and T is a current of order 0 on X, define∥∥T∥∥

U,−α
:= sup

∣∣〈T, u〉∣∣ (3.1)

where the supremum is taken over smooth test forms u with support in U and such that 
their C α-norm satisfies ‖u‖Cα ≤ 1.

For simplicity, we will drop the letter U when U = X. In this case, ‖ · ‖−α is a norm 
and the associated topology coincides with the weak topology on any set of currents with 
mass bounded by a fixed constant. We will only consider the case α = 2 and we will be 
interested in estimates on ‖ · ‖U,−2. The other cases can be obtained as a consequence, 
e.g., if α < 2, we can use the theory of interpolation between Banach spaces [15,28].

Definition 3.1. Let (cp) be a sequence of positive numbers converging to 0. Let {Tp :
p ∈ N} and T be currents on X with mass bounded by a fixed constant. We say that 
the sequence (Tp) converges on U to T with speed (cp) if 

∥∥Tp − T
∥∥
U,−2 � cp for p large 

enough. We also say that the sequence converges with speed O(cp) if it converges with 
speed (Ccp) for some C ≥ 0.

Recall that a current of order 0 is an element in the dual of the space of continuous 
forms. The mass of such currents is the norm dual to the C 0 norm on forms. However, for 
a positive (q, q)-current T on (X, ωX), it is more convenient to use the following notion 
of mass

‖T‖ =
〈
T, ωn−q

X

〉
(3.2)

which is equivalent to the above mass-norm. The advantage is that when T is positive 
closed, its mass only depends on its cohomology class in Hq,q(X, R).

The following result was obtained in [16, Theorem 4], where we assumed that the map 
Φ has generically maximal rank n, but the proof there is valid without this condition.

Theorem 3.2. Let (X, ωX) be a compact Kähler manifold of dimension n and let V be 
a Hermitian complex vector space of dimension d + 1. Consider a meromorphic map 
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Φ : X ��� P(V ). Then there exists c > 0 depending only on (X, ωX) such that for any 
γ > 0 there is a subset Eγ of P(V ∗) with the following properties:

(a) σFS(Eγ) ≤ c d 2 e−γ/c.
(b) For ξ outside Eγ , the current Φ∗[Hξ] is well-defined and∥∥Φ∗[Hξ] − Φ∗(ωFS)

∥∥
−2 � γ . (3.3)

Consider now holomorphic Hermitian line bundles (L, hL), (F, hF ) such that hL is 
a singular Hermitian metric. We have H0

(2)(X, Lp ⊗ F ) ⊂ H0(X, Lp ⊗ F ), thus dp :=
dimH0

(2)(X, Lp ⊗ F ) < ∞. We assume that dp ≥ 1. Note that there exists C > 0 such 
that dp � Cpn for all p ∈ N, where C > 0 is a constant depending only on (X, ωX), 
c1(L), c1(F ). This follows from the holomorphic Morse inequalities [18, Theorem 1.7.1]
or the Siegel Lemma [18, Lemma 2.2.6].

We have the following consequence of the above result (compare also [16, Theorem 2]).

Corollary 3.3. Let (X, ωX) be a compact Kähler manifold of dimension n and let (L, hL)
be a singular Hermitian holomorphic line bundle on X. Let (F, hF ) be a holomorphic line 
bundle with smooth Hermitian metric. Then there is c = c(X, L, F ) > 0 depending only 
on (X, ωX) and c1(L), c1(F ), with the following property. For any sequence of positive 
numbers λp, there are subsets Ep ⊂ P(H0

(2)(X, Lp ⊗ F )) such that for p large enough

σp(Ep) � c p2ne−λp/c , (3.4)∥∥[Div(s)] − ωp

∥∥
−2 � λp , for any [s] ∈ P(H0

(2)(X,Lp ⊗ F )) \ Ep . (3.5)

Let (λp) be a sequence of positive numbers such that

lim inf
p→∞

λp

log p > (2n + 1)c . (3.6)

Then for σ∞-almost every sequence ([sp]) ∈ Ω1(L, F ), the estimate (3.5) holds for s = sp
and p large enough.

Proof. We apply Theorem 3.2 for V = H0
(2)(X, Lp ⊗ F )∗ and for Φ = Φp, where Φp is 

the Kodaira map (2.11). The first assertion is a direct consequence of Theorem 3.2. We 
prove now the second assertion. The hypothesis (3.6) on λp/ log p and (3.4) guarantee 
that

∞∑
p=1

σp(Ep) � c′
∞∑
p=1

1
p δ

< ∞

for some c′ > 0 and δ > 1. Hence the set
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E =
{
([sp]) ∈ Ω1(L,F ) : [sp] ∈ Ep for an infinite number of indices p

}
(3.7)

satisfies σ∞(E) = 0. Indeed, for every N ≥ 0, it is contained in the set{
([sp]) ∈ Ω1(L,F ) : [sp] ∈ Ep for at least one index p ≥ N

}
which is of σ∞-measure at most equal to

∞∑
p=N

σp(Ep) ≤ c′
∞∑

p=N

1
p δ

= O(N1−δ). (3.8)

Therefore, the second assertion of the corollary follows. �
We easily deduce from Corollary 3.3 the following.

Corollary 3.4. Let (X, ωX) be a compact Kähler manifold of dimension n and let (L, hL)
be a singular Hermitian holomorphic line bundle on X. Let (F, hF ) be a holomorphic 
line bundle with a smooth Hermitian metric. Let c = c(X, L, F ) be the constant given by 
Corollary 3.3 and let (λp) be a sequence of positive numbers satisfying

lim inf
p→∞

λp

log p > (2n + 1)c , lim
p→∞

λp

p
= 0 . (3.9)

Let U ⊂ X be an open set. Assume that ( 1
pωp) converges to a current Θ in U with 

speed (cp). Then for σ∞-almost every sequence ([sp]) ∈ Ω1(L, F ), ( 1
p [Div(sp)]) converges 

to Θ on U with speed 
(
cp + λp

p

)
as p → ∞.

