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0. Introduction

In this note, we explain how to give a uniform approach of three different top-
ics: Atiyah–Singer index theorem, holomorphic Morse inequalities and asymptotic
expansion of Bergman kernel, by using heat kernels.

Roughly the Atiyah–Singer index theorem announced in 1963, as one of the
most important theorems in mathematics of 20 century, computes the index of an
elliptic operator by using the characteristic classes, i.e., the topological way. Its
heat kernel approach (as a solution of the McKean–Singer conjecture or as the
local index theorem) was developed by Gilkey in his thesis in 1973 and also by
Atiyah–Bott–Patodi, which needs to use Weyl’s invariant theory and computes
infinite examples to detect the final formula. In the 1980s, influenced by the su-
persymmetry in physics, Bismut and Getzler independently developed direct heat
kernel proofs of the Atiyah–Singer index theorem. In modern index theory, the lo-
cal index techniques plays a central role which allows us to study the more refined
spectral invariants such as the analytic torsion and the eta invariant.

In complex geometry, the Atiyah–Singer index theorem reduces to the clas-
sical Riemann–Roch–Hirzebruch theorem, which computes the alternating sum of
dimensions of the Dolbeault cohomology groups of a holomorphic vector bundle.

The holomorphic Morse inequalities give an asymptotic estimate of the di-
mension of each Dolbeault cohomology group of a pth tensor power of a line bundle
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when p goes to infinity. This was first established by Demailly in 1985 [7] answering
a question of Siu after Siu’s solution of Grauert–Riemenschneider conjecture, and
Bismut [2] gave a heat kernel approach. If the line bundle is positive, then by the
Kodaira vanishing theorem, for large p the associated Dolbeault cohomology group
of positive degree is zero and the dimension of its zero degree part, i.e., the space
of holomorphic sections of its pth tensor power, is given by the Riemann–Roch–
Hirzebruch theorem. Its analytic refinement is the smooth kernel of the orthogonal
projection from the space of smooth sections onto the space of holomorphic sec-
tions: the Bergman kernel. In his thesis [16] in 1990, Tian initiated the study of the
asymptotic of Bergman kernels. Since then, it is a very active research direction.

In this note, we explain a uniform approach of the above three topics by using
heat kernels, which is inspired a lot from the analytic localization techniques of
Bismut–Lebeau in local index theory. The basic references of this note are [1, Chap.
4] on the local index theorem, and [6], [11, §1.6, §4.1], [10], where the readers can
also find a complete list of references. In particular, based on our contributions
with Dai, Liu and Marinescu, [11] gives a comprehensive study on holomorphic
Morse inequalities and Bergman kernels and their applications. To keep this note
in a reasonable size, we omit many technical details, and hope that this note can
be served as an introduction of the subject and motivation to read the book [11]
and recent developments.

This note is organized as follows: In Section 1, we explain the Atiyah–Singer
index theorem and the basic ideas on its local version: the local index theorem. In
Sections 2, 3, we show how to apply the ideas from the local index theory to give a
heat kernel approach of the holomorphic Morse inequalities and Berman kernels.

This note is based on the three lectures I gave in January 2018 in the work-
shop ‘International workshop on differential geometry’ at Sydney in celebration of
Professor Gang Tian’s 60th birthday.

Notations: we denote by dim or dimC the complex dimension of a complex
vector space. Denote also dimR the real dimension of a space. supp(f) means the
support of a function f .

1. Local index theorem

In this section, we review briefly the Chern–Weil theory, the Atiyah–Singer index
theorem for Dirac operators and the heat kernel proof of the local index theorem.

1.1. Chern–Weil Theory

Let X be a smooth manifold of dimension n. Let TX be its tangent bundle and
T ∗X its cotangent bundle. Let Ωk(X) = C∞(X,Λk(T ∗X)) be the space of smooth
k-forms on X and Ω•(X) = ⊕kΩ

k(X), and d : Ωk(X) → Ωk+1(X) be the exterior
differential operator.

Definition 1.1. Let E be a smooth manifold, and let π : E → X be a smooth map.
Then E is called a complex vector bundle overX if there exist a covering {Ui}li=1 of
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X and a family of diffeomorphisms φi : π
−1(Ui) → Ui × Cm, φi(v) = (π(v), ψi(v))

such that if Ui ∩ Uj �= ∅, then for x ∈ Ui ∩ Uj , ψji(x, ·) ∈ GL(m,C), i.e., an
invertible C-linear map on Cm, and is smooth on x, where ψji(x, ·) is given by

φj ◦ φ−1
i : (Ui ∩ Uj)× C

m → (Ui ∩ Uj)× C
m,

φj ◦ φ−1
i (x,w) = (x, ψji(x,w)). (1.1)

That is, if we write ψji(x,w) = ψji(x)w, then ψji(x) ∈ GL(m,C). For x ∈ X ,
Ex := π−1(x) is called the fiber of E at x. The integer m is called the rank of E
and is denoted by rk(E). If rk(E) = 1, then E is called a line bundle.

Denote by C∞(X,E) the space of smooth sections of E on X , i.e., the space
of smooth maps from X to E such that its composition with π is the identity map
on X . Denote by Ω•(X,E) := C∞(X,Λ(T ∗X) ⊗ E) the space of smooth forms
on X with values in E. We denote by C ∞(X,C) the space of smooth C-valued
functions on X .

Definition 1.2. Amap∇E : C ∞(X,E) → C∞(X,T ∗X⊗E) is called a connection if

1) ∇E is C-linear,
2) For any s ∈ C∞(X,E) and ϕ ∈ C∞(X,C),

∇E(ϕs) = dϕ⊗ s+ ϕ∇Es. (1.2)

A Hermitian metric hE on E is a family of Hermitian products hEx on Ex

which is smooth on x ∈ X . In this case, we call (E, hE) a Hermitian vector
bundle and as usual, we also denote hE by 〈 〉. A connection ∇E is a Hermitian
connection on (E, hE) if for any s1, s2 ∈ C ∞(X,E),〈∇Es1, s2

〉
+
〈
s1,∇Es2

〉
= d 〈s1, s2〉 . (1.3)

Let ∇E : C ∞(X,E) → C ∞(X,T ∗X ⊗ E) be a connection on E.

