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Abstract

Let X ⊂ CP
N be a smooth subvariety. We study a flow, called

balancing flow, on the space of projectively equivalent embeddings
of X which attempts to deform the given embedding into a bal-
anced one. If L→ X is an ample line bundle, considering embed-
dings via H0(Lk) gives a sequence of balancing flows. We prove
that, provided these flows are started at appropriate points, they
converge to Calabi flow for as long as it exists. This result is
the parabolic analogue of Donaldson’s theorem relating balanced
embeddings to metrics with constant scalar curvature [12]. In
our proof we combine Donaldson’s techniques with an asymptotic
result of Liu and Ma [17] which, as we explain, describes the as-
ymptotic behavior of the derivative of the map FS ◦ Hilb whose
fixed points are balanced metrics.

1. Introduction

1.1. Overview of results. The idea of approximating Kähler metrics
by projective embeddings goes back several years. The fundamental fact
is that the projective metrics are dense in the space of all Kähler metrics.
More precisely, let L → Xn be an ample line bundle over a complex
manifold and let h be a Hermitian metric in L whose curvature defines
a Kähler metric ω ∈ c1(L). Together, h and ω determine an L2-inner-
product on the vector spaces H0(Lk). Using an L2-orthonormal basis
of sections for each H0(Lk) gives a sequence of embeddings ιk : X →
CP

Nk into larger and larger projective spaces and hence a sequence of
projective metrics ωk =

1
k ι

∗
kωFS in the same cohomology class as ω.

Theorem 1 (Tian [30], Ruan [28]). The metrics ωk converge to ω
in C∞ as k → ∞.

(The sequence ωk was considered by Yau in the case when ω is Kähler–
Einstein [35]. Tian proved Theorem 1 with C2-convergence; this was
then improved to C∞-convergence by Ruan.)
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From here it is natural to ask if any of the objects studied in Kähler
geometry can be approximated by objects in projective geometry. An
example of this phenomenon, due to Donaldson, is the strong relation-
ship between balanced embeddings and Kähler metrics of constant scalar
curvature, which is the central focus of this article.

Before stating Donaldson’s result, we first recall the definition of a
balanced embedding, originally due to Luo [19] and Zhang [38] (see
also Bourguignon, Li, and Yau [3]). Let µ : CPN → iu(N + 1) be the
Hermitian-matrix valued function, given in homogeneous unitary coor-
dinates by µ = (µαβ) where

µαβ[x0 : · · · : xN ] =
xαx̄β∑ |xγ |2

.

Given a smooth subvariety X ⊂ CP
N , we consider the integral of µ over

Xn with respect to the Fubini–Study metric:

µ̄ =

∫

X
µ
ωnFS
n!

.

The subvariety is called balanced if µ̄ is a multiple of the identity.
Donaldson proved the following:

Theorem 2 (Donaldson [12]). Suppose that for all large k there is a
basis of H0(Lk) which gives a balanced embedding ιk : X → CP

Nk and,
moreover, that the metrics ωk =

1
k ι

∗
kωFS converge in C∞ to a metric ω.

Then ω has constant scalar curvature.

Theorem 3 (Donaldson [12]). Suppose that Aut(X,L) is discrete
and that the class c1(L) contains a metric ω of constant scalar curva-
ture. Then for all large k there is a basis of H0(Lk) giving a balanced
embedding ιk : X → CP

Nk and, moreover, the metrics ωk = 1
k ι

∗
kωFS

converge in C∞ to ω.

The goal of this article is to prove the parabolic analogue of Donald-
son’s Theorems. In [4] Calabi introduced a parabolic flow, Calabi flow,
which one might hope deforms a given Kähler metric toward a constant
scalar curvature one. The flow is

∂ω

∂t
= i∂̄∂ S (ω(t)) ,

where S denotes scalar curvature.
As we will explain, the projective analogue of this is balancing flow.

Given an embedding ι : X → CP
N , let µ̄0 denote the trace-free part

of µ̄, so that µ̄0 = 0 if and only if the embedding is balanced. The
Hermitian matrix µ̄0 defines a vector field on CP

N and consequently an
infinitesimal deformation of the embedding ι. This defines balancing
flow:

dι

dt
= −µ̄0(ι).
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It is not hard to show that the flow exists for all time (see §1.2).
Our results concern the asymptotics of a certain sequence of balanc-

ing flows. Let h be a Hermitian metric in L whose curvature gives a
Kähler form ω ∈ c1(L). As in the description of Theorem 1, let ιk be
the embedding defined via a basis of H0(Lk) which is orthonormal with
respect to the L2(h, ω) inner-product and let ωk = 1

k ι
∗
kωFS be the se-

quence of projective approximations to ω. For each k, we run a sped-up
version of the balancing flow, so that ιk(t) solves

(1)
dιk
dt

= −2πk2µ̄0(ιk), ιk(0) = ιk.

We study the sequence ωk(t) =
1
k ιk(t)

∗ωFS of metric flows, proving the
parabolic analogue of Donaldson’s Theorems 2 and 3:

Theorem 4. Suppose that for each t ∈ [0, T ] the metric ωk(t) con-
verges in C∞ to a metric ω(t) and, moreover, that this convergence is
C1 in t. Then the limit ω(t) is a solution to Calabi flow starting at ω.

Theorem 5. Suppose that the Calabi flow ω(t) starting at ω exists
for t ∈ [0, T ]. Then for each t, the metric ωk(t) converges in C∞ to
ω(t). Moreover, this convergence is C1 in t.

1.2. A moment map interpretation. The following picture will not
be used directly in our proofs, but it gave the original motivation for
this work, so it is perhaps worth mentioning briefly here. First, we recall
the standard moment map set-up, which consists of a group K acting
by Kähler isometries on a Kähler manifold Z, along with an equivariant
moment map m : Z → g

∗. The action extends to the complexified group
G = KC giving a holomorphic, but no longer isometric, action. The
problem one is interested in is finding a zero of m in a given G-orbit.
By K-equivariance, this becomes a question about the behavior of a
certain function, called the Kempf–Ness function, F : G/K → R on the
symmetric space G/K. This function is geodesically convex and its
derivative is essentially m. Hence there is a zero of the moment map in
the orbit if and only if F attains its minimum. A natural way to search
for such a minimum is to consider the downward gradient flow of F .

In [12], Donaldson explains how this is relevant in our situation. On
the one hand, scalar curvature can be interpreted as a moment map,
an observation due to Donaldson [10] and Fujiki [16]. In this case the
symmetric space is the spaceH of positively curved Hermitian metrics in
L or, equivalently once a reference metric in c1(L) is chosen, the space
of Kähler potentials (see the work of Donaldson [11], Mabuchi [21],
and Semmes [29] for a description of this symmetric space structure).
Finding a zero of the moment map corresponds to finding a constant
scalar curvature metric in the given Kähler class. In this context, the
Kempf–Ness function is Mabuchi’s K-energy and the gradient flow is
Calabi flow.
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On the other hand, in [12] Donaldson showed how to fit balanced
metrics into a finite dimensional moment-map picture. (This picture
has been subsequently studied in [27, 34].) If L → X is very ample,
then every basis of H0(L) defines an embeddingX ⊂ CP

N . We consider
the space Z ∼= GL(N+1) of all bases. There is a Kähler structure on Z,
whose definition involves the fact that each point gives an embedding of
X, and U(N +1) acts isometrically with a moment map which is essen-
tially −iµ̄0. So finding a zero of the moment map corresponds to finding
a balanced embedding. This time, the Kempf–Ness function is a nor-
malized version of what is called the “F 0-functional” by some authors
(it is the function denoted Z̃ in [14]). The gradient flow on the Bergman
space B = GL /U is balancing flow. One immediate consequence of this
is that balancing flow exists for all time.

Taking successively higher powers Lk of L gives a sequence of moment-
map problems on successively larger Bergman spaces Bk, each of which
lives inside H. Put loosely, Donaldson’s Theorems 2 and 3 say that the
zeros of the finite-dimensional moment maps in Bk converge in H to a
zero of the infinite-dimensional moment map. Theorems 4 and 5 say
that provided we choose the finite-dimensional gradient flows to start
at a appropriate points then they converge to the infinite-dimensional
gradient flow.

In fact, the only aspect of this picture that we use directly in the
proofs is that balancing flow is distance decreasing on B, which follows
from the fact that it is the downward gradient flow of a geodesically con-
vex function. This was discovered prior to the moment-map interpre-
tation by Paul [24] and Zhang [38]. We remark in passing that Calabi
and Chen [5] have proved that Calabi flow on H is distance decreas-
ing using the symmetric space metric of Donaldson–Mabuchi–Semmes.
This is strongly suggested by the standard moment-map picture, but
doesn’t follow directly because H is infinite-dimensional.

1.3. Additional Context. Calabi suggested in [4] that, when one ex-
ists, a constant scalar curvature Kähler metric should be considered a
“canonical” representative of a Kähler class. Since this suggestion, such
metrics have been the focus of much work. Additional motivation is pro-
vided by the conjectural equivalence between the existence of a Kähler
metric of constant scalar curvature representing c1(L) and the stability,
in a certain sense, of the underlying polarisation L → X. This began
with a suggestion of Yau [36] which was refined by Tian [31, 32] and
Donaldson [13].

Calabi flow, meanwhile, has received less attention. This is no doubt
due to the fact that, as it is a fourth-order fully nonlinear parabolic PDE,
there are few standard analytic techniques which apply directly. A start
is made in the foundational article by Chen and He [8] which includes a
proof of short-time existence and also shows that when a constant scalar
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curvature metric ω exists and the Calabi flow starts sufficiently close to
ω then the flow exists for all time and converges to ω. There are also
some long time existence results in which a priori existence of a constant
scalar curvature metric is replaced by a “small energy” assumption. For
example, Tosatti and Weinkove [33] show that, assuming c1(X) = 0, if
the Calabi flow starts at a metric with sufficiently small Calabi energy,
the flow exists for all time and converges to a constant scalar curvature
metric. Chen and He [7] have proved a similar result for Fano toric
surfaces.