We consider now products of projective spaces. Let πi : P(V ∗)k → P(V ∗), i = 1, . . . , k, 
be the canonical projections from the multi-projective space P(V ∗)k � (Pd)k onto its 
factors. As usual we denote by ωFS the Fubini–Study form on P(V ∗). Consider the Kähler 
form and volume form on P(V ∗)k,

ωMP := cd,k

k∑
i=1

π∗
i (ωFS) , σMP := ωkd

MP , (3.10)

where cd,k is the positive constant so that the volume form σMP defines a probability 
measure. The constant cd,k is given by the formula

(cd,k)−dk =
( dk

d

)( dk − d

d

)
· · ·
( 2d

d

)
= (dk)!

(d!)k · (3.11)

Using Stirling’s formula n! �
√

2πnnne−n, one can show that cd,k is smaller than 1 and 
larger than a strictly positive constant depending only on k. The measure σMP is the 
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Haar measure associated with the natural action of the unitary group on the factors 
of P(V ∗)k.

We give now the proof of Theorem 1.1. Recall that a quasi-psh function is locally 
the difference between a psh function and a smooth function. A quasi-psh function u on 
P(V ∗)k is ωMP-psh if it satisfies ddcu ≥ −ωMP, i.e., ddcu + ωMP is a positive current. We 
need the following result from [15, Proposition A.9].

Lemma 3.5. There are c > 0, α > 0 and m > 0 depending only on k such that if u is an 
ωMP-psh function on P(V ∗)k with 

∫
udσMP = 0, then

u ≤ c(1 + log d) and σMP{u < −t} ≤ c dme−αt for t ≥ 0. (3.12)

Lemma 3.6. Let Σ be a closed subset of P(V ∗)k and let u be an L1 function which is 
continuous on P(V ∗)k \Σ. Let γ be a positive constant. Suppose there is a positive closed 
(1, 1)-current S of mass 1 on P(V ∗)k such that −S � ddcu � S and 

∫
udσMP = 0. 

Then, there are c > 0, α > 0, m > 0 depending only on k and a Borel set E′ ⊂ P(V ∗)k
depending only on S and γ such that

σMP(E′) � c dme−αγ and |u(a)| � γ for a /∈ Σ ∪E′. (3.13)

Proof. By Künneth’s formula, the cohomology group H1,1(P(V ∗)k, R) is generated by 
the classes of π∗

i (ωFS) with i = 1, . . . , k. Therefore, there are λi ≥ 0 such that the class 
{S} of S is equal to 

∑
λi{π∗

i (ωFS)}. The mass of S can be computed cohomologically. 
If we identify the top bi-degree cohomology group Hkd,kd(P(V ∗)k, R) with R in the 
canonical way, this mass is equal to the cup product {S} � {ωMP}kd−1 and then a direct 
computation gives

k∑
i=1

λi(cd,k)kd−1
( dk − 1

d− 1

)( dk − d

d

)
· · ·
( 2d

d

)
=

k∑
i=1

λi(cd,k)−1k−1. (3.14)

We used here that {ωFS}d = 1 in Hd,d(P(V ∗), R) � R. Since cd,k ≤ 1 and S is of mass 1, 
we deduce that λi ≤ k.

By the ddc-lemma [18, Lemma 1.5.1], there is a unique quasi-psh function v such that

ddcv = S −
k∑

i=1
λiπ

∗
i (ωFS) and

∫
vdσMP = 0. (3.15)

We have ddcv + λωMP ≥ S for some constant λ > 0 depending only on k. Define w :=
λ−1(u + v). We have ddcw ≥ −ωMP. Since u is continuous outside Σ, the latter property 
implies that w is equal outside Σ to a quasi-psh function. We still denote this quasi-psh 
function by w. Applying Lemma 3.5 to w instead of u, we obtain that

u = λw − v � cλ(1 + log d) − v. (3.16)
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Let E′ denote the set {v < −γ + cλ(1 + log d)} which does not depend on u. Clearly, 
u � γ outside Σ ∪ E′. The same property applied to −u implies that |u| � γ outside 
Σ ∪ E′. It remains to bound the size of E′. Lemma 3.5 applied to λ−1v yields

σMP(E′) ≤ c dm exp
(
− αλ−1γ + cα(1 + log d)

)
. (3.17)

This is the desired inequality for (other) suitable constants c, α and m. �
End of the proof of Theorem 1.1. Let Φ : X ��� P(V ) be a meromorphic map and let 
Γ ⊂ X × P(V ) its graph. We define

X̃ =
{
(x, ξ) ∈ X × P(V ∗)k : ∃v ∈ P(V ) such that (x, v) ∈ Γ, v ∈ Hξ

}
. (3.18)

Recall that for ξ = (ξ1, . . . , ξk) ∈ P(V ∗)k we denote Hξ = Hξ1 ∩ . . .∩Hξk the intersection 
of the hyperplanes Hξi in P(V ). The set X̃ is a compact analytic subset in X × P(V ∗)k, 
of dimension n + (d − 1)k. Let Π1 and Π2 denote the natural projections from X̃ onto 
X and P(V ∗)k respectively.

Lemma 3.7. Let Σ ⊂ P(V ∗)k be the set of points ξ such that X̃ ∩Π−1
2 (ξ) �= ∅ and one of 

the following properties holds:

(a) dimHξ > d − k;
(b) dim X̃ ∩ Π−1

2 (ξ) > n − k;
(c) dimHξ = d − k, dim X̃ ∩ Π−1

2 (ξ) = n − k but the last intersection is not transversal 
at a generic point.

Then Σ is contained in a proper analytic subset of P(V ∗)k.

Proof. If Π2 is not surjective, the lemma is clear because Σ is contained in Π2(X̃) which 
is a proper analytic subset of P(V ∗)k. Assume that Π2 is surjective. So X̃∩Π−1

2 (ξ) �= ∅ for 
every ξ. Observe that the set Σ1 of ξ satisfying (a) is a proper analytic subset of P(V ∗)k. 
Thus, we only consider parameters ξ outside Σ1.