Definition 1.3. Let ∇E : Ωk(X,E) → Ωk+1(X,E) be the operator induced by ∇E

such that for any α ∈ Ωk(X) and s ∈ C∞(X,E),

∇E(α ∧ s) = dα ∧ s+ (−1)kα ∧ ∇Es. (1.4)

The operator (∇E)2 defines a homomorphism RE := (∇E)2 : E → Λ2(T ∗X)⊗ E.
The RE ∈ Ω2(X,End(E)) is called the curvature operator of ∇E .

Example. For E = C, the exterior differential d : Ωk(X,C) → Ωk+1(X,C) is a
connection on the trivial line bundle C and d2 = 0. The de Rham cohomology of
X is defined by

Hk(X,C) :=
Ker
(
d|Ωk(X,C)

)
Im
(
d|Ωk−1(X,C)

) , H•(X,C) =
n⊕

k=0

Hk(X,C). (1.5)

Theorem 1.4 (Chern–Weil). For f ∈ R[z], i.e., f is a real polynomial on z, set

F (RE) = Tr

[
f

(
i

2π
RE

)]
∈ Ω2•(X,C). (1.6)
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Then F (RE) is closed. Moreover, its cohomology class [F (RE)] ∈ H2•(X,R) and
it does not depend on the choice of the connection ∇E.

Proof. By the definition of RE , we have the Bianchi identity:[∇E , RE
]
=
[∇E , (∇E)2

]
= 0. (1.7)

Then

dF (RE) = dTr

[
f

(
i

2π
RE

)]
= Tr

[[
∇E , f

(
i

2π
RE

)]]
= 0. (1.8)

That is, F (RE) is closed.
Denote by π : X × R → X the natural projection. Let ∇E

0 ,∇E
1 be two

connections on E. Then

∇π∗E = (1− t)∇E
0 + t∇E

1 + dt ∧ ∂

∂t
(1.9)

is a connection on π∗E, the pullback of E over X×R. Set ∇E
t = (1− t)∇E

0 + t∇E
1 .

Its curvature RE
t = (∇E

t )
2 ∈ Ω2

(
X,End(E)

)
and Rπ∗E = (∇π∗E)2 = RE

t + dt ∧ ·,
thus there exists Qt ∈ Ω•(X) such that

F (Rπ∗E) = F (RE
t ) + dt ∧Qt. (1.10)

Applying (1.8) for π∗E, we get dX×RF (Rπ∗E) = 0. By (1.10) and comparing the
coefficient of dt in dX×RF (Rπ∗E) = 0, we obtain

∂

∂t
F (RE

t ) = dQt. (1.11)

Thus

F (RE
1 )− F (RE

0 ) = d

∫ 1

0

Qtdt, (1.12)

which implies [
F (RE

1 )
]
=
[
F (RE

0 )
] ∈ H2•(X,C). (1.13)

Finally, we can choose a Hermitian metric hE on E and a Hermitian connection

∇E on (E, hE), then i
2πR

E is self-adjoint with respect to hE , thus Tr
[
f
(

i
2πR

E
)]

is a real differential form, which implies that [F (RE)] ∈ H2•(X,R). The proof of
Theorem 1.4 is completed. �
Example. 1). For f(z) = ez, the Chern character form of (E,∇E) is

ch(E,∇E) = Tr

[
exp

(
i

2π
RE

)]
. (1.14)

The Chern character of E is

ch(E) :=
[
ch(E,∇E)

] ∈ H2•(X,R). (1.15)

The first Chern form of (E,∇E) is c1(E,∇E) = Tr
[

i
2πR

E
]
. Its cohomology class

is the first Chern class c1(E).
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2). For f(z) = log( z
1−e−z ), the Todd form of (E,∇E) is

Td(E,∇E) = det

[
i
2πR

E

1− e−
i

2πRE

]
= exp

{
Tr

[
log

(
i
2πR

E

1− e−
i

2πRE

)]}
. (1.16)

The Todd class of E is

Td(E) =
[
Td(E,∇E)

] ∈ H2•(X,R). (1.17)

3). Let gTX be a Riemannian metric on TX and ∇TX be the Levi-Civita connec-

tion on (X, gTX). The Â-form of (TX,∇TX) is

Â(TX,∇TX) = det1/2

[
i
4πR

TX

sinh
(

i
4πR

TX
)] . (1.18)

The Â-genus of TX is

Â(TX) =
[
Â(TX,∇TX)

] ∈ H4•(X,R). (1.19)

1.2. Atiyah–Singer index theorem

Let X be an n-dimensional compact spin manifold with n even (in particular, X
is orientable) and gTX be a Riemannian metric on X . Let S(TX) be the spinor
bundle of (TX, gTX). Then S(TX) is a Z2-graded vector bundle on X :

S(TX) = S+(TX)⊕ S−(TX). (1.20)

For U ∈ TX , let c(U) ∈ End(S(TX)) be the Clifford action of U on S(TX). We
will not explain in detail the Clifford action, but only recall that c(U) exchange
S+(TX) and S−(TX) and c(U)2 = −|U |2gTX .

The Levi-Civita connection∇TX on (X, gTX) induces canonically the Clifford

connection∇S(TX) = ∇S+(TX)⊕∇S−(TX) on S(TX), i.e., the connection preserves
the splitting (1.20) and compatible with the Clifford action:[

∇S(TX)
V , c(U)

]
= c
(∇TX

V U
)

for U, V ∈ C∞(X,TX). (1.21)

Let (E, hE) be a Hermitian vector bundle on X . Let ∇E be a Hermitian
connection on (E, hE). Denote by∇S(TX)⊗E the connection on S(TX)⊗E induced
by ∇S(TX) and ∇E .

Definition 1.5. The Dirac operator is defined by

D =

n∑
j=1

c(ej)∇S(TX)⊗E
ej : C∞(X,S±(TX)⊗ E) → C∞(X,S∓(TX)⊗ E),

(1.22)

where {ej} is an orthonormal frame of (TX, gTX).
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Let dvX be the Riemannian volume form on (X, gTX). For

s1, s2 ∈ C∞(X,S(TX)⊗ E),

their Hermitian product is defined as

〈s1, s2〉 =
∫
X

〈s1, s2〉 (x)dvX (x).

The Dirac operator D is a first-order self-adjoint elliptic differential operator. As
X is compact, D is a Fredholm operator, in particular, its kernel Ker(D) is a
finite-dimensional complex vector space.