Balanced metrics have been written about several times since their
introduction. Independently, Luo [19] and Zhang [38] have proved that
an embedding can be balanced if and only if it is stable in the sense of
GIT, giving the projective analogue of the conjectural relationship be-
tween constant scalar curvature metrics and stability mentioned above.
The restriction on Aut(X,L) in Donaldson’s Theorem 3 has been re-
laxed by Mabuchi [22, 23], while the picture in [12] has been related
to the Deligne pairing by Phong and Sturm in [26, 27], an approach
which also leads to a sharpening of some estimates.

1.4. Overview of proofs.

1.4.1. Bergman asymptotics. The key technical result which under-
pins Theorems 1, 2, and 3 concerns the Bergman function. Given a
Kähler metric ω ∈ c1(L), let h be a Hermitian metric in L with cur-
vature 2πiω. Let sα be a basis of H0(Lk) which is orthornomal with
respect to the L2-inner-product determined by h and ω. The Bergman
function ρk(ω) : X → R is defined by

ρk(ω) =
∑

α

|sα|2.

where | · | denotes the pointwise norm on sections using h.
The central result concerns the asymptotics of ρk and is due to the

work of Catlin [6], Lu [18], Tian [30], and Zelditch [37]. We state it as
it appears in [12] (see proposition 6 there and the discussion afterward).

Theorem 6.

1) For fixed ω there is an asymptotic expansion as k → ∞,

ρk(ω) = A0(ω)k
n +A1(ω)k

n−1 + · · · ,
where n = dimX and where the Ai(ω) are smooth functions on
X which are polynomials in the curvature of ω and its covariant
derivatives.

2) In particular,

A0(ω) = 1, A1(ω) =
1

2π
S(ω).
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3) The expansion holds in C∞ in that for any r,M > 0,
∥∥∥∥∥ρk(ω)−

M∑

i=0

Ai(ω)k
n−i

∥∥∥∥∥
Cr(X)

≤ Kr,M,ωk
n−M−1

for some constants Kr,M,ω. Moreover, the expansion is uniform in
that for any r andM there is an integer s such that if ω runs over a
set of metrics which are bounded in Cs, and with ω bounded below,
the constants Kr,M,ω are bounded by some Kr,M independent of ω.

This expansion essentially proves Theorem 1, since ρk relates the
original metric ω to the projective approximation ωk:

ω = ωk +
i

2k
∂̄∂ log ρk.

Tian’s Theorem follows from the fact that the leading term in the ex-
pansion of ρk is constant.

To see the link with balanced embeddings, note that the embedding
ιk is balanced if and only if ρk is constant. The fact that the second
term in the expansion of ρk is the scalar curvature of ω is at the root of
the relationship between the asymptotics of balanced embeddings and
constant scalar curvature metrics described by Donaldson’s Theorems
2 and 3.

The asymptotics of the Bergman kernel will also be critical in the
proofs of Theorems 4 and 5, but of equal importance is another asymp-
totic result, due to Liu and Ma [17]. In fact, for our application a slight
strengthening of this result is desirable. Profs. Liu and Ma were kind
enough to provide a proof of this improvement and this appears in the
appendix to this article. Liu and Ma’s theorem concerns a sequence of
integral operators Qk, introduced by Donaldson in [15] and defined as
follows. Let Bk(p, q) denote the Bergman kernel of Lk; in other words,
if s∗ denotes the section of (L̄k)∗ which is metric-dual to a section s of
Lk, then Bk is the section of Lk ⊗ (L̄k)∗ → X ×X given by

Bk(p, q) =
∑

α

sα(p)⊗ s∗α(q)

(where sα is an L2-orthonormal basis of holomorphic sections as before).
Now define a sequence of functions Kk : X ×X → R by

Kk(p, q) =
1

kn
|Bk(p, q)|2 =

1

kn

∑

α,β

(sα, sβ)(p)(sβ , sα)(q)

These functions are the kernels for a sequence of integral operators act-
ing on C∞(X) defined by

(Qkf)(p) =

∫

X
Kk(p, q)f(q)

ωn(q)

n!
.
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Liu and Ma’s theorem (following a suggestion of Donaldson [15])
relates the asymptotics of the operators Qk to the heat kernel exp(−s∆)
of (X,ω).

Theorem 7 (Liu and Ma [17], see also the appendix). For any choice
of positive integer r, there exists a constant C such that for all suffi-
ciently large integers k and any f ∈ C∞(X),

∥∥∥∥
(
∆

k

)r {
Qk(f)− exp

(
− ∆

4πk

)
f

}∥∥∥∥
L2

≤ C

k
‖f‖L2 ,

where the norms are taken with respect to ω. Moreover, the estimate is
uniform in the sense that there is an integer s such that the constant C
can be chosen independently of ω provided ω varies over a set of metrics
which is bounded in Cs and with ω bounded below.

Liu and Ma’s original article [17] deals with the cases r = 0 and r = 1;
the remaining cases are considered in the appendix to this article, which
also proves the following Cm estimate:

Theorem 8 (See appendix). For any choice of positive integer r,
there exists a constant C such that for all sufficiently large k and for
any f ∈ C∞(X),

‖Qk(f)− f‖Cm ≤ C

k
‖f‖Cm ,

where the norms are taken with respect to ω. Moreover, the estimate is
uniform in the sense that there is an integer s such that the constant C
can be chosen independently of ω provided ω varies over a set of metrics
which is bounded in Cs and with ω bounded below.

Just as the Bergman function ρk appears when comparing a Kähler
metric ω to its algebraic approximations ωk, the operators Qk appear
when one relates infinitesimal deformations of the metric ω to the corre-
sponding deformations of the approximations ωk. Since the Calabi flow
deforms ω, it is clear that this will be of interest to us.

To see how the operators Qk arise, let h(t) = eφ(t)h denote a path
of positively curved Hermitian metrics in L, giving a path of Kähler
forms ω(t) ∈ c1(L). The infinitesimal change in the L2-inner-product
on H0(Lk) corresponds to the Hermitian matrix A whose elements are

Aαβ =

∫

X

(
kφ̇+∆φ̇

)
(sα, sβ)

ωn

n!
.

The term kφ̇ is due to the change in the fibrewise metric, while ∆φ̇
is due to the change in volume form. The infinitesimal change in ωk
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corresponding to A is given by the potential

1

k
tr(Aµ) =

∫

X

(
φ̇+ k−1∆φ̇

)
(p)

(sα, sβ)(p)(sβ, sα)(q)

ρk(q)

ωn(p)

n!
,

=

∫

X

(
φ̇+ k−1∆φ̇

)
(p)

kn

ρk(q)
Kk(p, q)

ωn(p)

n!
,

=
(
Qk

(
φ̇
)
+ k−1Qk(∆φ̇)

) (
1 +O(k−1)

)
.

(The fact that the potential is tr(Aµ) is essentially a restatement of
the fact that −iµ is a moment map for the action of U(N +1) on CP

N ,
while the factor of k−1 is due to the rescaling needed to remain in a fixed
Kähler class.) It follows from Liu and Ma’s results that 1

k tr(Aµ) → φ̇ in
C∞ and hence that the convergence of algebraic approximations ωk(t)
to ω(t) is also C1 in the t direction.

We can describe this calculation in the notation of [14]. Recall that
H denotes the space of positively curved Hermitian metrics in L, while
Bk denotes the space of projective Hermitian metrics in Lk, i.e., those
obtained by pulling back the Fubini–Study metric from O(1) → CP

Nk

using embeddings via H0(Lk). Given h ∈ H in L, using an L2(h)-
orthonormal basis of H0(Lk) to embed X gives a projection Hilbk : H →
Bk; meanwhile, taking the kth root gives an inclusion FSk : Bk → H.
Composing gives a map Φk = FSk ◦Hilbk : H → H and this calculation
shows that the derivative of Φk at a given point h satisfies (dΦk)h =
Qk+O(k−1). So, while the expansion of ρk tells us that Φk(h)/k

n → h,

Liu–Ma’s asymptotics give that (dΦk)h(φ̇) → φ̇.
1.4.2. Outline of arguments. Our overall approach follows the gen-
eral scheme of Donaldson’s proofs of Theorems 2 and 3. We begin in
§2 by proving Theorem 4. Just as Donaldson’s Theorem 2 is implied
more or less directly by the uniformity of the asymptotic expansion of
the Bergman kernel, so our result will follow easily from this combined
with the uniformity in Liu and Ma’s Theorem.

We then move on to the proof of Theorem 5. As with Theorem 3,
this part requires substantially more effort. It is shown in §3 that the
standard sequence of projective approximations to Calabi flow gives an
O(k−1) approximation to balancing flow. This is analogous to the fact
that the standard sequence of projective approximations to a constant
scalar curvature metric are themselves close to being balanced. Just as
in the case of balanced metrics, however, O(k−1) is not strong enough;
for later arguments it becomes important to improve this to beat any
power of k−1.

Donaldson solved this problem by considering instead a perturbation
of the constant scalar curvature metric ω:

ω + i∂̄∂
m∑

j=1

k−jηj
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where the potentials ηj solve partial differential equations of the form
Lη = f for a certain linear elliptic operator L. We apply the same idea
to Calabi flow, using time-dependent potentials ηj(t) which are required
to solve parabolic equations η̇+Lη = g associated to the same operator
L.