Let τ : X̂ → X̃ be a singularity resolution for X̃ and define Π̂2 := Π2 ◦ τ . The 
last map is a holomorphic surjective map between compact complex manifolds. So by 
Bertini–Sard type theorem, there is a proper analytic subset Σ2 of P(V ∗)k such that Π̂2
is a submersion outside Π̂−1

2 (Σ2). Indeed, Σ2 is the set of critical values of Π̂2 which is 
analytic. Sard’s theorem implies that it is a proper analytic subset of P(V ∗)k. It follows 
that for ξ /∈ Σ1 ∪ Σ2 the fiber Π̂−1

2 (ξ) has dimension n − k, i.e., the minimal dimension 
for the fibers of Π̂2. So Π−1

2 (ξ), which is the image of Π̂−1
2 (ξ) by τ , is also of minimal 

dimension n − k. Therefore, such parameters ξ do not satisfy (b).
Let E denote the exceptional analytic subset in X̂, i.e., the pull-back of the singu-

larities of X̃ by τ . Since dimE < dim X̂, arguing as above, we obtain a proper analytic 
subset Σ3 of P(V ∗)k such that for ξ outside Σ3, the dimension of E ∩ Π̂−1

2 (ξ) is at most 
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equal to n − k − 1. Since τ is locally bi-holomorphic outside E, for ξ /∈ Σ1 ∪ Σ2 ∪ Σ3, 
the intersection X̃ ∩ Π−1

2 (ξ) is transverse outside the image by τ of E ∩ Π̂−1
2 (ξ), which 

is of dimension at most n − k − 1. Such parameters ξ do not satisfy (c). The lemma 
follows. �

From now on, we only consider ξ ∈ P(V ∗)k \Σ, where Σ is defined in Lemma 3.7. The 
current [(Π2)∗(ξ)] is then well-defined and we have

Φ∗[Hξ] = (Π1)∗
(
[(Π2)∗(ξ)]

)
. (3.19)

There exists C > 0 such that for any test smooth real (n − k, n − k)-form ϕ on X
with ‖ϕ‖C 2 ≤ C we have

−ωn−k+1
X ≤ ddcϕ ≤ ωn−k+1

X . (3.20)

Take such a ϕ and define v := (Π2)∗(Π1)∗(ϕ). This is a function on P(V ∗)k whose value 
at ξ ∈ P(V ∗)k \ Σ is the integration of (Π1)∗(ϕ) on the fiber Π−1

2 (ξ). So, we have

v(ξ) = 〈Φ∗[Hξ], ϕ〉 . (3.21)

Hence, v is continuous on P(V ∗)k \Σ. Since the form ωFS on P(V ) is the average of [Hξi ]
with respect to the measure σFS on ξi ∈ P(V ∗), the average of [Hξ] with respect to the 
measure σMP on ξ ∈ P(V ∗)k is equal to ωk

FS. Thus, the mean value of v is

Mv :=
∫

vdσMP = 〈Φ∗(ωk
FS), ϕ〉 . (3.22)

So we need to prove that |v −Mv| ≤ γmk−1 outside a set Eγ of σMP-measure less than 
c dme−γ/c which does not depend on ϕ. This implies Theorem 1.1.

Define

T := (Π2)∗(Π1)∗(ωn−k+1
X ). (3.23)

This is a positive closed (1, 1)-current on P(V ∗)k and we have, thanks to the above 
property (3.20) of ddcϕ, that

−T ≤ ddcv ≤ T. (3.24)

Let ϑ be the mass of T . We can apply Lemma 3.6 to the function u := ϑ−1(v − Mv), 
S := ϑ−1T and to ϑ−1γmk−1 instead of γ. We can take Eγ = Σ ∪ E′ which does not 
depend on ϕ. Since Σ is of measure 0, in order to get from Lemma 3.6 the desired 
estimate on σMP(Eγ) = σMP(E′), it is enough to show that ϑ is bounded above by mk−1
times a constant which only depends on k.
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We have

‖T‖ =
〈
(Π2)∗(Π1)∗(ωn−k+1

X ), ωkd−1
MP

〉
=
〈
ωn−k+1
X , (Π1)∗(Π2)∗(ωkd−1

MP )
〉
. (3.25)

Let P̃(V ) denote the set of points (x, ξ) ∈ P(V ) × P(V ∗)k such that x ∈ Hξi for every i. 
Denote by Π′

1 and Π′
2 the natural projections from P̃(V ) onto P(V ) and P(V ∗)k. By 

construction, we have

(Π1)∗(Π2)∗(ωkd−1
MP ) = Φ∗((Π′

1)∗(Π′
2)∗(ωkd−1

MP )
)
. (3.26)

By definition of mk−1, it is enough to check that (Π′
1)∗(Π′

2)∗(ωkd−1
MP ) is bounded by ωk−1

FS

times a constant depending only on k.
We obtain with a direct computation

ωkd−1
MP = ckd−1

d,k

( dk − 1
d− 1

)( dk − d

d

)
· · ·
( 2d

d

) k∑
i=1

Θi = (cd,k)−1k−1
k∑

i=1
Θi, (3.27)

where

Θi := π∗
1(ωd

FS) ∧ . . . ∧ π∗
i−1(ωd

FS) ∧ π∗
i (ωd−1

FS ) ∧ π∗
i+1(ωd

FS) ∧ . . . ∧ π∗
k(ωd

FS). (3.28)

We will show that (Π′
1)∗(Π′

2)∗(Θi) = ωk−1
FS and this implies the theorem.

For simplicity, assume that i = 1. Since (Π′
1)∗(Π′

2)∗(Θ1) is invariant under the action 
of the unitary group, it is equal to a constant times ωk−1

FS . So we only have to check that 
the constant is 1 or equivalently the mass of (Π′

1)∗(Π′
2)∗(Θ1) is 1. Recall that the mass of a 

positive closed current depends only on its cohomology class. Therefore, in the definition 
of Θ1, we can replace ωd−1

FS with the current of integration on a generic projective line 

and each ωd

FS with the Dirac mass of a generic point, say ξj , for j = 2, . . . , k. The current 
Θ1 is in the same cohomology class as the current of integration on


× {ξ2} × · · · × {ξk}

that we denote by Θ′
1.

It is not difficult to see that (Π′
1)∗(Π′

2)∗(Θ′
1) is the current of integration on the 

projective subspace Hξ2 ∩Hξ3 ∩ . . .∩Hξk . So it is clear that its mass is equal to 1. This 
completes the proof of the Theorem 1.1. �

The following property of the constants mk is useful.

Lemma 3.8. There is c > 0 depending only on (X, ωX) such that mk ≤ c mk
1 for 1 ≤

k ≤ n.

Proof. Observe that by Lemma 2.1, the currents Φ∗(ωk
FS) are given by L1 forms and 

they are smooth on some Zariski open set U of X where Φ is holomorphic. Moreover, 
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we have Φ∗(ωk
FS) = Φ∗(ωFS)k on U . Since Φ∗(ωk

FS) is given by an L1 form, it has no mass 
outside U .