Set

D± = D|C∞(X,S±(TX)⊗E).

Then under the decomposition (1.20),

D =

(
0 D−
D+ 0

)
, (1.23)

and D2 preserves C ∞(X,S±(TX) ⊗ E). As D is self-adjoint, CoKer(D+), the
cokernel of D+, is Ker(D−). Thus the index of D+ is defined by

Ind(D+) = dimKer(D+)− dimKer(D−) ∈ Z. (1.24)

Theorem 1.6 (Atiyah–Singer index theorem (1963)).

Ind(D+) =

∫
X

Â(TX)ch(E). (1.25)

1.3. Heat kernel and McKean–Singer formula

The heat kernel e−tD2

(x, y) is the smooth kernel of the heat operator e−tD2

with
respect to the Riemannian volume form dvX(y). The following result is well known.

Theorem 1.7. For any t > 0 and x, y ∈ X,

e−tD2

(x, y) =
∞∑
j=1

e−tλjψj(x)⊗ ψj(y)
∗, (1.26)

where ψj is a unit eigenfunction of D2 corresponding to the eigenvalue λj with 0 �
λ1 � λ2 � · · · , λj → +∞ such that {ψj}j form a complete orthonormal basis of
the space of L2-integrable sections, L2(X,S(TX)⊗E), and ψj(y)

∗ ∈ (S(TX)⊗E)∗y
is the metric dual of ψj(y), i.e.,

ψj(y)
∗(v) =

〈
v, ψj(y)

〉
for v ∈ (S(TX)⊗ E)y. (1.27)

Theorem 1.8 (McKean–Singer (1967)). For any t > 0, we have

Ind(D+) = Trs
[
e−tD2]

=

∫
X

Trs
[
e−tD2

(x, x)
]
dvX(x), (1.28)

where the supertrace Trs is given by

Trs = Tr
∣∣
C∞(X,S+(TX)⊗E)

− Tr
∣∣
C∞(X,S−(TX)⊗E)

. (1.29)
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Proof. By (1.26),

lim
t→+∞ e−tD2

(x, x) =
∑
λj=0

ψj(x)⊗ ψj(x)
∗,

which implies

lim
t→+∞Trs

[
e−tD2]

= Ind(D+). (1.30)

Then it suffices to prove that Trs
[
e−tD2]

is independent of t > 0. In fact,

∂

∂t
Trs
[
e−tD2]

=− Trs
[
D2e−tD2]

=− 1

2
Trs

[[
De−tD2/2, De−tD2/2

]]
= 0.

(1.31)

Here for a Z2-graded vector space E = E+ ⊕ E−, the Z2-grading on End(E) is
given by

End(E)+ = Hom(E+, E+)⊕Hom(E−, E−),

End(E)− = Hom(E+, E−)⊕Hom(E−, E+),
(1.32)

and [·, ·] is the supercommutator of End(E), i.e.,

[A,B] =

{
AB −BA if A or B ∈ End(E)+,
AB +BA if A,B ∈ End(E)−. (1.33)

Then we verify easily as for matrices that Trs
[
[A,B]

]
= 0. This completes the

proof of Theorem 1.8. �

When t→ 0, classically the following asymptotic expansion of the heat kernel
holds for any k ∈ N:

e−tD2

(x, x) =

k∑
j=−l

aj(x)t
j + O(tk+1) uniformly on X, (1.34)

where l = n/2 and the coefficients aj(x) depend only on the restriction of D2

on BX(x, ε), the ball in X of center x and radius ε for any ε > 0. Then the
McKean–Singer formula implies that∫

X

Trs
[
aj(x)

]
dvX(x) =

{
0 for j < 0,

Ind(D+) for j = 0.
(1.35)

McKean–Singer conjectured that in fact a pointwise version of (1.35) holds,
which they called the “miraculous cancellation”. The solution of this conjecture is
called the local index theorem stated as follows. For α ∈ Ω(X), we denote αmax

the degree n component of the differential form α.
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Theorem 1.9 (Local index theorem).

Trs
[
aj(x)

]
dvX(x) =

⎧⎨⎩0 for j < 0,{
Â(TX,∇TX) ch(E,∇E)

}max

x
for j = 0.

(1.36)

Equivalently,

lim
t→0

Trs
[
e−tD2

(x, x)
]
dvX(x) =

{
Â(TX,∇TX) ch(E,∇E)

}max

x
. (1.37)

By Theorems 1.8 and 1.9, we get the Atiyah–Singer index theorem, Theo-
rem 1.6.

Remark 1.10. Using the Bott periodicity theorem inK-theory, we obtain the index
theorem for any elliptic operator P on X :

Ind(P ) =

∫
T∗X

Â(TX)2 ch
(
σ(P )

)
. (1.38)

Here σ(P ) is the principal symbol of P , which can be understood as an element
in K(T ∗X), the K-group of T ∗X .

1.4. Proof of the local index theorem

The proof presented here consists of Bismut–Lebeau’s analytic localization tech-
niques [3, §11] and Getzler rescaling trick. We need to compute the limit as t→ 0,

lim
t→0

Trs
[
e−tD2

(x, x)
]
dvX(x).

Step 1. The asymptotic of e−tD2

(x, x) is local, i.e., only depends on the restriction
of D2 on any neighborhood of x.

Recall

e−a2/2 =

∫ +∞

−∞
cos(va)e−v2/2 dv√

2π
, for any a ∈ R. (1.39)

Thus for the heat operator e−tD2

, we have

e−tD2

=

∫ +∞

−∞
cos
(
v
√
2tD
)
e−v2/2 dv√

2π
. (1.40)

We can formally verify (1.40) from (1.39) as D2 is an infinite-dimensional diagonal

matrix. Rigorously, the wave operator cos
(
v
√
2tD
)
is given by

cos
(
vD
)
(x, y) =

∑
j
cos(v

√
λj)ψj(x) ⊗ ψj(y)

∗. (1.41)

In fact, wt(x) = cos
(
tD
)
(x, ·) is the fundamental solution of the equation(

∂2

∂t2
+D2

)
wt(x) = 0 (1.42)

with the initial conditions

lim
t→0

wtφ = φ, for any φ ∈ L2(X,S(TX)⊗ E). (1.43)
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Using the energy estimates, we obtain the property of the finite propagation speed
for the wave operator cos

(
tD
)
:

supp cos
(
tD
)
(x, ·) ⊂ BX(x, t) (1.44)

and cos
(
tD
)
(x, ·) depends only on D2|BX (x,t).