After this perturbation we have, for each k, a path of projective met-
rics ω′

k(t) which on the one hand converge to Calabi flow and on the
other hand are O(k−m) from the balancing flow ωk(t). Here we are
working for each k in the Bergman space Bk = GL(Nk + 1)/U(Nk + 1)
and O(k−m) means with respect to the Riemannian distance function
dk of the symmetric space metric. The remainder of the proof is con-
cerned with uniformly controlling the Cr norm on metric tensors by
the Riemannian distance dk. This involves two parts: first, some ana-
lytic estimates proved in §4 reduce the problem to controlling µ̄; second,
some estimates in projective geometry proved in §5 show how to control
µ̄ by dk. §6 puts all the pieces together and completes the proof of
Theorem 5.

Acknowledgements. The author was supported by an FNRS postdoc-
toral fellowship. I am very grateful to Gábor Székelyhidi and Xiuxiong
Chen for many helpful discussions during the course of this work. I am
also indebted to Kefeng Liu and Xiaonan Ma for providing me with the
version of Theorem 7 used here and kindly agreeing to write the neces-
sary additional arguments in an appendix to this article. I would also
like to thank Julien Keller, Yanir Rubinstein, and Richard Thomas for
conversations about Bergman asymptotics and balanced embeddings.

2. When the balancing flows converge

In this section we will prove Theorem 4. We begin by describing
balancing flow in terms of Kähler potentials. Given an embedding
ι : X → CP

N and a Hermitian matrix A ∈ iu(N + 1), we view A as
a vector field ξA on CP

N and consequently as an infinitesimal pertur-
bation of ι. The corresponding infinitesimal change in ι∗ωFS is given by
the potential tr(Aµ) restricted to X via ι. (It suffices to prove this for
CP

N itself, where it follows from the fact that −iµ : CPN → u(N +1) is
a moment map for the U(N+1)-action.) Accordingly, the potential cor-
responding to balancing flow is the balancing potential β = − tr(µ̄0µ).

To obtain the correct asymptotics when considering embeddings via
higher and higher powers Lk it is necessary to rescale the balancing
flow to be generated by −2πk2µ̄0. Since the restriction of the Fubini–
Study metric is also rescaled to remain in the fixed class c1(L), the
corresponding balancing potential is βk = −2πk tr(µ̄0µ).

Theorem 4 will follow directly from the next result.

Theorem 9. Let hk ∈ Bk be a sequence of Bergman metrics whose
rescaled curvatures ωk ∈ c1(L) converge in C∞ to a metric ω. Then the
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balancing potentials converge in C∞ to the potential generating Calabi
flow at ω:

βk(ωk) → S(ω)− S̄.

(Here S̄ is the mean value of the scalar curavture S.)

Proof. Let sα be an orthonormal basis of H0(Lk) with respect to
the L2-inner-product determined by hk and ωk. Then the balancing
potential is

βk(ωk)(p) = 2πk

∫

X

∑(
δαβ

Nk + 1
− (sα, sβ)(q)

ρk(ωk)(q)

)
(sβ, sα)(p)

ρk(ωk)(p)

ωnFS(q)

n!
.

Here Nk + 1 = dimH0(Lk) which, by Riemann–Roch and Chern–Weil,
is a polynomial with leading terms

Nk + 1 = V

(
kn +

S̄

2π
kn−1 + · · ·

)
,

where V = c1(L)
n.

Since ωk converges in C∞, we can apply the uniform asymptotic
expansion of the Bergman functions ρk(ωk) (Theorem 6) to conclude
that 1

kωFS = ω +O(k2) and, moreover, that

ρk(ωk) = kn +
S(ωk)

2π
kn−1 +O(kn−2).

From here on in the proof, we write ρk = ρk(ωk); similarly we write the
operators appearing in Liu and Ma’s theorem as Qk = Qk(ωk).

Using the uniform expansion of the Bergman function, we have

βk(ωk) =
2πV kn+1

Nk + 1
− 2πkn+1

ρk(p)

∫

X
Kk(p, q)

(
kn

ρk(q)
+O(k−2)

)
ωn(q)

n!

=
(
2πk − S̄ +O(k−1)

)

−
(
2πk − S(ωk) +O(k−1)

)
Qk(1 +O(k−1))

=
(
S(ωk)− S̄

) (
1 +O(k−1) +Qk(O(k−1))

)

since, by definition, Qk(1) = ρk/k
n = 1 + O(k−1). We will prove this

converges to S − S̄ by showing that the error Qk(O(k−1)) converges to
zero in C∞.

To control the term Qk(O(k−1)) we have to be a little careful, since
the convergence Qk(f) → f is not uniform. This can be seen for the heat
kernel exp(−∆/k) itself by considering eigenfunctions of the Laplacian
with higher and higher eigenvalues. Instead, for fk = O(k−1) note that
by the r = 0 case of Theorem 7,

‖Qk(fk))‖L2 ≤ C

k
‖fk‖L2 +

∥∥∥∥exp
(
− ∆

4πk

)
fk

∥∥∥∥
L2

≤
(
C

k
+ 1

)
‖fk‖
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where the last line follows because the heat kernel reduces L2-norm.
(Here we use the Laplacian and norms defined by the limiting metric
ω.) So, indeed, Qk(fk) → 0 in L2. (Note we have used the unifor-
mity in Theorem 7 to ensure that the constant C appearing here from
the estimate for the asymptotics of the operators Qk(ωk) can be taken
independent of k, since ωk → ω in C∞.)

For convergence in L2
2r, write

fk = k−1F1 + · · · k−r+1Fr−1 + f̂k

where the Fj are functions independent of k and f̂k = O(k−r). Now
Theorem 8 guarantees that k−jQk(Fj) → 0 in C∞, while Theorem 7
gives

∥∥∥∆r
(
Qk(f̂k)

)∥∥∥
L2

≤ Ckr−1‖f̂k‖L2 +

∥∥∥∥exp
(
− ∆

4πk

)(
∆rf̂k

)∥∥∥∥
L2

≤ Ckr−1‖f̂k‖L2 + ‖∆rf̂k‖L2

≤
(
Ckr−1 + 1

) ∥∥∥f̂k
∥∥∥
L2
2r

.

Since f̂k = O(k−r), we see that Qk(f̂k) → 0 in L2
2r and, hence, that

Qk(fk) → 0 in C∞.
Recall that

βk(ωk) =
(
S(ωk)− S̄

) (
1 +O(k−1) +Qk(O(k−1))

)
.

Now combine the fact that Qk(O(k−1)) → 0 in C∞ with the fact that
S(ωk) → S(ω) in C∞ to complete the proof.

q.e.d.

We now give the proof of Theorem 4. Recall that ω ∈ c1(L) is a given
Kähler form, ωk is the sequence of projective metrics in Tian’s Theorem
1 and ωk(t) is the balancing flow starting at ωk. We assume that for
each value of t ∈ [0, T ], ωk(t) converges in C∞ to a metric which we
denote ω(t) and that moreover the convergence is C1 in t. So, if we
write ∂ω/∂t = i∂̄∂f(t) for a function f(t) with ω(t)-mean-value zero,
then βk(ωk(t)) → f(t). Now applying Theorem 9 to ωk(t), it follows
that f(t) = S(ω(t))− S̄ and so ω(t) is a solution to Calabi flow on [0, T ]
starting at ω.

3. Using Calabi flow to approximate balancing flow

We now move on to the proof of Theorem 5, a task which will take
up the remainder of the article.

3.1. First-order approximation. We first explain how Calabi flow
can be used to approximate the balancing flow metrics ωk(t) to O(k−1).
Recall that h is a Hermitian metric in L with curvature 2πiω. Since
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we are assuming Calabi flow exists, we have a path h(t) = eφ(t)h of
Hermitian metrics with curvatures ω(t) such that

φ̇ = S(ω(t)) − S̄.

Let ĥk(t) ∈ Bk denote the kth Bergman point of h(t). In other words,
take a basis sα of H0(Lk) which is orthonormal with respect to the
L2-inner-product determined by h(t) and ω(t); this defines a projec-

tive metric ĥk(t) in Lk which is either characterised as the pull-back
to Lk of the Fubini–Study metric from O(1) → CP

Nk via the embed-
ding determined by sα or, equivalently, as the unique metric for which∑ |sα|2 = 1. Meanwhile, we denote by hk(t) ∈ Bk the balancing flow

starting at ĥk(0). We will estimate the distance in Bk between hk(t)

and ĥk(t) using the symmetric Riemannian metric. It turns out to be
convenient to rescale this by a power of k. Denote by dk the distance
function arising from using the metric given by the rescaled Killing form
k−(n+2) trA2. (It can been shown that these norms converge in a cer-
tain sense to the L2-norm on potentials, so this is a natural rescaling to
consider.)

Our goal in this subsection is to prove the following result.

Proposition 10. There is a constant C such that for all t ∈ [0, T ],

dk

(
hk(t), ĥk(t)

)
≤ C

k
.

Proof. We begin by considering the tangent vector to ĥk(t). In gen-

eral, given a smooth path h(t) = eφ(t)h0 of positively curved Hermitian
metrics, the infinitesimal change in L2-inner-product on H0(Lk) corre-
sponds to the Hermitian matrix U = (Uαβ) where

(2) Uαβ =

∫

X
(sα, sβ)

(
kφ̇+∆φ̇

) ωn
n!
.

Here sα is an L2(hk(t), ω(t))-orthonormal basis of H0(Lk) and all rele-
vant quantities are computed with respect to h(t) and ω(t). The term

kφ̇ here corresponds to the infinitesimal change to the fibrewise metric,
while the term ∆φ̇ corresponds to the infinitesimal change in volume
form.

In our case, this gives that the tangent Uk(t) to ĥk(t) is the Hermitian
matrix

Uk =

∫

X
(sα, sβ)

(
k(S − S̄) + ∆S

) ωn
n!
,

where S is the scalar curvature of ω(t).
Meanwhile, the tangent to balancing flow through the same point

ĥk(t) is the Hermitian matrix

Vk = 2πk2
∫

X

(
δαβ

Nk + 1
− (sα, sβ)

ρk

)
ωnFS
n!