By [14, Lemma 2.2], there is C > 0 depending only on (X, ωX) such that if T and S are 
positive closed currents on X which are smooth in an open set U then the mass ‖T ∧S‖U
of T ∧S on U is bounded by C‖T‖‖S‖. By Skoda’s extension theorem [27, Théorème 1], 
positive closed currents of finite mass can be extended by 0 through analytic sets. So if 
U is a Zariski open set, the form T ∧ S extends by 0 to a positive closed current on X
with mass bounded by C‖T‖‖S‖. This allows us to apply inductively the mass estimate 
for T ∧ S to the case of product of several positive closed currents.

Observe that Φ∗(ωk
FS) = Φ∗(ωFS) ∧ Φ∗(ωk−1

FS ) on U , so, by induction on k, we deduce 
from the above discussion that mk ≤ Ck−1mk

1 . The lemma follows. �
In the case where V = H0

(2)(X, Lp ⊗ F )∗, we have m1 = O(p) and therefore 

mk = O(pk). This together with Theorem 1.1 imply the following corollary. Consider the 
Kodaira map Φp : X ��� P

(
H0

(2)(X, Lp ⊗ F )∗
)

defined in (2.11). The pull-back Φ∗
p(ωk

FS)
of the current ωk

FS is given by an L1 form equal to ωk
p on a dense Zariski open set (here 

ωp is the Fubini–Study current (2.12)).

Corollary 3.9. There are c = c(X, L, F ) > 0 and m = m(X, L, F ) > 0 depending only on 
(X, ωX) and c1(L), c1(F ), with the following property. For any sequence λp, there are 
subsets Ep of P(H0

(2)(X, Lp ⊗ F ))k such that for p large enough

(a) σp(Ep) � c pme−λp/c.
(b) For Sp = ([s(1)

p ], . . . , [s(k)
p ]) in P(H0

(2)(X, Lp ⊗ F ))k \ Ep, we have

∥∥∥ 1
pk
[
s(1)
p = . . . = s(k)

p = 0
]
− 1

pk
Φ∗

p(ωk
FS)
∥∥∥
−2

� λp

p
· (3.29)

In particular, when

lim inf
p→∞

λp

log p > (m + 1)c , (3.30)

for σ∞-almost every sequence (Sp) ∈ Ωk(L, F ), the above estimate holds for p large 
enough. If 1

pk Φ∗
p(ωk

FS) converge to a current Θk in some open set U with speed (cp) as 
p → ∞, then 1

pk

[
s
(1)
p = . . . = s

(k)
p = 0

]
converge to Θk on U with speed 

(
cp + λp/p

)
as 

p → ∞.

Note that the constants in the corollary can be chosen independently of k because 
1 ≤ k ≤ n = dimX. The corollary can be applied in the situation of Corollaries 1.4 and 
4.4. In that cases, we have Θk = c1(L, hL)k on U .



3098 T.-C. Dinh et al. / Journal of Functional Analysis 271 (2016) 3082–3110
4. Semi-positive curved metrics on big line bundles

Let (X, ωX) be a compact Kähler manifold of dimension n. Let (L, hL) be a holomor-
phic line bundle endowed with a singular metric hL. Fix a smooth Hermitian metric hL

0
on L and let α = c1(L, hL

0 ) denote its first Chern form. We can write

hL = e−2ϕhL
0 , i.e., |s|2hL = |s|2hL

0
e−2ϕ for any section s of L , (4.1)

where ϕ is an L1 function on X with values in R ∪{±∞}. We assume that the curvature 
of hL is semipositive, that is, c1(L, hL) = ddcϕ +α is a positive current. So the function 
ϕ is α-psh, i.e., ϕ is quasi-psh and satisfies ddcϕ ≥ −α. Define

ω := c1(L, hL) = ddcϕ + α. (4.2)

We also assume that the line bundle L is big. So, there is a metric

h̃L = e−2ϕ′
hL

0 (4.3)

such that ω′ := ddcϕ′ + α ≥ εωX for some ε > 0 (cf. [18, Theorem 2.3.30]). Let Bp be 
the Bergman function in (2.9) associated with (Lp, (hL)⊗p). The function

ϕp := ϕ + 1
2p logBp (4.4)

is quasi-psh and by (2.14) satisfies

1
p
ωp = ddcϕp + α, (4.5)

where ωp are the Fubini–Study currents (2.12). We call the functions ϕp global Fubini–
Study weights.

We will use the L2-estimates of Andreotti-Vesentini–Hörmander for ∂ in the following 
form (cf. [9, Théorème 5.1]).

Theorem 4.1 (L2-estimates for ∂).
(i) Let (X, ωX) be a Kähler manifold of dimension n which admits a complete Kähler 

metric. Let (L, hL) be a singular Hermitian holomorphic line bundle and let λ : X →
[0, +∞) be a continuous function such that c1(L, hL) ≥ λωX . Then for any form 
g ∈ L2

n,1(X, L, loc) satisfying

∂g = 0 ,
∫
X

λ−1|g|2 ωn
X < +∞ (4.6)

there exists u ∈ L2
n,0(X, L) with ∂u = g and
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∫
X

|u|2 ωn
X ≤

∫
X

λ−1|g|2 ωn
X . (4.7)

(ii) Let (X, ωX) be a complete Kähler manifold of dimension n and let (L, hL) be a 
singular Hermitian line bundle. Assume that there exists C > 0 such that

c1(L, hL) + c1(K∗
X , hK∗

X ) ≥ CωX

where hK∗
X is the metric induced by ωX on the anti-canonical bundle K∗

X . Then for 
any form g ∈ L2

0,1(X, L) satisfying ∂g = 0 there exists u ∈ L2
0,0(X, L) with

∂u = g ,

∫
X

|u|2 ωn
X � 1

C

∫
X

|g|2 ωn
X . (4.8)

We will also need the following.

Lemma 4.2. Let ψ be a negative psh function on a neighborhood of the unit ball B in Cn. 
Define

ψ′(z) := sup
B(z,ρ4)

ψ, (4.9)

where B(z, ρ4) denotes the ball of center z and radius ρ4. Then there is c > 0 depending 
on ψ such that for ρ small enough∣∣∣ ∫

B

ψ′dZ
∣∣∣ ≥ ∣∣∣ ∫

B

ψdZ
∣∣∣− cρ, (4.10)

where dZ denotes the Lebesgue measure on Cn.