Let f : R → [0, 1] be a smooth even function such that f(v) = 1 for |v| � ε/2
and that f(v) = 0 for |v| � ε. For u > 0, set Fu(a), Gu(a) even functions on R

defined by

Fu(a) =

∫ +∞

−∞
cos(va)e−v2/2f(

√
uv)dv

/√
2π,

Gu(a) =

∫ +∞

−∞
cos(va)e−v2/2

(
1− f(

√
uv)
)
dv
/√

2π.

(1.45)

Clearly, from (1.39) and (1.45),

Fu(a) +Gu(a) = e−a2/2. (1.46)

From (1.44),

suppFu

(√
uD
)
(x, ·) ⊂ BX(x, ε). (1.47)

Clearly, from (1.45),

Gu

(√
ua
)
=

∫
|v|�ε/2

eiva exp

(
− v2

2u

)(
1− f(v)

) dv√
2πu

. (1.48)

Then

amGu

(√
ua
)
= im

∫
|v|�ε/2

eiva
∂m

∂vm

[
exp

(
− v2

2u

)(
1− f(v)

)] dv√
2πu

=

∫
|v|�ε/2

eiva exp

(
− v2

2u

) m∑
j=0

∂j

∂vj
(
1− f(v)

)
Pj

(
1

u
, v

)
dv√
2πu

, (1.49)

where Pj(
1
u , v) are polynomials on 1

u and v. Thus, there exists C > 0 such that
for u ∈ (0, 1], ∣∣∣amGu

(√
ua
)∣∣∣ � C e−

ε2

16u , for any a ∈ R. (1.50)

Again from (1.50) in view of D2 as a diagonal matrix, we get the estimate of
operator norm ‖ · ‖0,0 from L2 to L2 as∥∥∥DmGu

(√
uD
)∥∥∥0,0 � C e−

ε2

16u . (1.51)

Using Sobolev inequalities and (1.51), we obtain uniformly on x, y ∈ X ,∣∣∣Gu

(√
uD
)
(x, y)

∣∣∣ � c1e
−c2/u. (1.52)
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This concludes that the asymptotic expansion of e−tD2

(x, x) is local! Note

that the heat operator e−tD2

is defined globally by means of eigenvalues and eigen-
functions of D2.

Step 2. Replace X by Rn, we work on Rn. Fix x0 ∈ X . We identify BTx0X(0, 4ε) to
BX(x0, 4ε) by the exponential map: v → expx0

(v). For Z ∈ BTx0X(0, 4ε) ⊂ Tx0X ,
we identify S(TX)Z, EZ to S(TX)x0, Ex0 by parallel transport with respect
to ∇S(TX), ∇E along the path γ : [0, 1] → X, γ(s) = sZ. Then we extend
D2|BTx0X (0,2ε) to an operator on R

n which is the canonical (positive) Laplacian

outside BTx0X(0, 4ε).

Step 3. Rescaling. Set Ex0 = (S(TX)⊗ E)x0 . For s ∈ C∞
0 (Rn,Ex0), Z ∈ Rn, set(

Sts
)
(Z) = s

(
Z√
t

)
, Lt

2 = S−1
t tD2St. (1.53)

Let {ej}nj=1 be an oriented orthonormal basis of Tx0X . For 1 � j � n, t ∈ (0, 1],
set

ct(ej) =
1√
t
ej ∧ −√

t iej ∈ End
(
Λ(T ∗

x0
X)
)
. (1.54)

Let Lt
3 be the operator obtained from Lt

2 by replacing c(ej) by ct(ej) in the explicit
formula of the operator Lt

2. Then L
t
3 acts on C∞(Rn, (Λ(T ∗X)⊗E)x0). We claim

that as t→ 0,

Trs

[
e−tD2

(x0, x0)
]
= (−2i)n/2 Tr

∣∣∣
E

[
e−Lt

3(0, 0)
]max

+O(e−c/t), (1.55)

which follows from the simple linear algebra identity: for 1 � i1 < · · · < ij � n,

Trs

∣∣∣
S(TX)

[
c(ei1) · · · c(eij )

]
=

{
0 if j < n = 2l,

(−2i)n/2 if j = n,
(1.56)

and thus

Trs

[
e−Lt

2(0, 0)
]
= (−2i)n/2tn/2 Tr

∣∣∣
E

[
e−Lt

3(0, 0)
]max

. (1.57)

Theorem 1.11. As t→ 0,

Lt
3 → L0

3 = −
n∑

j=1

[
∂

∂Zj
+

1

4

〈
RTX

x0
Z,

∂

∂Zj

〉]2
+RE

x0
. (1.58)

The following Lichnerowicz formula allows us to obtain (1.58):

D2 = Δ+
1

4
rX + cRE , (1.59)

where Δ is the (positive) Bochner Laplacian on S(TX) ⊗ E associated with the
connection ∇S(TX)⊗E , and rX is the scale curvature of (X, gTX) and for {ej}nj=1
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an orthonormal frame of (X, gTX),

cRE =
1

2

n∑
i,j=1

RE(ei, ej)c(ei)c(ej). (1.60)

By using weighted Sobolev norm adapted from the structure of the operator
Lt
3, we can obtain as t→ 0,

e−Lt
3(0, 0) → e−L0

3(0, 0). (1.61)

By Mehler’s formula, we get

e−tL0
3(Z,Z ′) = (4π)−n/2 exp(−tRE

x0
)det1/2

[
RTX

x0

etR
TX
x0

/2 − e−tRTX
x0

/2

]
(1.62)

× exp

{〈
− RTX

x0
/4

2 tanh(tRTX
x0

/2)
Z,Z

〉
−
〈

RTX
x0

/4

2 tanh(tRTX
x0

/2)
Z ′, Z ′

〉

+

〈
etR

TX
x0

/4RTX
x0

/4

2 sinh(tRTX
x0

/2)
Z,Z ′

〉}
.