,
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where ρk is the Bergman function for h(t).
Using the asymptotic expansion of ρk and the fact that ω(t) = 1

kωFS+

O(k−2), there is an asymptotic expansion of Vk:

(3) Vk =

∫

X
(sα, sβ)(k(S − S̄) +O(1))

ωn

n!
.

So

Uk − Vk =

∫

X
(sα, sβ)O(1)

ωn

n!
.

It follows that we can write the norm of Uk−Vk in terms of the operators
Qk = Qk(ω(t)) appearing in Liu and Ma’s Theorem 7:

tr (Uk − Vk)
2

kn+2
=

∫

X×X
Kk(p, q)Gk(p)Gk(q) = 〈Gk, Qk(Gk)〉L2

where Gk = O(k−1).
Now, denoting the L2-norm by ‖ · ‖,
〈Gk, Qk(Gk)〉L2 ≤ ‖Gk‖‖Qk(Gk)‖,

≤ ‖Gk‖
(
C

k
‖Gk‖+ ‖ exp(−∆/(4πk))Gk‖

)
,

≤ ‖Gk‖2
(
C

k
+ 1

)
,

= O(k−2).

(The penultimate inequality uses the fact that the heat kernel reduces
the L2-norm.) So Uk−Vk is O(k−1) in the rescaled symmetric Riemann-
ian metric on Bk. Moreover, the bound is uniform in t because of the
uniformity in the asymptotic behavior of ρk and Qk. This amounts to
the infinitesimal version of the result we are aiming for.

In order to prove the actual result, let

fk(t) = dk

(
hk(t), ĥk(t)

)

denote the distance we are trying to control. Let h̃k(t) denote the

balancing flow which at time t = t0 passes through the point ĥ(t0). Our

bound on Uk − Vk says that ĥk and h̃k are tangent to O(k−1) at t = t0.
Now balancing flow is the downward gradient flow of a geodesically
convex function, and hence is distance decreasing (this follows from the
general moment-map description alluded to in §1.2; it was discovered
prior to the moment-map interpretation by Paul [24] and Zhang [38]).

So h̃k and hk get closer and closer together. It follows that there is a
constant C such that for all k, at t = t0,

dfk
dt

≤ C

k
.
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However, t0 was arbitrary, hence fk has sub-linear growth on [0, T ] and,
moreover, fk(0) = 0 so fk(t) ≤ CT/k for all t. q.e.d.

3.2. Higher-order approximations. Unfortunately, the fact that the
images of Calabi flow in Bk approximate balancing flow to O(k−1) with
respect to dk is not sufficient for us to show that the balancing flows
converge to Calabi flow. This is similar to the problem encountered
by Donaldson, and we resolve it by the parabolic analogue of the trick
appearing in §4.1 of [12]. Namely, we perturb the Calabi flow h(t) =
eφ(t)h by a polynomial in k−1 and consider instead a sequence of flows
indexed by k. Let

ψ(k; t) = φ(t) +

m∑

j=1

k−jηj(t)

where ηj(t) are some judiciously chosen time-dependent potentials. De-

note by h(k; t) = eψ(k;t)h the corresponding sequence of paths of Her-
mitian metrics. Their curvatures give the perturbation

ω(k; t) = ω(t) + i∂̄∂
m∑

j=1

k−jηj(t)

of Calabi flow on the level of Kähler forms. Note that for any given
choice of ηj, ω(k; t) is positive for large enough k.

Let h′k(t) ∈ Bk denote the kth Bergman point of h(k; t); i.e., given

a basis sα of H0(Lk) which is orthonormal with respect to the L2-
inner-product determined by h(k; t) and ω(k; t), h′k(t) is pull-back of

the Fubini–Study metric in O(1) → CP
Nk or, equivalently, the unique

Hermitian metric in Lk such that
∑ |sα|2 = 1.

Our goal in this subsection is to prove:

Theorem 11. For any m, there exist functions η1, . . . , ηm and a
constant C such that the perturbed Calabi flow h(k; t) = eψ(k;t)h with

ψ(k; t) = φ(t) +

m∑

j=1

k−jηj(t)

satisfies for all t ∈ [0, T ] and all k,

dk
(
hk(t), h

′
k(t)

)
≤ C

km+1
.

Proof. The proof is by induction with, Proposition 10 providing the
case m = 0. For clarity, we explain first the case m = 1 in detail before
moving to the general inductive step. So, let ψ(k; t) = φ(t) + k−1η(t)
for some η which we will now explain how to find.
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Let Ak(t) denote the Hermitian matrix corresponding to the tangent
to the path h′k(t). From equation (2), we have that

Ak =

∫

X
(sα, sβ)

(
k(S(ω(t))− S̄) + η̇ +∆S +O(k−1)

) ω(k; t)n
n!

.

Here S(ω(t))− S̄ is the tangent of the unperturbed Calabi flow h(t) and
the Lapalcian is that of the unperturbed metric ω(t); the O(k−1) terms
involve k−1∆η̇ and also the fact that in the full formula, the Laplacian
of ω(k; t) should appear, but this agrees with ∆ to O(k−1).

Next, we compute the asymptotics of the Hermitian matrix Bk(t)
which is tangent to balancing flow through the point h′k(t). Let Lt de-
note the linearization of the scalar curvature map associated to ω(t); so
S(ω(k; t)) = S(ω(t))+k−1Lt(η(t))+O(k−2). Bk is given, as in equation
(3), by the following expression, where we have explicitly notated the
O(1) term by F :

Bk =

∫

X
(sα, sβ)

(
k
(
S(ω(k; t)− S̄)

)
+ F +O(k−1)

)ω(k; t)n
n!

=

∫

X
(sα, sβ)

(
k
(
S(ω(t)− S̄)

)
− Lt(η(t)) + F +O(k−1)

)ω(k; t)n
n!

.

Here we use the uniformity in Theorem 6 along with the fact that
ω(k; t) → ω(t) in C∞ when expanding ρk(ω(k; t)). It follows that

Ak −Bk =

∫

X
(sα, sβ)

[
η̇ + Lt(η)− F +∆S +O(k−1)

]ω(k; t)n
n!

.

Now we chose η to solve the Cauchy problem for the inhomogeneous,
non-autonomous, linear, parabolic evolution equation:

(4) η̇ + Lt(η) = F −∆S

for t ∈ [0, T ], with initial condition η(0) = 0. It is standard that equa-
tion (4) has a solution provided the spectra of the operators Lt are
bounded below. The lower bound on the spectra ensures that for each
t, −Lt generates an analytic strongly continuous semi-group and from
here the existence of a solution to equation (4) follows from semi-group
theory. See, for example, the texts [1] or [25]. To verify that each of
the operators Lt have only finitely many negative eigenvalues, we use
the fact that

Lt(η) = D∗D(η)− (∇η,∇S)
which appears, for example, in [10]. For our purposes, all that matters
in this expression is that the first term D∗D is non-negative, elliptic,
and of higher order than the second term involving gradients. This
means we can connect Lt by a path of elliptic operators Lt(s) to the
non-negative operator D∗D:

Lt(s)(η) = D∗D(η)− s(∇η,∇S).
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As s runs from 0 to 1, it is standard that only finitely many eigenvalues
of Lt(s) can become negative, proving that the spectrum of Lt = Lt(1)
is bounded below.

With this choice of η, tracing through the argument used in the proof
of Proposition 10 we see that

tr (Ak −Bk)
2

kn+2
=

∫

X×X
Kk(p, q)Gk(p)Gk(q) = 〈Gk, Qk(Gk)〉L2

where this time Gk = O(k−2). As before, it follows from Liu and Ma’s
theorem that there is a constant C such that, for all t ∈ [0, T ],

tr (Ak −Bk)
2

kn+2
≤ C

k4
.

Throughout, we have expanded ρk(ω(k; t)) and Qk(ω(k; t)) using the
uniformity in Theorems 6 and 7 along with the fact that ω(k; t) → ω(t)
in C∞, uniformly for t ∈ [0, T ]. This is the infinitesimal version of the
result with m = 1. As in the proof of Proposition 10, this implies that
there is a constant C such that

dk
(
hk(t), h

′
k(t)

)
≤ C

k2

and so the result with m = 1 is true.
For general m, we work iteratively and assume we have selected ηj

for j = 1, . . . m − 1 solving a collection of linear parabolic evolution
equations to be specified. Let

ψ(k; t) = φ(t) +

m∑

j=1

k−jηj

where we will find ηm presently. Using equation (2), we have that the
tangent to the path h′k(t) is

Ak =

∫

X
(sα, sβ)


k(S − S̄) +

m−1∑

j=0

k−j η̇j+1 +∆′S +

m∑

j=1

k−j∆′η̇j


 ωn(k; t)

n!

where S = S(ω(t)) and ∆′ is the Laplacian of the metric ω(k; t).
The Laplacian depends analytically on the metric, meaning that we

can write ∆′ as a power series in k−1:

∆′ = ∆0 + k−1∆1 + · · ·

where ∆0 is the Laplacian of the unperturbed metric ω(t) and ∆r de-
pends only on ηj for j = 1, . . . r. This means that the Laplacian terms
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in the integrand for Ak expands further as

∆′S =

m−1∑

j=0

k−j∆jS +O(k−m),

m∑

j=1

k−j∆′η̇j =

m−1∑

j+r=1

k−j−r∆rη̇j +O(k−m).