Proof. In the last integral, we can replace B by B(0, 1 − 2ρ2) because by Cauchy–
Schwarz inequality, the associated error is O(ρ); we use here that psh functions are 
locally L2-integrable. So, we have to prove that∣∣∣ ∫

B

ψ′dZ
∣∣∣ ≥ ∣∣∣ ∫

B(0,1−2ρ2)

ψdZ
∣∣∣− cρ. (4.11)

It is enough to check for some (other) constant c and for ρ small enough that∣∣∣ ∫
B

ψ′dZ
∣∣∣ ≥ (1 − cρ)

∣∣∣ ∫
B(0,1−2ρ2)

ψdZ
∣∣∣. (4.12)

We claim that
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ρ−8n
∫

B(z,ρ4)

ψ′dZ � (1 − cρ)ρ−4n
∫

B(z,ρ2)

ψdZ. (4.13)

The inequality can be rewritten as

ρ−8n
∫

B(0,ρ4)

ψ′(z + t)dZ(t) � (1 − cρ)ρ−4n
∫

B(0,ρ2)

ψ(z + t)dZ(t). (4.14)

Recall that ψ and ψ′ are negative. Therefore, taking integrals in z of both sides of the 
last inequality over B(0, 1 − ρ2) and using Fubini’s theorem for the variables z and t, we 
obtain the desired inequality (4.12). It remains to prove the claim.

Fix x in B(z, ρ4). It is enough to check that

ψ′(x) � (1 − cρ)n!π−nρ−4n
∫

B(z,ρ2)

ψdZ. (4.15)

Note that the last expression is 1 − cρ times the average of ψ on B(z, ρ2).
By definition, there is y ∈ B(z, 2ρ4) such that ψ(y) = ψ′(x). So, there is a holomor-

phic automorphism τ of B(z, ρ2) such that τ(y) = z and ‖τ − id‖C 1 = O(ρ) (cf. [23, 
pp. 25–28]). Applying the sub-mean inequality to the psh function ψ̃ := ψ ◦ τ−1 at z we 
have

ψ′(x) = ψ̃(z) � n!π−nρ−4n
∫

B(z,ρ2)

ψ̃dZ = n!π−nρ−4n
∫

B(z,ρ2)

ψτ∗(dZ). (4.16)

Observe that since ‖τ − id‖C 1 = O(ρ),

τ∗(dZ) ≥ (1 − cρ)dZ (4.17)

for some c > 0. The lemma follows. �
The following result gives us a situation where Corollary 3.3 applies. It refines [8, 

Theorem 5.1], where it is shown that 1
p logBp → 0 in L1(X, ωn

X) for the Bergman kernel 
Bp on powers Lp of a big line bundle L over a compact Kähler manifold (X, ωX).

Theorem 4.3. Let (X, ωX) be a compact Kähler manifold of dimension n. Let L be a big 
holomorphic line bundle and let hL, h̃L be singular Hermitian metrics on L such that 
c1(L, hL) ≥ 0 and c1(L, ̃hL) ≥ εωX for some ε > 0. Assume there is A > 0 such that 
hL ≤ A ̃hL. Then ∥∥ logBp

∥∥
L1(X) = O(log p) , p → ∞ . (4.18)

Hence 
1
ωp → c1(L, hL) as p → ∞ with speed O( 1

p log p).

p
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Proof. Since we work only on L, we set in this proof for simplicity h = hL, h̃ = h̃L. Let 
x ∈ X and U0 ⊂ X be a coordinate neighborhood of x on which there exists a holomor-
phic frame eL of L. Let ψ be the psh weight of h on U0 relative to eL, |eL|2h = e−2ψ. 
Likewise, let ψ′ be the psh weight of h̃ on U0 relative to eL, |eL|2h̃ = e−2ψ′ . Multiplying 
the section eL with a constant allows us to assume that ψ ≤ 0. Fix r0 > 0 so that 
the ball V := B(x, 2r0) of center x and radius 2r0 is relatively compact in U0 and let 
U := B(x, r0). By [8, Theorem 5.1] and its proof (following [11]) there exists C1 > 0 so 
that

logBp(z) ≤ log(C1r
−2n) + 2p

(
sup

B(z,r)
ψ − ψ(z)

)
(4.19)

holds for all p ≥ 1, 0 < r < r0 and z ∈ U with ψ(z) > −∞.
Choose r = 1/p4. By applying Lemma 4.2 to ψ we obtain from (4.19) that the integral 

on U of the positive part of the right hand side of (4.19) is smaller than C2 log p + C2
for some C2 > 0. Hence, in order to prove (4.18) it remains to bound the negative part 
of logBp.

Multiplying h̃ with a constant allows us to assume that A = 1. So we have h ≤ h̃ and 
ψ′ ≤ ψ. Consider an integer p0 (to be chosen momentarily). Write Lp = Lp−p0 ⊗Lp0 and 
consider on Lp, p > p0, the metric

Hp := h⊗(p−p0) ⊗ h̃⊗p0 , hp := h⊗p. (4.20)

Then

c1(Lp, Hp) = (p− p0)c1(L, h) + p0c1(L, h̃) ≥ p0εωX . (4.21)

The weight of the metric Hp with respect to the frame e⊗p
L is Ψp := (p − p0)ψ + p0ψ

′

and we have |e⊗p
L |2Hp

= e−2Ψp .
Following [12, Section 9], we proceed as in [8, Theorem 5.1] to show that there exist 

C1 > 0 and p0 ∈ N such that for all p > p0 and all z ∈ U with Ψp(z) > −∞ there is a 
section sz,p ∈ H0

(2)(X, Lp) with sz,p(z) �= 0 and

∫
X

|sz,p|2Hp
ωn
X ≤ C1|sz,p(z)|2Hp

. (4.22)

Let us prove the existence of sz,p as above. By the Ohsawa–Takegoshi extension 
theorem [21] there exists C ′ > 0 (depending only on x) such that for any z ∈ U and any 
p ∈ N one can find a holomorphic function vz,p on V with vz,p(z) �= 0 and∫

V

|vz,p|2e−2Ψpωn
X ≤ C ′|vz,p(z)|2e−2Ψp(z) . (4.23)
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The function vz,p can be identified to a local section of Lp satisfying an estimate similar 
to (4.22).