In particular,

e−L0
3(0, 0) = (4π)−n/2det1/2

[
RTX

x0

eR
TX
x0

/2 − e−RTX
x0

/2

]
exp(−RE

x0
). (1.63)

Combining (1.55), (1.61) and (1.63), we obtain

lim
t→0

Trs
[
e−tD2

(x0, x0)
]
dvX(x0)

= (−2i)n/2Tr
∣∣∣
E

[
e−L0

3(0, 0)
]max

= (−2i)n/2(4π)−n/2

{
det1/2

[
RTX

x0

eR
TX
x0

/2 − e−RTX
x0

/2

]
Tr
[
e−RE

x0

]}max

=

{
det1/2

[
RTX

x0

/
(2πi)

eR
TX
x0

/(4πi) − e−RTX
x0

/(4πi)

]
Tr

[
exp

(
−R

E
x0

2πi

)]}max

=
{
Â(TX,∇TX) ch(E,∇E)

}max

.

(1.64)

This completes the proof of (1.37). Then we finish the proof of the Atiyah–Singer
index theorem. �

2. Holomorphic Morse inequalities

Let (X, J) be a compact complex manifold with complex structure J and dimCX =
n. Then we can identify the holomorphic tangent bundle T (1,0)X (resp. anti-
holomorphic tangent bundle T (0,1)X) as the eigenspace of J with eigenvalue i
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(resp. −i) on TX ⊗R C. Let T ∗(0,1)X be the anti-holomorphic cotangent bundle
of X . Then formally,

Λ(T ∗(0,1)X) = S(TX)⊗ (detT (1,0)X)1/2, (2.1)

here detF = Λrk(F )F as the determinant line bundle of a vector bundle F .

If E is a holomorphic vector bundle on X . Let

Ω0,•(X,E) = C∞(X,Λ•(T ∗(0,1)X)⊗ E)

be the space of anti-holomorphic differential forms on X with values in E. Then
as in (1.4), we can define the Dolbeault operator

∂
E
: Ω0,k(X,E) → Ω0,k+1(X,E)

by using ∂
E
on C ∞(X,E) induced by the holomorphic structure on E. Moreover,(

∂
E)2

= 0. Denote by H•(X,E) the Dolbeault cohomology of X with values in
E, i.e.,

Hq(X,E) =
Ker(∂

E |Ω0,q(X,E))

Im(∂
E |Ω0,q−1(X,E))

. (2.2)

Let gTX be a J-invariant metric on TX and hE be a Hermitian metric on E.
Then they induce naturally an L2-Hermitian product on Ω0,•(X,E) via

〈s1, s2〉 =
∫
X

〈s1, s2〉(x)dvX (x). (2.3)

Let ∂
E,∗

be the formal adjoint of ∂
E
, and

D =
√
2
(
∂
E
+ ∂

E,∗)
. (2.4)

Then

D2 = 2
(
∂
E
∂
E,∗

+ ∂
E,∗

∂
E)
. (2.5)

Thus D2 preserves the Z-grading on Ω0,•(X,E). By Hodge theory, we have

Ker
(
D2|Ω0,q(X,E)

) � Hq(X,E) for any q. (2.6)

Remark 2.1. If (X, gTX) is Kähler and (E, hE) is a holomorphic Hermitian vec-

tor bundle on X with Chern connection ∇E , i.e., the (0, 1)-part of ∇E is ∂
E

and ∇E is Hermitian, then D in (2.4) is the Dirac operator in (1.22) acting on
Λ•(T ∗(0,1)X)⊗ E.

Theorem 2.2 (Riemann–Roch–Hirzebruch Theorem).

n∑
j=0

(−1)j dimHj(X,E) =

∫
X

Td(T (1,0)X) ch(E). (2.7)
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If X is projective, then Theorem 2.2 is the original Riemann–Roch–Hirze-
bruch theorem. If X is only a compact complex manifold, then (2.7) is a con-
sequence of the Atiyah–Singer index theorem for the Spinc Dirac operator and
(2.6).

Question: How to estimate dimHq(X,E) in geometric way? If it is not possible,
then at least asymptotically?

The following Theorem 2.3 gives a positive answer to the above question. It
is an analogue of the classical Morse inequalities: For a Morse function f on a
compact manifold M , let Cj(f) be the number of critical points of f with index
j, then

q∑
j=0

(−1)q−j dimHj(M,C) �
q∑

j=0

(−1)q−jCj(f) for any 0 ≤ q ≤ dimRM. (2.8)

Let L be a holomorphic Hermitian line bundle on X . Set Lp = L⊗p, the pth
tensor power of L. For 0 � j � n, set

Bp
j = dimHj(X,Lp ⊗ E). (2.9)

Let hL be a Hermitian metric on L and ∇L be the Chern connection on (L, hL)

with curvature RL = (∇L)2. We define ṘL
x ∈ End(T

(1,0)
x X) by

〈ṘLu, v〉 = RL(u, v). (2.10)

Set

X(q) =
{
x ∈ X : iRL

x non-degenerate, ṘL
x has exactly q negative eigenvalues

}
,

X(� q) = ∪k�qX(k). (2.11)

Theorem 2.3 (Demailly). As p → +∞, the following strong Morse inequalities
hold for every q = 0, 1, . . . , n:

q∑
j=0

(−1)q−jBp
j � rk(E)

pn

n!

∫
X(�q)

(−1)q
(
i

2π
RL

)n

+ o(pn) , (2.12)

with equality for q = n. In particular, we get the weak Morse inequalities

Bp
j � rk(E)

pn

n!

∫
X(q)

(−1)q
(
i

2π
RL

)n

+ o(pn). (2.13)

In 1987, Bismut gave a heat kernel proof of Demailly’s holomorphic Morse
inequalities by using probability theory. Here we gave a heat kernel proof by using
Bismut–Lebeau’s analytic localization techniques in local index theory [3, §11].
The starting point is the following analogue of the McKean–Singer formula in
current context obtained first by Bismut [2]. As in (2.4), set

Dp =
√
2
(
∂
Lp⊗E

+ ∂
Lp⊗E,∗)

. (2.14)
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Theorem 2.4. For any u > 0, 0 � q � n, we have
q∑

j=0

(−1)q−jBp
j �

q∑
j=0

(−1)q−j Trj

[
e−

u
pD2

p

]
, (2.15)

with equality for q = n. Again Trj

[
e−

u
pD2

p

]
is the trace of e−

u
pD2

p on Ωj(X,Lp⊗E)

which is given by

Trj [e
−u

pD2
p ] =

∫
X

Tr |Λj(T∗(0,1)X)⊗Lp⊗E

[
e−

u
pD2

p(x, x)
]
dvX(x). (2.16)

Note that

e−
u
p D2

p(x, y) ∈
n⊕

j=0

Ej
p,x ⊗ Ej,∗

p,y, with Ej
p = Λj(T ∗(0,1)X)⊗ Lp ⊗ E. (2.17)

As End(L) = C, thus

e−
u
pD2

p(x, x) ∈
n⊕

j=0

End
(
Λj(T ∗(0,1)X)⊗ E

)
x
.

