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Berezin-Toeplitz quantization and its kernel expansion

by Xiaonan Ma and George Marinescu

Abstract

We survey recent results [33, 34, 35, 36] about the asymptotic expansion
of Toeplitz operators and their kernels, as well as Berezin-Toeplitz quan-
tization. We deal in particular with calculation of the first coefficients of
these expansions.
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1 Introduction

The aim of the geometric quantization theory of Kostant and Souriau is to relate
the classical observables (smooth functions) on a phase space (a symplectic mani-
fold) to the quantum observables (bounded linear operators) on the quantum space
(sections of a line bundle). Berezin-Toeplitz quantization is a particularly efficient
version of the geometric quantization theory [2, 3, 19, 25, 40]. Toeplitz operators
and more generally Toeplitz structures were introduced in geometric quantization
by Berezin [3] and Boutet de Monvel-Guillemin [9]. Using the analysis of Toeplitz
structures [9], Bordemann-Meinrenken-Schlichenmaier [7] and Schlichenmaier [38]
gave asymptotic expansion for the composition of Toeplitz operators in the Kähler
case.

The expansions we will be considering are asymptotic expansions relative to
the high power p of the quantum line bundle. The limit p → ∞ is interpreted
as semi-classical limit process, where the role of the Planck constant is played by
~ = 1/p.

The purpose of this paper is to review some methods and results concerning
Berezin-Toeplitz quantization which appeared in the recent articles [34, 35, 36]
and in the book [33]. Our approach is based on kernel calculus and the off-
diagonal asymptotic expansion of the Bergman kernel. This method allows not
only to derive the asymptotic expansions of the Toeplitz operators but also to
calculate the first coefficients of the various expansions. Since the formulas for
the coefficients encode geometric data of the manifold and prequantum bundle
they found extensive and deep applications in the study of Kähler manifolds (see
e.g. [16, 17, 18, 20, 21, 26, 43, 44], to quote just a few). We will also twist the
powers of the prequantum bundle with a fixed auxiliary bundle, so the formulas
for the coefficients also mirror the curvature of the twisting bundle.

The paper is divided in three parts, treating the quantization of Kähler man-
ifolds, of Kähler orbifolds and finally of symplectic manifolds.

In these notes we do not attempt to be exhaustive, neither in the choice of
topics, nor in what concerns the references. For previous work on Berezin-Toeplitz
star products in special cases see [11, 37]. We also refer the reader to the survey
articles [1, 30, 39] for more information for the Berezin-Toeplitz quantization and
geometric quantization. The survey [30] gives a review in the context of Kähler
and symplectic manifolds and explores the connections to symplectic reduction.

2 Quantization of Kähler manifolds

In this long section we explain our approach to Berezin-Toeplitz quantization of
symplectic manifolds by specializing to the Kähler case. The method we use
is then easier to follow and the coefficients of the asymptotic expansions have
accurate expressions in terms of curvatures of the underlying manifold.
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In Section 2.1, we review the definition of the Bergman projector, introduce
the Toeplitz operators and their kernels.

In Section 2.2, we describe the spectral gap of the Kodaira-Laplace operator.
On one hand, this implies the Kodaira-Serre vanishing theorem and the fact that
for high powers of the quantum line bundle the cohomology concentrates in degree
zero. On the other hand, the spectral gap provides the natural framework for the
asymptotic expansions of the Bergman and Toeplitz kernels.

In Section 2.3 we describe the model operator, its spectrum and the kernel of
its spectral projection on the lowest energy level. The expansion of the Bergman
kernel, which we study in Section 2.4, is obtained by a localization and rescaling
technique due to Bismut-Lebeau [5], and reduces the problem to the model case.

With this expansion at hand, we formulate the expansion of the Toeplitz kernel
in Section 2.5. Moreover, we observe in Section 2.6 that these expansion charac-
terizes the Toeplitz operators and this characterization implies the expansion of
the product of two Toeplitz operators and the existence of the Berezin-Toeplitz
star product.