We shall now solve the ∂-equation with L2-estimates in order to modify vz,p and 
get a global section sz,p of Lp over X. Let θ ∈ C∞(R) be a cut-off function such that 
0 ≤ θ ≤ 1, θ(t) = 1 for |t| ≤ 1

2 , θ(t) = 0 for |t| ≥ 1. Define the quasi-psh function ϕz on 
X by

ϕz(y) =
{
nθ
( |y−z|

r0

)
log |y−z|

r0
, for y ∈ U0 ,

0, for y ∈ X \B(z, r0) .
(4.24)

We apply Theorem 4.1 (ii) for (X, ωX) and (Lp, Hp e
−ϕz ). Note that there exists C3 > 0

such that ddcϕz ≥ −C3ωX for all z ∈ U . We have

c1(Lp, Hp e
−ϕz ) = (p− p0) c1(L, hL) + p0 c1(L, h̃L) + ddcϕz ≥ (p0ε− C3)ωX . (4.25)

Since p0 is large enough, we have (p0ε − C3)ωX + c1(K∗
X , hK∗

X ) ≥ C3 ωX . Thus,

c1(Lp, Hp e
−ϕz ) + c1(K∗

X , hK∗
X ) ≥ C3 ωX , for any p ≥ p0 . (4.26)

Consider the form

g ∈ L2
0,1(X,Lp), g = ∂

(
vz,p θ

( |y−z|
r0

)
e⊗p
L

)
, (4.27)

which vanishes outside V and also on B(z, r0/2). By (4.23), (4.27) and Ψp(z) > −∞, we 
get ∫

X

|g|2Hp
e−2ϕzωn

X =
∫

V \B(z,r0/2)

|vz,p|2|∂θ( |y−z|
r0

)|2e−2Ψpe−2ϕzωn
X

� C ′′
∫
V

|vz,p|2e−2Ψpωn
X � C ′′C ′ |vz,p(z)|2e−2Ψp(z) < ∞,

(4.28)

where C ′′ > 0 is a constant that depends only on x. By Theorem 4.1 (ii), (4.26) and 
(4.28), for each p ≥ p0 there exists u ∈ L2

0,0(X, Lp) such that ∂u = g and∫
X

|u|2Hp
e−2ϕz ωn

X � 1
C3

∫
X

|g|2Hp
e−2ϕzωn

X . (4.29)

Since g is smooth, u is also smooth. Near z, e−2ϕz(y) = r2n
0 |y−z|−2n is not integrable, 

thus u(z) = 0. Define

sz,p := vz,p θ
( |y−z|

r0

)
e⊗p
L − u. (4.30)

Then
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∂sz,p = 0, sz,p(z) = vz,p(z)e⊗p
L (z) �= 0, sz,p ∈ H0

(2)(X,Lp). (4.31)

Since ϕz � 0 on X, by (4.23), (4.28), (4.29) and (4.30), we get

∫
X

|sz,p|2Hp
ωn
X � 2

⎛⎝∫
V

|vz,p|2e−2Ψpωn
X +

∫
X

|u|2Hp
e−2ϕz ωn

X

⎞⎠
� 2C ′

(
1 + C ′′

C3

)
|vz,p(z)|2e−2Ψp(z) = C1|sz,p(z)|2Hp

,

with a constant C1 > 0 that depends only on x. This concludes the proof of (4.22).
By dividing both sides of (4.22) by a constant, we obtain the existence of sections 

sz,p ∈ H0(X, Lp), p > p0, such that

∫
X

|sz,p|2Hp
ωn
X = 1 , |sz,p(z)|2Hp

≥ 1
C1

. (4.32)

Since h̃ ≥ h, the first property of (4.32) and (4.20) imply

∫
X

|sz,p|2hp
ωn
X � 1 . (4.33)

Then (4.1), (4.3), (4.20) and the second property of (4.32) yield

|sz,p(z)|2hp
≥ C−1

1 e2p0(ψ′(z)−ψ(z)) = C−1
1 e2p0(ϕ′(z)−ϕ(z)). (4.34)

Recall now (see e.g., [8, Lemma 3.1]) that

Bp(x) = max{|s(x)|2hp
: s ∈ H0

(2)(X,Lp), ‖s‖p = 1}

= max{|s(x)|2hp
: s ∈ H0

(2)(X,Lp), ‖s‖p ≤ 1} .
(4.35)

It follows from (4.33)–(4.35) that there exists C5 > 0 such that

logBp(z) ≥ log |sz,p(z)|2hp
≥ 2p0

(
ϕ′(z) − ϕ(z)

)
− C5 =: η(z) , (4.36)

where η ∈ L1(X, ωn
X), η ≤ 0. Hence logBp ≥ η a.e. on X. The result follows. �

Corollary 4.4. Let (X, ωX) be a compact Kähler manifold of dimension n. Let L be a big 
holomorphic line bundle and let hL, h̃L be as in Theorem 4.3. Let U be an open subset 
of X.
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(i) Assume that the global weight ϕ′ of h̃L given by (4.3) is bounded on a neighborhood 
of U . Then

‖ϕp − ϕ‖L1(U) = O

(
1
p

log p
)

, p → ∞, (4.37)

and for every 1 ≤ k ≤ n we have

1
pk

ωk
p → c1(L, hL)k , p → ∞, on U . (4.38)

(ii) Assume moreover, ϕ is Hölder continuous on a neighborhood of U . Then

‖ϕp − ϕ‖U,∞ = O

(
1
p
log p

)
, p → ∞ , (4.39)

and (4.38) holds with speed O
( 1
p log p

)
.

Hence for σ∞-almost every sequence (Sp) ∈ (Ωk(L), σ∞), Sp = ([s(1)
p ], . . . , [s(k)

p ]),

1
pk
[
s(1)
p = . . . = s(k)

p = 0
]
→ c1(L, hL)k , p → ∞, on U with speed O

(
1
p

log p
)

.

(4.40)

Proof. Since ϕ′ is bounded on a neighborhood of U , ϕ is also bounded in that neigh-
borhood. We see in the above proof that (4.37) holds and ϕp + c/p ≥ ϕ for some c > 0. 
On the set where ϕ and ϕp are locally bounded the wedge-products ωk and ωk

p are 
well-defined for any 1 ≤ k ≤ n by (4.2), (4.5) and [1]. Thus (4.38) holds.