Theorem 2.5 (Bismut). For u > 0 fixed, as p→ +∞, we have

exp

(
−u
p
D2

p

)
(x, x) = (2π)−n det(ṘL) exp(2uωd)

det(1− exp(−2uṘL))
⊗ IdE pn + o(pn)

=

n∏
j=1

aj(x)
(
1 + (e−2uaj(x) − 1)wj ∧ iwj

)
2π(1− e−2uaj(x))

⊗ IdE pn + o(pn) ,

(2.18)

where we choose an orthonormal basis wj of T (1,0)X such that

ṘL(x) = diag(a1(x), . . . , an(x)) ∈ End(T (1,0)
x X), (2.19)

and

ωd = −
n∑

j=1

aj(x)w
j ∧ iwj . (2.20)

If ω(·, J ·) = gTX(·, ·), then aj(x) = 2π.

Proof. Bismut used probability theory to prove the result. Our proof is based on
the analytic localization techniques of Bismut–Lebeau.

Step 1. The problem is local! Recall that from (1.50) there exists C > 0 such that∣∣∣akGu(
√
ua)
∣∣∣ � Ce−

ε2

16u , for any u ∈ (0, 1], a ∈ R. (2.21)

Thus for u > 0 fixed, there exists Ck > 0 such that for p ∈ N,∥∥∥∥Dk
pGu

p

(√
u

p
Dp

)∥∥∥∥0,0 � Cke
− ε2p

32u . (2.22)
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Once we study carefully the Sobolev embedding theorem with parameter p, from
(2.22) we know that there exist c1 > 0, c2 > 0 such that for any x, y ∈ X ,∣∣∣∣Gu

p

(√
u

p
Dp

)
(x, y)

∣∣∣∣ � c1e
−c2p. (2.23)

But supp Fu
p

(√
u
pDp

)
(x, ·) ⊂ B(x, ε) and Fu

p

(√
u
pDp

)
(x, ·) only depends on the

restriction of Dp to B(x, ε).

Step 2. Replace X by R2n � Cn, we work on Cn.

Fix x0 ∈ X . We identify BTx0X(0, 4ε) to BX(x0, 4ε) by the exponential map:

v → expx0
(v). For Z ∈ BTx0X(0, 4ε) ⊂ Tx0X , we identify Λ•(T ∗(0,1)

Z X), LZ and

EZ to Λ•(T ∗(0,1)
x0 X), Lx0 and Ex0 by parallel transport with respect to ∇B,Λ0,∗

, ∇L

and ∇E along the path γ : [0, 1] → X, γ(s) = sZ, where ∇B,Λ0,∗
is the connection

on Λ•(T ∗(0,1)X) induced by the Bismut connection ∇B on T (1,0)X , in particular,
it preserves the Z-grading on Λ•(T ∗(0,1)X).

Step 3. Rescaling. Once we trivialized L we can consider that D2
p acts on

C∞(R2n,Ex0) with Ex0 = (Λ•(T ∗(0,1)X)⊗E)x0 . For s ∈ C∞(R2n,Ex0), Z ∈ R
2n

and t = 1√
p , set (

Sts
)
(Z) = s

(
Z

t

)
, Lt

2 = S−1
t

1

p
D2

pSt. (2.24)

Then as t→ 0, with τx0 =
∑n

j=1 aj(x0),

Lt
2 → L0

2 = −
2n∑
j=1

[
∂

∂Zj
+

1

2
RL

x0

(
Z,

∂

∂Zj

)]2
− 2ωd,x0 − τx0 . (2.25)

Again (2.25) is obtained from the Lichnerowicz formula forD2
p obtained by Bismut:

D2
p = ΔB,Λ0,∗

+ p cRL + 0-order term independent of p, (2.26)

and ΔB,Λ0,∗
is the Bochner Laplacian acting on C∞(X,Ep) associated with∇B,Λ0,∗

,
∇L and ∇E .

From the finite propagation speed for the wave operator, for u > 0 fixed, we
obtain as p→ +∞,

e−
u
pD2

p(x0, x0) = pne−uLt
2(0, 0) + O(e−cp). (2.27)

By using weighted Sobolev norms adapted from the structure of the operator Lt
2,

we get

Theorem 2.6. As t→ 0,

e−uLt
2(0, 0) → e−uL0

2(0, 0). (2.28)
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Finally, from (1.62) and (2.25), we get

e−uL0
2(0, 0) = (2π)−n det(ṘL

x0
)e2uωd,x0

det(1− e−2uṘL
x0 )

. (2.29)

From Theorem 2.4, (2.27)–(2.29), as p→ +∞,

q∑
j=0

(−1)q−jBp
j

�
q∑

j=0

(−1)q−j

∫
X

Tr |Λj(T∗(0,1)X)⊗E

[
(2π)−n det(ṘL

x0
)e2uωd,x0

det(1 − e−2uṘL
x0 )

⊗ IdE

]
dvX(x) · pn

+ o(pn). (2.30)

One can verify directly that

lim
u→+∞

∫
X

Tr |Λj(T∗(0,1)X)

[
(2π)−n det(ṘL

x0
)e2uωd,x0

det(1− e−2uṘL
x0 )

]
dvX(x)

=

∫
X(j)

(−1)j
1

n!

(
iRL

2π

)n

.

(2.31)

Combining (2.30) and (2.31) yields (2.12). �

3. Bergman kernels

3.1. Asymptotic expansion of Bergman kernels

Let (X, J) be a compact complex manifold with complex structure J and dimCX =
n. Let (L, hL), (E, hE) be holomorphic Hermitian vector bundles onX and rk(L) =
1. Let ∇L be the Chern connection on (L, hL) with curvature

RL = (∇L)2 ∈ Ω1,1(X,End(L)) = Ω1,1(X,C). (3.1)

Assumption: ω = i
2πR

L is positive (equivalently, w(·, J ·) defines a metric on TX).