In Section 2.7, we explain how to apply the previous results when the Rie-
mannian metric used to define the Hilbertian structure on the space of sections is
arbitrary.

In Section 2.8, we turn to the general situation of complete Kähler manifolds
and show how to apply the introduced method in this case.

2.1 Bergman projections, Toeplitz operators, and their
kernels

We consider a complex manifold (X, J) with complex structure J , and complex
dimension n. Let L and E be two holomorphic vector bundles on X. We assume
that L is a line bundle i.e. rk L = 1. The bundle E is an auxiliary twisting
bundle. It is interesting to work with a twisting vector bundle E for several
reasons. For example, one has to deal with (n, 0)-forms with values in Lp, so one
sets E = Λn(T ∗(1,0)X). From a physical point of view, the presence of E means a
quantization of a system with several degrees of internal freedom.

We fix Hermitian metrics hL, hE on L, E. Let gTX be a J-invariant Rieman-
nian metric on X, i.e., gTX(Ju, Jv) = gTX(u, v) for all x ∈ X and u, v ∈ TxX.
The Riemannian volume form of gTX is denoted by dvX . On the space of smooth
sections with compact support C∞0 (X,Lp⊗E) we introduce the L2-scalar product
associated to the metrics hL, hE and the Riemannian volume form dvX by

(2.1)
〈
s1, s2

〉
=

∫
X

〈
s1(x), s2(x)

〉
Lp⊗E dvX(x) .
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The completion of C∞0 (X,Lp ⊗ E) with respect to (2.1) is denoted as usual by
L2(X,Lp ⊗ E). We consider the space of holomorphic L2 sections:

(2.2) H0
(2)(X,L

p ⊗ E) :=
{
s ∈ L2(X,Lp ⊗ E) : s is holomorphic

}
.

Let us note an important property of the space H0
(2)(X,L

p⊗E), which follows
from the Cauchy estimates for holomorphic functions. Namely, for every compact
set K b X there exists CK > 0 such that

(2.3) sup
x∈K
|S(x)| 6 CK‖S‖L2 , for all S ∈ H0

(2)(X,L
p ⊗ E) .

We deduce that H0
(2)(X,L

p ⊗ E) is a closed subspace of L2(X,Lp ⊗ E); one can

also show that H0
(2)(X,L

p ⊗ E) is separable (cf. [45, p. 60]).

Definition 2.1. The Bergman projection is the orthogonal projection

Pp : L2(X,Lp ⊗ E)→ H0
(2)(X,L

p ⊗ E) .

In view of (2.3), the Riesz representation theorem shows that for a fixed x ∈ X
there exists Pp(x, ·) ∈ L2(X, (Lp ⊗ E)x ⊗ (Lp ⊗ E)∗) such that

(2.4) S(x) =

∫
X

Pp(x, x
′)S(x′)dvX(x′) , for all S ∈ H0

(2)(X,L
p ⊗ E) .

Definition 2.2. The section Pp(·, ·) of (Lp⊗E)� (Lp⊗E)∗ over X ×X is called
the Bergman kernel of Lp ⊗ E.

Set dp := dimH0
(2)(X,L

p ⊗ E) ∈ N ∪ {∞}. Let {Spi }dpi=1 be any orthonormal

basis of H0
(2)(X,L

p⊗E) with respect to the inner product (2.1). Using the estimate

(2.3) we can show that

(2.5) Pp(x, x
′) =

dp∑
i=1

Spi (x)⊗ (Spi (x′))∗ ∈ (Lp ⊗ E)x ⊗ (Lp ⊗ E)∗x′ ,

where the right-hand side converges on every compact together with all its deriva-
tives (see e.g. [45, p. 62]). Thus Pp(·, ·) ∈ C∞(X ×X, (Lp ⊗ E) � (Lp ⊗ E)∗). It
follows that