Assume moreover that ϕ is Hölder continuous on a neighborhood of U . Observe that 
the function η in (4.36) is bounded on U , thus, taking r = 1/p� with 
 large enough 
in (4.19), yields (4.39). Finally, (4.40) follows from Corollary 3.9. �

Note that under the assumptions of Corollary 4.4 (i) we do not obtain an estimate 
of the convergence speed in (4.38). To get this, the assumption of Hölder continuity in 
item (ii) is necessary.

We can state a result similar to Theorem 4.3 in the case of adjoint line bundles 
Lp ⊗ KX . We do not suppose that the base manifold is compact, so the space of L2

holomorphic sections could be infinite dimensional. However, the definitions (2.9) and 
(2.13) of the Bergman kernel function and Fubini–Study currents carry over without 
change. Theorem 4.5 refines [7, Theorem 3.1], where it is shown that 1

p logBp → 0 in 
L1(U, ωn

X).

Theorem 4.5. Let (X, ωX) be a Kähler manifold of dimension n which admits a (possibly 
different) complete Kähler metric. Let L be a holomorphic line bundle and let hL be a 
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singular Hermitian metric on L such that c1(L, hL) ≥ 0. Let U ⊂ X be a relatively 
compact open set such that c1(L, hL) ≥ εωX on a neighborhood of U for some ε > 0. 
Let Bp and ωp be the Bergman kernel function and Fubini–Study current associated with 
H0

(2)(X, Lp ⊗KX). Then

∥∥ logBp

∥∥
L1(U) = O(log p) , p → ∞ . (4.41)

Hence 
1
p
ωp → c1(L, hL) on U as p → ∞ with speed O

( 1
p log p

)
.

Proof. The proof is similar to the proof of Theorem 4.3, with some simplifications due 
to the fact that we don’t need an auxiliary metric h̃L. The Kähler metric ωX induces 
a metric on the canonical line bundle KX that we denote by hKX . We denote by hp

the metric induced by hL and hKX on Lp ⊗ KX . Let U ′ be a neighborhood of U on 
which the hypothesis c1(L, hL) ≥ εωX holds. We let x ∈ U and U0 ⊂ U ′ be a coordinate 
neighborhood of x on which there exists a holomorphic frame eL of L and e′ of KX . 
Let ψ be a psh weight of hL. Fix r0 > 0 so that the ball V := B(x, 2r0) � U0 and let 
W := B(x, r0).

Following the arguments of [8, Theorem 5.1] (or, more precisely, [6, Theorem 4.2], 
where forms with values in Lp ⊗ KX are considered) we show that there exist C =
C(W ) > 0 and p0 = p0(W ) ∈ N so that

− logC ≤ logBp(z) ≤ log(Cr−2n) + 2p
(

max
B(z,r)

ψ − ψ(z)
)

(4.42)

holds for all p > p0, 0 < r < r0 and z ∈ W with ψ(z) > −∞.
The right-hand side estimate follows as in [8, Theorem 5.1]; it holds for all p and does 

not require the hypothesis that X is compact.
We prove next the lower estimate from (4.42). We proceed like in the proof of [6, 

Theorem 4.2] to show that there exist C2 = C2(W ) > 0, p0 = p0(W ) ∈ N such that for 
all p > p0 and all z ∈ W with ψ(z) > −∞ there exists sz,p ∈ H0

(2)(X, Lp ⊗ KX) with 
sz,p(z) �= 0 and

‖sz,p‖2
p ≤ C2|sz,p(z)|2hp

, (4.43)

where ‖s‖p is the L2 norm defined in (2.7). This is done exactly as in [6, Theorem 4.2]; 
the main point is again the Ohsawa–Takegoshi extension theorem and the solution of 
the ∂-equation by the L2 method from Theorem 4.1 (i). Observe that (4.35) and (4.43)
yield the desired lower estimate

logBp(z) = max
‖s‖p=1

log |s(z)|2hp
≥ − logC2 , for p > p0, z ∈ W and ψ(z) > −∞.

(4.44)
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Since U is relatively compact we can choose C2 and p0 such that logBp ≥ − logC2 holds 
a.e. on U for all p > p0. As in the proof of Theorem 4.3, we use the estimate from above 
in (4.42) and Lemma 4.2 to show the existence of C1 = C1(U ′) > 0 such that for all 
p ∈ N∗, ∫

U

(logBp)ωn
X ≤ C1 log p + C1.

This completes the proof of Theorem 4.5. �
Proof of Theorem 1.2. Combining Theorem 4.3 and Corollary 3.4 applied to the case 
where (F, hF ) is the trivial line bundle and λp = (2n + 2)c log p, we obtain item (i). 
Theorem 4.5 and Corollary 3.4 for (F, hF ) = (KX , hKX ) and the same λp as above yield 
item (ii). �
5. Approximation of Hölder continuous weights

In this section we prove Theorem 1.3 and Corollary 1.4.

Proof of Theorem 1.3. The continuity can be deduced directly from the estimate (1.5).
We prove now (1.5). Recall that hp = (hL)⊗p is the metric on Lp (cf. (2.6)). Write as 

above Lp = Lp−p0 ⊗Lp0 with the metric He,p := (hL
eq)⊗(p−p0) ⊗ (hL

0 )⊗p0 . As in Section 4
(see (4.32)), given a point x0 ∈ X, there exists a neighborhood U(x0) and C > 0 such 
that for any z ∈ U(x0), one can find a holomorphic section sz,p ∈ H0(X, Lp) satisfying∫

X

|sz,p|2He,p
ωn
X ≤ C , |sz,p(z)|He,p

= 1. (5.1)

Since ϕeq and ϕ are bounded and ϕeq ≤ ϕ, we deduce from (5.1) that there exists C > 0
such that ∫

X

|sz,p|2hp
ωn
X ≤ C , |sz,p(z)|hp

≥ C−1ep(ϕeq−ϕ). (5.2)

It follows from (4.35) and (5.2) that there exists c > 0 such that we have

1
2p logBp ≥ ϕeq − ϕ− c

p
on X. (5.3)