Crucially, the choice of ηm only affects the O(k−m) terms in these two
expansions and no lower-order terms. So, up to O(k−m−1), the only
contribution of ηm to Ak is the term involving k−m+1η̇m. Hence, we can
write

Ak =

∫

X
(sα, sβ)


k(S − S̄) +

m−1∑

j=0

k−jMj + k−m+1η̇m +O(k−m)


 ωn(k; t)

n!

where S = S(ω(t)) and the Mj are determined by the ηj for j < m.
Meanwhile, as in equation (3),

Bk =

∫

X
(sα, sβ)

(
k
(
S(ω(k; t)) − S̄)

)
+Φk

) ω(k; t)n
n!

where Φk is built out of the Bergman function ρk(ω(k; t)) by a com-
bination of ρ−1

k and errors introduced by replacing ωFS with ω(k; t).
Theorem 6 says that ρk has an asymptotic expansion in which the co-
efficients are polynomials in the curvature of ω(k; t). Consequently, Φk
has an asymptotic expansion, this time in increasing powers of k−1, and
again the coefficients are polynomials in the curvature of ω(k; t). It
follows that the first contribution of ηm to Φk occurs at O(k−m). In
addition, scalar curvature depends analytically on the metric, so again
we have that the only contribution of ηm to S(ω(k; t)) occurs at O(k−m)
and here the contribution is precisely k−mLt(ηm). So we can write Bk
as

∫

X
(sα, sβ)


k(S − S̄) +

m−2∑

j=0

k−jFj + k−m+1(Fm − Lt(ηm)) +O(k−m)




where S = S(ω(t)) and all Fj for j < m are determined by ηj for j < m.
To complete the proof, we assume that we have chosen the η1, . . . , ηm−1

so that the terms of O(k−m+2) in Ak−Bk cancel and, moreover, so that
ηj(0) = 0. This amounts to solving a sequence of parabolic Cauchy

problems of the form (4) in which the inhomogeneous term in the jth

equation involves the solutions to all previous equations. Assuming this
is done, we are left with

Ak−Bk =
∫

X
(sα, sβ)

[
k−m+1(η̇m+Lt(ηm)+Mm−Fm)+O(k−m)

]ωn(k; t)
n!
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for Mm and Fm depending only on ηj for j < m. Choosing ηm to solve
the parabolic equation

η̇m + L(ηm) = Fm −Mm

with ηm(0) = 0 gives

Ak −Bk =

∫

X
(sα, sβ)O(k−m)

ω(k; t)n

n!
,

and from here the proof proceeds via Liu and Ma’s theorem precisely
as above. q.e.d.

4. Analytic estimates

The previous section produced, for a given integer m, a sequence of
flows ω(k; t) for which ω(k; t) → ω(t) as k → ∞ in C∞ and such that the
kth Bergman point h′k(t) of ω(k; t) satisfies dk(h

′
k(t), hk(t)) = O(k−m−1).

To complete the proof that ωk(t) → ω(t) in C∞, we use the fact that,

in the regions of Bk of interest to us at least, k(r/2)+1+ndk uniformly
controls the Cr norm on the curvature tensors of Bergman metrics. It
is precisely this power of k appearing in front of dk which makes the
higher-order approximations of Theorem 11 necessary.

The first step in controlling the Cr norm, carried out in this section,
is to prove some analytitc estimates which reduce the problem to con-
trolling the norm of the matrix µ̄. The main estimate we use is due to
Donaldson [12]. We give here a brief description of the relevant part of
§3.2 of [12]. In order to avoid worrying about powers of k at every step
here, when proving the estimates we use for each k the large metrics in
the class kc1(L). Then, at the end it is a simple matter to rescale to
metrics in the fixed class and take care of the powers of k at a single
stroke.

Fix a reference metric ω0 ∈ c1(L) and denote ω̃0 = kω0 ∈ kc1(L).
We say another metric ω̃ ∈ kc1(L) has R-bounded geometry in Cr if
ω̃ > R−1ω̃0 and

‖ω̃ − ω̃0‖Cr < R

where the norm ‖ · ‖Cr is that determined by the metric ω̃0. Given a
basis {sα} for H0(Lk), we get an embedding X ⊂ CP

Nk and hence a
metric ω̃ = ωFS|X . Equivalently, 2πiω̃ is the curvature of the unique
metric on Lk for which

∑ |sγ |2 = 1. We say that the basis {sα}, or
the corresponding point in Bk, has R-bounded geometry if the metric ω̃
does.

Given a basis {sα} and a Hermitian matrix A = (Aαβ), define

HA =
∑

Aαβ(sα, sβ)

where we have taken the inner-product here using the pull-back of the
Fubini–Study metric for which

∑ |sγ |2 = 1. Note that HA = tr(Aµ)
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restricted to X and so is the potential giving the infinitesimal deforma-
tion corresponding to A of the restriction of the Fubini–Study metric
to X. As a final piece of notation, we denote by ‖A‖op the maximum

of the moduli of the eigenvalues of A and by ‖A‖ =
√
trA2 the norm of

A with respect to the Killing form. The first estimate we want is the
following:

Proposition 12 (Donaldson [12]). There is a constant C such that
for all points of Bk with R-bounded geometry in Cr and any Hermitian
matrix A,

‖HA‖Cr ≤ C‖µ̄‖op‖A‖,
where µ̄ =

∫
X µ ω̃

n/n! is computed using the embedding corresponding
to the point of Bk and the Cr-norm is taken with respect to the fixed
reference metric ω̃0.

The key point is that C depends only on R and r, but not on k. This
is proved more or less explicitly in the course of the proof of Lemma 24
of [12], even though the end result is not stated in quite the form we
give here. Accordingly, we give only a sketch proof here, giving nearly
word-for-word parts of the proof of lemma 24 of [12].

Sketch of proof of Proposition 12. First, we recall the following stan-
dard estimate. Let Z be a compact complex Hermitian manifold, E →
X a Hermitian holomorphic vector bundle, and P ⊂ Z a differen-
tiable (real) submanifold. There is a constant C such that for any
σ ∈ H0(E,Z),

(5) ‖σ‖Cr(P ) ≤ C‖σ‖L2(Z).

Moreover, provided that the data Z,P,E has bounded local geometry
in Cr in a suitable sense, C can be taken to be independent of the
particular manifolds and bundles involved.

We apply this to the manifold Z = X × X where X is X with the
opposite complex structure. The Hermitian metric on Lk induces a con-
nection in Lk; one component of the connection recovers the holomor-

phic structure on Lk → X, while the other component makes L
k → X

into a holomorphic line bundle. Let E → Z be the tensor product of the

pull-back of Lk from the first factor and (L
k
)∗ from the second. Given

a Bergman metric in Bk, we take the obvious induced Kähler metric on
Z and Hermitian metric in E. Let P denote the diagonal in Z. We will
use the estimate (5) in this situation along with the fact that the con-
stant can be taken independently of the Bergman metric used, provided
it has R-bounded geometry in Cr.

A holomorphic section s of Lk → X defines a holomorphic section

s̃ of (L
k
)∗ → X via the bundle isomorphism given by the fibre metric.
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Thus for any Hermitian matrix A, we get a holomorphic section

σA =
∑

Aαβ sα ⊗ s̃β

of E over Z. We have

‖σA‖2L2(Z) =
∑

AαβAα′β′〈sα, s′α〉〈sβ, s′β〉

(where 〈·, ·〉 denotes the L2-inner-product). In matrix notation this
reads

‖σA‖2L2(Z) = tr (Aµ̄A∗µ̄∗) .

There is a standard inequality that for Hermitian matrices G,F ,

(6) tr(FGFG) ≤ ‖F‖2‖G‖2op,
which here gives

‖σA‖L2(Z) ≤ ‖µ̄‖op‖A‖.
Now, over P , the metric on Lk defines a C∞ trivialization of E and

the function HA =
∑
Aαβ(sα, sβ) is just the restriction of σA to the

diagonal in this trivialization. Hence, by the inequality (5), we have

‖HA‖Cr(X) ≤ C‖σA‖L2(Z) ≤ C‖µ̄‖op‖A‖.
q.e.d.

We can rephrase this result by saying that under certain conditions,
the Riemannian distance on Bk controls the Cr−2-norm on Kähler forms.
To make this precise, let ω̃(s) for s ∈ [0, 1] denote a path of Kähler forms
in Bk. We denote by L the length of the path, measured using large
symmetric Riemannian metric on Bk, i.e., the metric corresponding to
the Killing form trA2.

Lemma 13. If all the metrics ω̃(s) for s ∈ [0, 1] have R-bounded
geometry in Cr and also satisfy ‖µ̄‖op < K, then

‖ω̃(0) − ω̃(1)‖Cr−2 < CKL,

where the Cr−2 norm is taken with respect to the reference metric ω̃0.

Proof. Let A(s) denote the Hermitian matrix which is tangent to the
given path. We have that

∥∥∥∥
∂ω̃

∂t

∥∥∥∥
Cr−2

=
∥∥i∂∂̄HA(s)

∥∥
Cr−2 ≤ CK‖A‖.

The result now follows by integrating along the path. q.e.d.

Of course, to apply this lemma we need to find regions in Bk which
consist of R-bounded metrics and also for which ‖µ̄‖op is uniformly
controlled. In this direction, we prove the following simple lemma. We
denote by d = kn+2dk the unscaled symmetric Riemannian metric on
Bk.
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Lemma 14. Let ω̃k ∈ Bk be a sequence of metrics with R/2-bounded
geometry in Cr+2 and such that ‖µ̄(ω̃k)‖op is uniformly bounded. Then
there is a constant C such that if ω̃ ∈ Bk has d(ω̃k, ω̃) < C, then ω̃ has
R-bounded geometry in Cr.

Proof. There is a Hermitian matrix B such that ω̃ = eB ·ω̃k; note that
d(ω̃k, ω̃) = ‖B‖. Let sα be a basis for H0(Lk) defining the embedding
corresponding to ω̃k and chosen, moreover, so that B = diag(λα) is
diagonal in this basis. (This can be done thanks to U(N+1)-invariance.)
Then ω̃ = ω̃k + i∂̄∂v where

ev =
∑

e2λα |sα|2.