By the Kodaira vanishing theorem, we have for any q > 0,

Hq(X,Lp ⊗ E) = 0 for p� 1. (3.2)

Let gTX be any J-invariant Riemannian metric on TX . Let Pp be the or-
thogonal projection from C∞(X,Lp⊗E) onto H0(X,Lp⊗E). Its smooth kernel is

Pp(x, y) =

dp∑
i=1

Sp
i (x)⊗ (Sp

i (y))
∗ ∈ (Lp ⊗ E)x ⊗ (Lp ⊗ E)∗y, (3.3)

where {Sp
i }dp

i=1 (dp := dimH0(X,Lp ⊗E)) is an orthonormal basis of H0(X,Lp ⊗
E). In particular,

Pp(x, x) ∈ End(Lp ⊗ E)x = End(E)x. (3.4)
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If E = C, then

Pp(x, x) =

dp∑
i=1

|Sp
i (x)|2 : X → [0,+∞). (3.5)

By the Riemann–Roch–Hirzebruch theorem and (3.2), we have for p large enough,∫
X

Tr |E [Pp(x, x)]dvX (x) = dimH0(X,Lp ⊗ E) =

∫
X

Td(T (1,0)X) ch(Lp ⊗ E)

=

∫
X

Td(T (1,0)X) ch(E)epω = rk(E)

∫
X

c1(L)
n

n!
pn (3.6)

+

∫
X

(
c1(E) +

rk(E)

2
c1(T

(1,0)X)

)
c1(L)

n−1

(n− 1)!
pn−1 + O(pn−2).

Question: Whether as p→ +∞,

Tr |E [Pp(x, x)]dvX (x) = Td(T (1,0)X,∇T (1,0)X) ch(E,∇E)xe
pωx + O(p−∞), (3.7)

where ∇T (1,0)X is the Chern connection on (T (1,0)X, gTX).
The following is a local version of the expansion.

Theorem 3.1 (Tian, Ruan, Catlin, Zelditch, Boutet de Monvel–Sjöstrand, Dai–
Liu–Ma, Ma–Marinescu, . . . ). There exist bj ∈ C∞(X,End(E)) such that for any
k, as p→ +∞, we have uniformly on X,

p−nPp(x, x) =

k∑
j=0

bj(x)p
−j + O(p−k−1), (3.8)

with

b0 = det(ṘL/(2π)) IdE . (3.9)

The Kodaira embedding theorem shows that for p� 1, Lp give rise to holo-
morphic embeddings Φp : X → P(H0(X,Lp)∗). Moreover, Lp = Φ∗

pO(1) and

hL
p

(x) = Pp(x, x)h
Φ∗

pO(1)(x) (cf. [11, Theorem 5.1.3]). Here O(1) is the hyper-

plane line bundle on P(H0(X,Lp)∗) with the metric hO(1) induced naturally from
the Hermitian product on H0(X,Lp). Thus

1

p
Φ∗

pωFS − ω = − i

2πp
∂∂ logPp(x, x). (3.10)

Where ωFS is the Fubini–Study form on the projective space P(H0(X,Lp)∗).
From (3.8) and (3.10), we know that the induced Fubini–Study forms via

Kodaira embedding maps Φp is dense in the space of Kähler form in the Kähler
class c1(L). More precisely,

Corollary 3.2 (Tian, Ruan). For k > 0, there exists C > 0 such that∣∣∣1
p
Φ∗

p(ωFS
)− ω

∣∣∣
Ck

� C

p
· (3.11)
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Ruan improved Tian’s asserting convergence in C 2 topology with speed rate p−1/2.
The optimal convergence speed of the induced Fubini–Study forms in the symplec-
tic case was obtained in [9].

3.2. Proof of the asymptotic expansion of Bergman kernels

In this subsection, we obtain the asymptotic behavior of Pp(x, y) as p→ +∞ via
the analytic localization techniques of Bismut–Lebeau [3, §11]. The method also
works in the symplectic case by Dai–Liu–Ma [6], also Ma–Marinescu [12]. The
starting point of the approach is the following spectral gap result.

Theorem 3.3 (Bismut–Vasserot (1989); Ma–Marinescu, symplectic version (2002)).
There exists C > 0 such that for any p ∈ N∗,

Spec(D2
p) ⊂ {0} ∪ [2pμ0 − C,+∞), (3.12)

where

μ0 = inf
x∈X,

0
=u∈T (1,0)
x X

RL(u, u)

|u|2 . (3.13)

If w(·, J ·) = gTX , then μ0 = 2π.

Proof of Theorem 3.1. We divide the proof into three steps.

Step 1. The problem is local, i.e., module O(p−∞), Pp(x0, ·) depends only on
Dp|BX (x0,ε). Let f : R → [0, 1] be a smooth even function such that f(v) = 1 for
|v| � ε/2 and that f(v) = 0 for |v| � ε. Take

F (a) =

(∫ +∞

−∞
f(v)dv

)−1 ∫ +∞

−∞
eivaf(v)dv. (3.14)

Then F (0) = 1 and for p > C/μ0,

Pp = F (Dp)− 1[√pμ0,+∞)(|Dp|)F (Dp). (3.15)

On one hand, by the finite propagation speed of solutions of wave equations, we
have suppF (Dp)(x0, ·) ⊂ BX(x0, ε) and F (Dp)(x0, ·) depends only on Dp|BX (x0,ε).
On the other hand, as

sup
a∈R

|a|m|F (a)| � Cm, (3.16)

which implies that the smooth kernel of the operator 1[√pμ0,+∞)(|Dp|)F (Dp) has
the following property: as p→ +∞,

1[√pμ0,+∞)(|Dp|)F (Dp)(x, y) = O(p−∞). (3.17)

As F (Dp)(x, y) = 0 if d(x, y) > ε, where d( , ) is the Riemannian distance on
(X, gTX). Thus we know that if d(x, y) > ε, then

Pp(x, y) = O(p−∞). (3.18)

Step 2. We replace X by R2n =: X0. We identify BTx0X(0, 4ε) in Tx0X to
BX(x0, 4ε) by the exponential map: v → expx0

(v). For Z ∈ BTx0X(0, 4ε) ⊂ Tx0X ,
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we identify Λ(T
∗(0,1)
Z X), LZ and EZ to Λ(T

∗(0,1)
x0 X), Lx0 and Ex0 by parallel trans-

port with respect to ∇B,Λ0,∗
, ∇L and ∇E along the path γ : [0, 1] → X, γ(s) = sZ.