Since ϕp = ϕ + 1
2p logBp, we obtain that

ϕp − ϕeq ≥ − c

p
on X. (5.4)
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The estimate from above for ϕp−ϕeq is obtained using the submean inequality. Since 
ϕp is α-psh, by (1.3), it is enough to show that ϕp ≤ ϕ + c log p

p on X which is equivalent 
to Bp ≤ p2c for some c > 0. Fix a point a in X. Consider an arbitrary holomorphic 
section s ∈ H0(X, Lp) such that ∫

X

|s|2hp
ωn
X = 1. (5.5)

By (4.35), we only have to check that

|s(a)|2hp
≤ p2c. (5.6)

Fix local holomorphic coordinates z around a with |z| ≤ 1 and a holomorphic frame of 
L such that s is represented by a holomorphic function f and the metric hL is represented 
by e−ψ with ψ is Hölder continuous and ψ(0) = 0. So, we have for some C, α > 0

|ψ(z)| ≤ C|z|α. (5.7)

Since s has unit L2-norm, the integral∫
|z|≤p−1/α

|f(z)|2e−2Cp|z|αdZ

is bounded by a constant independent of p. It follows that the integral of |f |2 on the ball 
B(0, p−1/α) is bounded, because the function e2Cp|z|α is bounded there. Therefore, by 
the submean inequality, we get

|s(a)|2hp
= |f(0)|2 ≤ C ′p2n/α. (5.8)

This completes the proof. �
Proof of Corollary 1.4. Theorem 1.3 together with Corollary 3.9 applied to

λp = (m + 2)c log p

imply immediately the result. �
Example 5.1. Let us discuss here the important example of the line bundle L = O(1)
over X = Pn. The global holomorphic sections of Lp =: O(p) are given by homogeneous 
polynomials of degree p on Cn+1:

H0(Pn,O(p)) ∼=
{
f ∈ C[w0, . . . , wn] : f homogeneous, deg f = p

}
=: Rp. (5.9)
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There exists a smooth metric hFS = h
O(1)
FS on O(1) such that the Fubini–Study Kähler 

form on Pn is defined as the first Chern form associated to (O(1), hFS),

ωFS = i

2πR
O(1). (5.10)

Let Met+(O(1)) be the set of all semipositively curved singular metrics on O(1). By 
(2.5) we know that there exists a bijection

PSH(Pn, ωFS) −→ Met+(O(1)) , ϕ �−→ hϕ = hFSe
−2ϕ, (5.11)

and c1(O(1), hϕ) = ωFS+ddcϕ. Moreover, PSH(Pn, ωFS) is in one-to-one correspondence 
to the Lelong class L(Cn) of entire psh functions with logarithmic growth,

L(Cn) =
{
ψ ∈ PSH(Cn) : there is Cψ ∈ R such that ψ(z)

≤ 1
2 log(1 + |z|2) + Cψ for z ∈ Cn

}
,

and the map L(Cn) → PSH(Pn, ωFS) is given by ψ �→ ϕ where

ϕ =

⎧⎨⎩ψ(w) − 1
2 log(1 + |w|2) , w ∈ Cn,

lim sup
z→w,z∈Cn

ϕ(z) , w ∈ Pn \ Cn.

Here we use the usual embedding of Cn in Pn. Let h ∈ Met+(O(1)) and let ϕ ∈
PSH(Pn, ωFS) such that h = hFSe

−2ϕ. Then

H0
(2)(Pn,O(p)) =

{
f ∈ H0(Pn,O(p)) :

∫
Pn

|f |2hp
FS
e−2pϕωn

FS < ∞
}

=: Rp(ϕ). (5.12)

We denote as usual by ωp the Fubini–Study current associated with H0
(2)(Pn, O(p)) by 

(2.12) and let ϕp be the Fubini–Study global weights (4.4). Note that if ϕ is bounded, 
Rp(ϕ) = Rp (as sets but in general not as Hilbert spaces).

We have the following immediate consequence of Theorem 1.2 and Corollary 4.4.

Corollary 5.2.
(i) Let ϕ ∈ PSH(Pn, ωFS). Assume there exists ϕ̃ ∈ PSH(Pn, ωFS) such that

ϕ ≥ ϕ̃ and (1 − ε)ωFS + ddcϕ̃ ≥ 0 , for some ε > 0.

Then for σ∞-almost every sequence [sp] ∈ P
(
Rp(ϕ)

)
of homogeneous polynomials, 

( 1 [Div(sp)]) converges to ωFS + ddcϕ on Pn as p → ∞ with speed O
( 1 log p

)
.
p p
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(ii) Let U be an open subset of Pn. Assume that ϕ̃ is bounded on a neighborhood of U . 
Then

‖ϕp − ϕ‖L1(U) = O

(
1
p

log p
)

, p → ∞, (5.13)

and for every 1 ≤ k ≤ n we have (not necessarily with speed estimate),

1
pk

ωk
p → (ωFS + ddcϕ)k , p → ∞, on U . (5.14)

(iii) Assume moreover that ϕ is Hölder continuous on a neighborhood of U . Then

‖ϕp − ϕ‖U,∞ = O

(
1
p
log p

)
, p → ∞ , (5.15)

and (5.14) holds with speed O
( 1
p log p

)
.

Hence for σ∞-almost every sequence ([s(1)
p ], . . . , [s(k)

p ]) ∈ P
(
Rp(ϕ)

)k of k-tuples of 
homogeneous polynomials we have as p → ∞,

1
pk
[
s(1)
p = . . . = s(k)

p = 0
]
→ (ωFS + ddcϕ)k , on U with speed O

(
1
p

log p
)

. (5.16)

Theorem 1.3 and Corollary 1.4 imply the following.

Corollary 5.3. Let ϕ be a Hölder continuous function on Pn. Then:

(i) The equilibrium weight ϕeq is continuous on Pn and the global Fubini–Study weights 
ϕp given by (4.4) converge to ϕeq uniformly with speed O

( 1
p log p

)
.

(ii) For any 1 ≤ k ≤ n we have 1
pkω

k
p → ωk

eq on Pn as p → ∞ with speed O
( 1
p log p

)
.

(iii) Let 1 ≤ k ≤ n. For σ∞-almost every sequence ([s(1)
p ], . . . , [s(k)

p ]) ∈ P
(
Rp(ϕ)

)k,
1
pk
[
s(1)
p = . . . = s(k)

p = 0
]
→ ωk

eq , on Pn with speed O

(
1
p

log p
)

. (5.17)
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