Because ω̃k has R/2-bounded geometry in Cr+2 and ‖µ̄(ω̃k)‖op uni-
formly bounded, Proposition 12 implies that there is a constant c such
that for any α, ∥∥|sα|2

∥∥
Cr+2 < c.

(Apply the result to the matrix A with a single 1 as entry α on the
diagonal and zeros elsewhere.) It follows that

‖ev‖Cr+2 ≤ ce2max |λα| ≤ ce2‖B‖.

So a bound on ‖B‖ gives uniform control of ‖ω̃ − ω̃k‖Cr . Hence, there
is a C such that when ‖B‖ = d(ω̃, ω̃k) < C, ω̃ has R-bounded geometry
in Cr. q.e.d.

5. Projective estimates

Our final task is to control ‖µ̄‖op. For the first lemma in this direction,
we consider the situation from Tian’s Theorem 1; so h is a Hermitian
metric in L with positive curvature defining a Kähler form ω and hk ∈ Bk
is the sequence of Bergman metrics in L corresponding to an L2(hk, ω)-
orthonormal basis of H0(Lk).

Lemma 15. ‖µ̄(hk) − 1k‖op → 0, where 1k ∈ iu(Nk + 1), is the
identity matrix. Moreover, this convergence is uniform in ω in the sense
that there is an integer s such that if ω runs over a set of metrics bounded
in Cs and for which ω is bounded below, then the convergence is uniform.

Proof. We borrow another trick we learned from [12]. Let sα be a
basis for H0(Lk) determining ωk. Given a continuous function F : X →
R, set AF to be the Hermitian matrix with entries

(AF )αβ =

∫

X
(sα, sβ)F

ωn

n!
.

Then ‖AF ‖op ≤ ‖F‖C0 . This is because the map AF : H0(Lk) →
H0(Lk) factors through the space V of all L2-integrable sections as
AF = π ◦MF ◦ j where j : H0(LK) → V is the inclusion, MF is multi-
plication by F , and π : V → H0(Lk) is orthogonal projection in V .
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We are interested in the matrix

µ̄αβ =

∫

X

(sα, sβ)

ρk

ωnFS
n!

=

∫

X
(sα, sβ)(1 +O(k−1))

ωn

n!

where we have used the asymptotic expansion of ρk and ω = 1
kωFS +

O(k−2). So µ̄ − 1k is the matrix associated to a function Fk : X → C

with ‖Fk‖C0 = O(k−1). Hence, ‖µ̄− 1k‖op = O(k−1). The convergence
is uniform in ω because the asymptotic expansion of ρk is. q.e.d.

Remark 16. As with the asymptotics of ρk and Qk, the fact the
convergence of Lemma 15 is uniform allows us to pass from a single
metric ω to a sequence ω(k) which converges in C∞. If we denote by
ωk(k) ∈ Bk the kth standard projective approximation to ω(k), then it
follows from the uniformity that ‖µ̄(ωk(k))− 1k‖op → 0

The remainder of this section is devoted to controlling ‖µ̄‖op in terms
of the Riemannian distance in the Bergman space. Our arguments will
apply simultaneously to all Bk without k playing a role. Accordingly,
until the end of the section we drop the reference to k and work on
the Bergman space B ∼= GL(N + 1)/U(N + 1) associated to a given
subvariety X ⊂ CP

N .
Given a point b ∈ B and tangent vector A ∈ TbB ∼= iu(N + 1),

we differentiate µ̄ : B → iu(N + 1) at b to obtain dµ̄(A) ∈ iu(N + 1).
The first fact we need—which appears, for example, in [26]—is the
relationship between dµ̄(A) and the extrinsic geometry of the embedding
X ⊂ CP

N corresponding to b ∈ B. Let ξA denote the vector field on
CP

N corresponding to A. Let ξTXA denote the component of ξA|X which

is tangent to X and ξ⊥A the component which is perpendicular. Finally
let (·, ·) denote the Fubini–Study inner product on tangent vectors.

Lemma 17. For any pair of Hermitian matrices A,B ∈ iu(N + 1),

tr(B dµ̄(A)) =

∫

X
(ξ⊥A , ξ

⊥
B )

ωnFS
n!

.

Proof.

tr(B dµ̄(A)) =

∫

X
tr(B dµ(A))

ωnFS
n!

+

∫

X
tr(Bµ)

LξA(ω
n
FS)

n!

=

∫

X

(
(ξA, ξB)−HB∆HA

)ωnFS
n!

=

∫

X

(
(ξA, ξB)− (ξTXA , ξTXB )

)ωnFS
n!

.
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Here the various equalities all follow from the fact that −iµ is a moment
map for the U(N + 1)-action on CP

N ; we have

tr(B dµ(A)) = ωFS(JξA, ξB)

= (ξA, ξB);

LξAωFS = 2i∂̄∂ (trAµ)

= 2i∂̄∂HA;

(LξAω
n
FS) |X = −∆HA (ωnFS|X) .

q.e.d.

We now continue with a series of identities and estimates in projective
geometry which provide the pieces needed to control ‖µ̄‖op.

Lemma 18. Let A,B ∈ iu(N + 1) be Hermitian matrices. At every
point of CPN ,

HAHB + (ξA, ξB) = tr(ABµ).

Proof. By U(N + 1) equivariance, it suffices to consider the point
p = [1: 0: · · · : 0]. Let (x1, . . . , xN ) 7→ [1 : x1 : · · · : xN ] be unitary
coordinates. At p, µ(p) has a single non-zero entry which is a one in the
top left corner. Hence, HA(p) = A00, HB(p) = B00 and

tr(ABµ) = A00B00 +A01B10 + · · ·+A0NBN0.

Meanwhile, at p, the coordinate vectors ∂i are orthonormal, while ξA =
A01∂1 + · · ·+ A0N∂N and similarly for ξB . Putting the pieces together
and using B∗ = B gives the result. q.e.d.

Remark 19. As an aside, it is interesting to compare this result with
the analytic estimate in Proposition 12. It follows from Lemma 18 that
for any A, at every point of X,

H2
A + |∇HA|2 = H2

A + |ξTXA |2

≤ H2
A + |ξA|2

= tr(A2µ)

≤ ‖A‖2.
So the C1 case of Proposition 12, ‖HA‖C1 ≤ ‖A‖, comes “for free” from
projective geometry with no need to use analysis (and with no need to
involve ‖µ̄‖op in the bound).

Lemma 20. For any Hermitian matrices A,B ∈ iu(N + 1),

tr(B dµ̄(A)) + 〈HA,HB〉L2
1
(X) = tr(ABµ̄).

Proof. From Lemma 18 we have, at every point of X,

HAHB + (ξTXA , ξTXB ) + (ξ⊥A , ξ
⊥
B) = tr(ABµ).

Now use the identity ξTXA = ∇HA, integrate over X, and apply Lemma
17. q.e.d.
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Remark 21. This identity fits into Donaldson’s “double quotient”
picture described in §2.1 of [12]; we explain this here, although we make
no direct use of this observation later. Donaldson considers the infinite-
dimensional space X = Γ(Lk)Nk+1 (where Γ denotes smooth sections).
Given a Hermitian metric h in L with positive curvature 2πiω, X is
formally a Kähler manifold, where the Riemannian metric is given by
the L2(hk, ω)-inner-product on sections of Lk and the complex structure
is given by multiplication of sections by i. Two groups act on X , one
finite-dimensional the other infinite-dimensional. The finite dimensional
group is GL(Nk + 1) which acts on X by Kähler isometries, mixing the
Γ(Lk) factors in the obvious way. The infinite-dimensional group is the
group G of Hermitian bundle maps L → L which preserve the Chern
connection of h; this acts preserving the L2-inner-product on Γ(Lk) and
hence by it acts by Kähler isometries on X . While the complexification
of G doesn’t exist, one can still make sense of the complex “orbits” in
X .

Assume that (h, ω) come from a projective embedding defined via a
basis s = (s0, . . . sNk

) ∈ X . Given a Hermitian matrix A ∈ iu(Nk + 1),
we get an infinitesimal change in the basis s, i.e., a tangent vector
VA ∈ TsX . Let P ⊂ TsX denote the tangent space to the complex
“orbit” through s. We can decompose VA into two components, the
part V ′

A which is in P and the part V ′′
A which is orthogonal. Doing

likewise for a second Hermitian matrix B, we have the obvious identity

(VA, VB) = (V ′
A, V

′
B) + (V ′′

A , V
′′
B).

Proposition 19 in [12] gives V ′
A explicitly in terms of HA and using

this one can write out the terms in this identity, giving

(VA, VB) = tr(ABµ̄),

(V ′
A, V

′
B) = 〈HA,HB〉L2

1
(X),

(V ′′
A , V

′′
B) = tr(B dµ̄(A)).

So Lemma 20 amounts to the orthogonal decomposition TsX = P ⊕P⊥.
Meanwhile, the equality (V ′′

A , V
′′
B) = tr(B dµ̄(A)) is a consequence of the

fact that balancing flow is the downward gradient flow of the Kempf–
Ness function associated to the finite-dimensional moment-map problem
that remains after taking the symplectic reduction by the action of G.

Lemma 22. For any Hermitian matrix A ∈ iu(N + 1),

‖HA‖2L2
1

≤ ‖A‖2‖µ̄‖op.

Proof. It follows from Lemma 20 that

‖HA‖2L2
1

= tr(A2µ̄)− tr(Adµ̄(A)).
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From Lemma 17,

tr(Adµ̄(A)) =

∫

X
|ξ⊥A |2

ωnFS
n!

> 0.

Hence,

‖HA‖2L2
1

≤ tr(A2µ̄) ≤ ‖A‖2‖µ̄‖op,
where the second inequality follows from inequality (6). q.e.d.