Step 3. Rescaling. Let ρ : R → [0, 1] be a smooth even function such that

ρ(v) = 1 if |v| < 2; ρ(v) = 0 if |v| > 4. (3.19)

Set ϕε(Z) = ρ(|Z|/ε)Z. For the trivial vector bundle L0 := (Lx0 , h
Lx0 ), we defined

a Hermitian connection on X0 := Tx0X by

∇L0 |Z = ϕ∗
ε∇L +

1

2
(1− ρ2(|Z|/ε))RL

x0
(Z, ·). (3.20)

The important observation is that the curvature (∇L0)2 of ∇L0 is uniformly pos-
itive on R2n and its small eigenvalues in the sense of (3.13) is bigger than 4

5μ0 for
ε small enough. We obtain a modified Dirac operator D0,p on X0 with

Spec(D2
0,p) ⊂ {0} ∪

[
8

5
pμ0 − C,+∞

)
. (3.21)

Denote by P0,p the orthogonal projection from L2(X0, E0,p) onto Ker(D2
0,p). Then

Pp = P0,p + O(p−∞). (3.22)

For large p, we have

P0,p = e−
u
pD2

0,p − e−
u
pD2

0,p1(pμ0,+∞)(D
2
0,p)

= e−
u
pD2

0,p −
∫ ∞

u

1

p
D2

0,pe
− v

pD2
0,pdv.

(3.23)

Then for u fixed we have the asymptotic expansion of e−
u
pD2

0,p and

1

p
D2

0,pe
−u

pD2
0,p = O(e−cu).

This indicates that we can approximate the Bergman kernel by using heat kernels.
The detail of this approach was first realized by Dai–Liu–Ma in [6] by using the
analytic localization techniques of Bismut–Lebeau. In fact they obtain the full
asymptotics of Pp(x, y) as p→ +∞. This approach works for the symplectic case,
also the singular case with orbifold singularities. Ma–Marinescu [8, 11, 13, 14] use
this kind of expansion to establish the Berezin–Toeplitz geometric quantization
theory in symplectic case. The Berezin–Toeplitz theory has played an important
role in the recent works on the asymptotics of analytic torsions [4], [15]. �

3.3. Coefficients of the asymptotic expansion of Bergman kernels

In the last part, we explain how to compute the coefficient in the expansion.
For t = 1√

p , set(
Sts
)
(Z) = s

(
Z

t

)
, Lt = S−1

t

1

p
D2

0,pSt. (3.24)
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Then the Taylor expansion of Lt gives

Lt = L0 +
k∑

r=1

trOr + O(tk+1), (3.25)

where under the notation of (2.20),

L0 =
∑
j

(
−2 ∂

∂zj
+

1

2
ajzj

)(
2 ∂
∂zj

+
1

2
ajzj

)
+ 2ajw

j ∧ iwj . (3.26)

Set

bj = −2 ∂
∂zj

+
1

2
ajzj , b+j = 2 ∂

∂zj
+

1

2
ajzj , L =

∑
j

bjb
+
j . (3.27)

Then

L0 = L − 2ωd,x0 = L + 2
∑
j

ajw
j ∧ iwj . (3.28)

One verifies directly that for the spectrum of L ,

Spec(L |L2(R2n)) =
{
2
∑n

j=1
αjaj : α = (α1, . . . , αn) ∈ N

n
}
, (3.29)

and that an orthogonal basis of the eigenspace of 2
∑n

j=1 αjaj is given by

bα
(
zβ exp

(
−1

4

∑
j
aj |zj |2

))
, with β ∈ N

n . (3.30)

Thus

Ker(L ) =

{
zβ exp

(
−1

4

∑
j
aj|zj |2

)
, with β ∈ N

n

}
. (3.31)

The orthogonal projection from L2(R2n,C) onto Ker(L ) is the classical Bergman
kernel on C

n associated with the trivial line bundle with metric

|1|hL(Z) = exp

(
−1

4

∑
j
aj |zj|2

)
. (3.32)

The classical Bergman kernel is given by

P(Z,Z ′) =
n∏

j=1

aj
2π

exp

(
−1

4

∑
j
aj
(|zj|2 + |z′j |2 − 2zjz

′
j

))
. (3.33)

As all our operators preserve Z-grading of Ex0 and the degree � 1 part
is zero. We can restrict all the following computation on 0-degree part, i.e., on
C∞(X0, Ex0).

Let P0,t be the spectral projection

P0,t : L
2(X0, Ex0) → Ker(Lt)
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and P0,t(Z,Z) the smooth kernel of P0,t. From (3.25), by the formal expansion of
the resolvent for |λ| = μ0/4

(λ − Lt)
−1 =

∞∑
r=0

trfr(λ), (3.34)

we obtain as t→ 0,

P0,t =
1

2πi

∫
|λ|=μ0/4

(λ− Lt)
−1dλ = PN +

1

2πi

k∑
r=1

tr
∫
|λ|=μ0/4

fr(λ)dλ + O(tk+1),

(3.35)

with PN = P IdE . Then from (3.24)

P0,p(Z,Z
′) = t−2nP0,t

(
Z

t
,
Z ′

t

)
. (3.36)

From (3.22) and (3.36), the kernel of the coefficient of tr in (3.35) gives the co-
efficient of p−r/2 in the off-diagonal expansion of p−nPp(Z,Z

′) by Dai–Liu–Ma,
Ma–Marinescu. In particular, bj in (3.8) is given by the evaluation of the kernel
of the coefficient of t2j in (3.35) at (0, 0).

Remark 3.4. In the Kähler case, i.e., ω(·, J ·) = gTX(·, ·), then all aj = 2π,

O1 = 0,

and

b1(x) =
(− L −1O2P

N − PNO2L
−1
)
(0, 0) =

1

8π

[
rX + 4RE(wj , wj)

]
, (3.37)

here {wj} is an orthonormal basis of T
(1,0)
x0 X and rX is the scalar curvature of

(X, gTX). Note that in the Kähler case, b1 was obtained first by Lu and Wang by
using the pick section trick in complex analysis as in [16].
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