Lemma 23. For any Hermitian matrix A ∈ iu(N + 1),

‖dµ̄(A)‖ ≤ 2‖A‖‖µ̄‖op.
Proof. From Lemma 20 with B = dµ̄(A),

‖dµ̄(A)‖2 = tr
(
dµ̄(A)2

)
= tr(Adµ̄(A)µ̄)− 〈HA,Hdµ̄(A)〉L2

1
.

Now apply Cauchy–Schwarz, Lemma 22, and inequality (6) to deduce

‖dµ̄(A)‖2 ≤ 2‖A‖‖dµ̄(A)‖‖µ̄‖op.
q.e.d.

Finally, we are in a position to control ‖µ̄‖op in terms of Riemannian
distance on B.

Proposition 24. Let b0, b1 ∈ B and let d(b0, b1) denote the Riemann-
ian distance between b0 and b1. Then

‖µ̄(b1)‖op ≤ e2d(b0,b1) ‖µ̄(b0)‖op .

Proof. Let A generate the geodesic etA in B joining b0 and b1 so that
‖A‖ = d(b0, b1). As we run along the geodesic from b0 to b1, the rate of
change of ‖µ̄‖op is at most

‖dµ̄(A)‖op ≤ ‖dµ̄(A)‖ ≤ 2‖A‖‖µ̄‖op,
by Lemma 23, and so the growth is sub-exponential. q.e.d.

6. Completing the proof of Theorem 5

Now, finally, all the pieces are in place to prove our main result.
We begin by recalling our notation. Let h be a Hermitian metric in L
with positive curvature 2πiω; denote by ω(t) the Calabi flow starting at
ω. Let ιk be the embedding of X defined by a basis of H0(Lk) which
is orthonormal with respect to the L2 inner product defined by h(0)
and ω(0). Let ωk =

1
k ι

∗
kωFS denote the standard sequence of projective

approximations to ω(0). Let ιk(t) solve the balancing flow (1) and let
ωk(t) =

1
k ιk(t)

∗ωFS. We must prove first that ωk(t) → ω(t) in C∞.
Recall that in Theorem 11, for any given integer m we constructed a

sequence of flows ω(k; t) which satisfies

1) ω(k; t) → ω(t) in C∞ as k → ∞;
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2) dk(hk(t), h
′
k(t)) ≤ Ck−m−1 where hk(t) is the balancing flow, h′k(t)

denotes the kth standard projective approximation to ω(k; t), and
dk is the scaled Riemannian distance function on Bk corresponding
to the Killing form k−n−2 trA2 on Hermitian matrices.

Let ω′
k(t) ∈ c1(L) denote the (rescaled) Kähler form corresponding to

h′k(t). It follows from point 1 above and the uniformity of the asymptotic
expansion of ρk that ω′

k(t) → ω(t) in C∞. We will show ωk(t) → ω(t)
by proving that

‖ωk(t)− ω′
k(t)‖Cr(ω(t)) → 0

as k → ∞. To do this we will control the Cr norm on metrics by the
distance dk in Bk along the geodesics joining h′k(t) to hk(t). We can do
this by Lemma 13, provided all the points have R-bounded geometry in
Cr+2 and all have ‖µ̄‖op uniformly controlled as well.

We begin with the control of ‖µ̄‖op. By Lemma 15 and Remark 16,
‖µ̄‖op is controlled for h′k(t) uniformly in k. Now we apply Proposition
24, for which we need hk(t) to be a uniformly bounded distance from
h′k(t) in the unscaled distance d = kn+2dk. Provided we take m ≥ n+1
this holds, giving that ‖µ̄‖op is uniformly bounded along the geodesics
joining h′k(t) to hk(t).

Next, we establish that the points of these geodesics have R-bounded
geometry in Cr+2. We use ω(t) as our reference metric and apply
Lemma 14 to the sequence ω′

k(t) (but with r replaced by r + 2). We
have already observed that the part of the hypothesis concerning ‖µ̄‖op
is satisfied and the metrics ω′

k(t) certainly have R/2-bounded geometry
in Cr+4, since they converge in C∞ to ω(t). Now, provided we take
m ≥ n + 2, the unscaled distance d(h′k(t), hk(t)) tends to zero, and so,
for sufficiently large k, all points on the geodesics joining h′k(t) and hk(t)
have R-bounded geometry in Cr+2.

Finally, we can apply Corollary 13. This tells us that for the unscaled
metrics there is some constant M such that

‖kωk(t)− kω′
k(t)‖Cr(kω(t)) ≤Mkn+2dk(hk(t), h

′
k(t)) ≤MCkn+1−m.

Rescaling this inequality, we see that

‖ωk(t)− ω′
k(t)‖Cr(ω(t)) ≤MCk(r/2)+1+n−m.

So provided we take m > r
2 + 1 + n, we obtain that ωk(t) converges to

ω(t) in Cr.
For t ∈ [0, T ], {ω(t)} is a compact set of metrics; from here it is

easy to check that the convergence ωk(t) → ω(t) is uniform in t. There
are various places where uniformity must be checked. First, we have
used ω(t) to define the Cr-norms, but the compactness ensures all these
norms are uniformly equivalent. Second, we have applied asymptotic
expansions for ρk and Qk, but these are both uniform as t varies, by
uniformity in the relevant Theorems 6, 7, and 8. We also must check
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that ω(k; t) converges uniformly to ω(t). This holds since, for given
r, there are only finitely many perturbations ηj present. Finally, if we

denote by φ̇k the potential for the t-derivative of ωk(t), it follows from

Theorem 9 that φ̇k(t) → S(ω(t)) − S̄ in C∞. This is uniform for t
in a compact interval, again by the uniformity of the asymptotics in
Theorems 6, 7, and 8.

Appendix: Asymptotics of the operators Qk

Written by Kefeng Liu and Xiaonan Ma. This note is a continuation
of [17] providing a technical result needed in the preceding article of
Fine. We refer to [15], [17], and Fine’s paper for the context of the
problem. We also refer the readers to the recent book [20] for more
information on the Bergman kernel.

We begin by recalling the basic setting and notation in [17], which
we will use freely throughout.

Let (X,ω, J) be a compact Kähler manifold with dimCX = n, and
let (L, hL) be a holomorphic Hermitian line bundle on X. Let ∇L be
the holomorphic Hermitian connection on (L, hL) with curvature RL.
We assume that

√
−1

2π
RL = ω.(7)

Let gTX(·, ·) := ω(·, J ·) be the Riemannian metric on TX induced
by ω, J . Let dvX be the Riemannian volume form of (TX, gTX ); then
dvX = ωn/n!. Let dν be any volume form on X. Let η be the positive
function on X defined by

dvX = η dν.(8)

The L2–scalar product 〈 〉ν on C∞(X,Lp), the space of smooth sec-
tions of Lp, is given by

〈σ1, σ2〉ν :=

∫

X
〈σ1(x), σ2(x)〉hLp dν(x) .(9)

Let Pν,p(x, x
′) (x, x′ ∈ X) be the smooth kernel of the orthogonal

projection from (C∞(X,Lp), 〈 〉ν) onto H0(X,Lp), the space of the
holomorphic sections of Lp on X, with respect to dν(x′). Following [15,
§4], set

Kp(x, x
′) := |Pν,p(x, x′)|2hLp

x ⊗hL
p∗

x′
, Rp := (dimH0(X,Lp))/Vol(X, ν),

(10)

where Vol(X, ν) :=
∫
X dν. Set Vol(X, dvX ) :=

∫
X dvX .
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Let QKp be the integral operator associated to Kp which is defined
for f ∈ C∞(X),

(11) QKp(f)(x) :=
1

Rp

∫

X
Kp(x, y)f(y)dν(y).

Let ∆ be the (positive) Laplace operator on (X, gTX ) acting on the
functions on X. We denote by | |L2 the L2-norm on the function on
X with respect to dvX .

The following result is an improvement of [17, Theorem 0.1], where
it is proved for q = 0 and q = 1.

Theorem 25. For and q ∈ N, there exists a constant C > 0 such
that for any f ∈ C∞(X), p ∈ N,

∣∣∣∣
((∆

p

)q
QKp −

Vol(X, ν)

Vol(X, dvX )

(∆
p

)q
η exp

(
− ∆

4πp

))
f

∣∣∣∣
L2

6
C

p
|f |L2 .

(12)

Moreover, (12) is uniform in that there is an integer s such that if all
data hL, dν run over a set which is bounded in Cs-topology and that
gTX , dvX are bounded from below, then the constant C is independent
of hL, dν.

Proof. Let E = C be the trivial holomorphic line bundle on X. Let
hE the metric on E defined by |e|2

hE
= 1, where e is the canonical unity

element of E. We identify canonically Lp to Lp ⊗ E by section e.
Let hEω be the metric on E defined by |e|2

hEω
= η−1. Let 〈 〉ω be

the Hermitian product on C∞(X,Lp ⊗ E) = C∞(X,Lp) induced by
hL, hEω , dvX as in (9). If Pω,p(x, x

′), (x, x′ ∈ X) denotes the smooth
kernel of the orthogonal projection Pω,p from (C∞(X,Lp ⊗ E), 〈 ·, ·〉ω)
onto H0(X,Lp⊗E) = H0(X,Lp) with respect to dvX(x). By [17, (11)],
we have

(13) Pν,p(x, x
′) = η(x′)Pω,p(x, x

′).

For f ∈ C∞(X), set

Kω,p(x, x
′) = |Pω,p(x, x′)|2(hLp

⊗hEω )x⊗(hL
p∗

⊗hE∗

ω )x′
,

(Kω,pf)(x) =

∫

X
Kω,p(x, y)f(y)dvX(y).

(14)

Then by [17, (15)], we have

(15) QKp(f)(x) =
1

Rp

∫

X
Kω,p(x, y)η(x)f(y)dvX (y).

Now we use the normal coordinate as in [17]. Then under our iden-
tification, Pω,p(Z,Z

′) is a function on Z,Z ′ ∈ Tx0X, |Z|, |Z ′| 6 ε; we
denote it by Pω,p,x0(Z,Z

′) with complex values.
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Note that |Pω,p,x0(Z,Z ′)|2 = Pω,p,x0(Z,Z
′)Pω,p,x0(Z,Z

′); thus from
[17, (19),(20)], (14), there exist J ′

r(Z,Z
′) polynomials in Z,Z ′ such

that

(16)

∣∣∣∣
1

pq
∆q
Z

( 1

p2n
Kω,p,x0(Z,Z

′)

−
(
1 +

k∑

r=2

1

pr/2
J ′
r(
√
pZ,

√
pZ ′)

)
e−πp|Z−Z

′|2
)∣∣∣∣∣
C0(X)

6 Cp−(k+1)/2(1 + |√pZ|+ |√pZ ′|)N exp(−C0
√
p|Z −Z ′|) +O(p−∞).

(There is a misprint in [17, (25)], we need to move a factor 1
p2n into

the parenthesis; thus 1
p2n+1∆Z

(
Kω,p,x0 · · · therein should be read as

1
p∆Z

(
1
p2n

Kω,p,x0 · · · )
For a function f ∈ C∞(X), we denote it as fx0(Z) a family (with

parameter x0) of function of Z in the normal coordinate near x0.
Observe that in the normal coordinate, we denote by gij(Z) = 〈ei, ej〉Z

with ei =
∂
∂Zi

, and let (gij(Z)) be the inverse of the matrix (gij(Z)). If

Γlij is the connection form of ∇TX with respect to the basis {ei}, then
we have (∇TX

ei ej)(Z) = Γlij(Z)el. Set ∆0 = −∑2n
j=1

∂2

∂Z2
j

; then

∆Z = ∆0 −
2n∑

i,j=1

(
(gij(Z)− 1) ∂2

∂Zi∂Zj
− gij(Z)Γkij(Z)

∂
∂Zk

)
.(17)

As gij(Z) = 1 +O(|Z|2),Γkij(Z) = O(|Z|) (cf. [20, (1.2.19), (4.1.102)]),
by recurrence, we know
(18)

∆q
Ze

−πp|Z−Z′|2 = ∆q
0e

−πp|Z−Z′|2 +
2∑

i=0

hi(Z,
√
p,
√
pZ,

√
pZ ′)e−πp|Z−Z

′|2 .

Here hi(Z, a, x, y) are polynomials on a, x, y, and the degree on a is
6 2q − 2 + i; moreover, the coefficients of hi(Z, a, x, y) as a function on
Z is C∞ and O(|Z|i). Thus,

p−q∆q
Ze

−πp|Z−Z′|2 = p−q(∆q
0e

−πp|Z−Z′|2)|Z=0 + p−qh(
√
p,
√
pZ ′)e−πp|Z

′|2 ,

(19)

and h(a, Z ′) is a polynomial on a and Z ′, and its degree on a is 6 2q−2.
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From (16), (19), and [17, (27)],

(20)∣∣∣∣∣p
−n−q∆qKω,pf − pn−q

∫

|Z′|6ε
(∆q

0e
−πp|Z−Z′|2)|Z=0fx0(Z

′)dvX (Z ′)

∣∣∣∣∣
L2

6
C

p
|f |L2 .

Let e−u∆(x, x′) be the smooth kernel of the heat operator e−u∆ with
respect to dvX(x

′). By [17, (35)], there exist φi,x0(Z
′) such that uni-

formly for x0 ∈ X, Z ′ ∈ Tx0X, |Z ′| 6 ε, we have the following asymp-
totic expansion when u→ 0:

(21)∣∣∣∣∣
∂l

∂ul

(
e−u∆(0, Z ′)− (4πu)−n

(
1 +

k∑

i=1

uiφi,x0(Z
′)
)
e−

1

4u
|Z′|2

)∣∣∣∣∣
C0(X)

= O(uk−n−l+1).

Observe that

∆q exp
(
− ∆

4πp

)
= (−1)q( ∂∂ue

−u∆)
∣∣∣
u= 1

4πp

,

pn(∆q
0e

−πp|Z−Z′|2)|Z=0 =
(
∆q

0 exp
(
− ∆0

4πp

))
(0, Z ′)

= (−1)q( ∂
q

∂uq e
−u∆0)

∣∣∣
u= 1

4πp

(0, Z ′).(22)

By (20), (21), (22), and [17, (27)], we have
∣∣∣∣p

−q
(
p−n∆qKω,p −∆q exp

(
− ∆

4πp

))
f

∣∣∣∣
L2

6
C

p
|f |L2 .(23)

Thus, we have proved (12) when η = 1.
If η 6= 1, set

Kη,ω,p,q(x, y) = 〈dη(x), dx∆q−1
x Kω,p(x, y)〉gT∗X ,

(Kη,ω,p,qf)(x) =

∫

X
Kη,ω,p,q(x, y)f(y)dvX (y).

(24)

Then from [17, (19),(20),(27)], (18), and (24), we get

(25)
∣∣p−n−qKη,ω,p,qf

−pn−q
∫

|Z′|6ε

2n∑

i=1

( ∂
∂Zi

η)(x0, 0)(
∂
∂Zi

∆q−1
0 e−πp|Z−Z

′|2)|Z=0fx0(Z
′)dvX(Z

′)

∣∣∣∣∣
L2

6
C

p
|f |L2 ,
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where C is independent on p.
By [17, (33)], we get the analogue of [17, (36)]

(26)
∣∣∣
∂l

∂ul

[
〈dη(x0), dx0e−u∆〉gT∗X (0, Z ′)

− (4πu)−n
2n∑

i=1

(
∂

∂Zi
η)(x0, 0)

Z ′
i

2u

(
1 +

k∑

i=1

uiφi,x0(Z
′)
))
e−

1

4u
|Z′|2

−(4πu)−n
k∑

i=1

ui〈dη(x0), (dx0Φi)(0, Z ′)〉e− 1

4u
|Z′|2

]∣∣∣
C0(X)

= O(uk−n−l+
1

2 ).

From (25), (26), and [17, (27)],

∣∣∣∣p
−q

(
p−nKη,ω,p,q − 〈dη, d∆q−1 exp(− ∆

4πp
)〉
)
f

∣∣∣∣
L2

6
C

p
|f |L2 .(27)

Finally,

(28) (∆q(ηKω,p))(x, y) = η(x)∆q
xKω,p(x, y)

− 2〈dη(x), dx∆q−1
x Kω,p(x, y)〉gT∗X + K̃ω,p,

where K̃ω,p has 6 2q − 2 derivative on Kω,p(x, y); thus

∣∣∣K̃ω,pf
∣∣∣
L2

6 C
(
|Kω,pf |L2 +

∣∣∆q−1
x Kω,pf

∣∣
L2

)
.(29)

Note also Rp = Vol(X,dvX )
Vol(X,ν) p

n + O(pn−1). From (15), (23), and (27)–

(29), we get (12).
To get the last part of Theorem 25, as we noticed in [9, §4.5], the

constants in [17, (19)] will be uniformly bounded under our condition,
and thus we can take C in (12), (27), and (29) independent of hL, dν.
q.e.d.

We have also Cm estimates.

Theorem 26. For m ∈ N, there exists a constant C > 0 such that
for any f ∈ C∞(X), p ∈ N,

∣∣∣∣QKpf − Vol(X, ν)

Vol(X, dvX )
ηf

∣∣∣∣
Cm(X)

6
C

p
|f |Cm(X) .(30)

Again the constant C here is uniform bounded in the sense after (12).
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Proof. Now we replace (16) by the following equation, which is again
from [17, (19)]:

(31)

∣∣∣∣
1

p2n
Kω,p,x0(Z,Z

′)

−
(
1 +

k∑

r=2

p−r/2J ′
r(
√
pZ,

√
pZ ′)

)
e−πp|Z−Z

′|2
)∣∣∣∣∣
Cm(X)

6 Cp−(k+1)/2(1 + |√pZ|+ |√pZ ′|)N exp(−C0
√
p|Z −Z ′|) +O(p−∞).

Here Cm(X) is the Cm norm for the parameter x0 ∈ X. Thus,

(32)
∣∣p−nKω,pf

−pn
∫

|Z′|6ε

(
1 +

k∑

r=2

p−r/2J ′
r(0,

√
pZ ′)

)
e−πp|Z

′|2fx0(Z
′)dvX(Z

′)

∣∣∣∣∣
Cm(X)

6 Cp−(k+1)/2 |f |Cm(X) .

But as in the proof of [2, theorem 2.29. (2)], we get

∣∣∣∣∣p
n

∫

|Z′|6ε
J ′
r(0,

√
pZ ′)e−πp|Z

′|2fx0(Z
′)dvX(Z

′)

∣∣∣∣∣
Cm(X)

6 C |f |Cm(X) ,

∣∣∣∣∣p
n

∫

|Z′|6ε
e−πp|Z

′|2fx0(Z
′)dvX(Z

′)− f(x0)

∣∣∣∣∣
Cm(X)

6 Cp−1 |f |Cm(X) .

(33)

From (32), (33), we get
∣∣p−nKω,pf − f

∣∣
Cm(X)

6 C |f |Cm(X) .(34)

Now by (15),

(QKpf)(x) =
1

Rp
η(x)(Kω,pf)(x).(35)

From (34), (35), we get (30).
As the constant C in [17, (19)] is uniformly bounded under our con-

dition, thus the constant C in (31) (and so (30)) is uniformly bounded.
q.e.d.
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L’Enseignement Mathématique [Monographs of L’Enseignement Mathématique],
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