(2.6) (PpS)(x) =

∫
X

Pp(x, x
′)S(x′)dvX(x′) , for all S ∈ L2(X,Lp ⊗ E) .

that is, Pp(·, ·) is the integral kernel of the Bergman projection Pp. We recall that
a bounded linear operator T on L2(X,Lp⊗E) is called Carleman operator (see e.g.
[22]) if there exists a kernel T (·, ·) such that T (x, ·) ∈ L2(X, (Lp⊗E)x⊗(Lp⊗E)∗)
and

(2.7) (TS)(x) =

∫
X

T (x, x′)S(x′)dvX(x′) , for all S ∈ L2(X,Lp ⊗ E) .



Berezin-Toeplitz quantization and its kernel expansion 129

Hence Pp is a Carleman operator with smooth kernel Pp(·, ·).
The Bergman kernel represents the local density of the space of holomorphic

sections and is a very efficient tool to study properties of holomorphic sections. It
is an “objet souple” in the sense of Pierre Lelong, that is, it interpolates between
the rigid objects of complex analysis and the flexible ones of real analysis.

Note that Pp(x, x) ∈ End(E)x, since End(Lp) = C. Using (2.5) and the
formula TrE

[
Spi (x)⊗ (Spi (x))∗

]
= |Spi (x)|2, we obtain immediately

(2.8) dp =

∫
X

TrE Pp(x, x) dvX(x) .

Definition 2.3. For a bounded section f ∈ C∞(X,End(E)), set

(2.9) Tf, p : L2(X,Lp ⊗ E) −→ L2(X,Lp ⊗ E) , Tf, p = Pp f Pp ,

where the action of f is the pointwise multiplication by f . The map which
associates to f ∈ C∞(X,End(E)) the family of bounded operators {Tf, p}p on
L2(X,Lp ⊗ E) is called the Berezin-Toeplitz quantization.

Note that Tf, p is a Carleman operator with smooth integral kernel given by

(2.10) Tf, p(x, x
′) =

∫
X

Pp(x, x
′′)f(x′′)Pp(x′′, x′) dvX(x′′) .

For two arbitrary bounded sections f, g ∈ C∞(X,End(E)) it is easy to see
that Tf, p ◦Tg, p is not in general of the form Tfg, p . But we have Tf, p ◦Tg, p ∼ Tfg, p
asymptotically for p → ∞. In order to explain this we introduce the following
more general notion of Toeplitz operator.

Definition 2.4. A Toeplitz operator is a sequence {Tp}p∈N of linear operators
Tp : L2(X,Lp ⊗ E) −→ L2(X,Lp ⊗ E) verifying Tp = Pp Tp Pp , such that there
exist a sequence g` ∈ C∞(X,End(E)) such that for any k > 0, there exists Ck > 0
with

(2.11)
∥∥∥Tp − k∑

`=0

Tg`, p p
−`
∥∥∥ 6 Ck p

−k−1 for any p ∈ N∗,

where ‖ · ‖ denotes the operator norm on the space of bounded operators. The
section g0 is called the principal symbol of {Tp}.
We express (2.11) symbolically by

(2.12) Tp =
k∑
`=0

Tg`,p p
−` +O(p−k−1).

If (2.11) holds for any k ∈ N, then we write (2.12) with k = +∞. One of our
goals is to show that Tf, p ◦ Tg, p is a Toeplitz operator in the sense of Definition
2.11. This will be achieved by using the asymptotic expansions of the Bergman
kernel and of the kernels of the Toeplitz operators.
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2.2 Spectral gap and vanishing theorem

In order to have a meaningful theory it is necessary that the spaces H0
(2)(X,L

p⊗E)
are as large as possible. In this section we describe conditions when the growth
of dp = dimH0

(2)(X,L
p ⊗ E) for p→∞ is maximal.

For this purpose we need Hodge theory, so we introduce the Laplace operator.
Let T (1,0)X be the holomorphic tangent bundle on X, T (0,1)X the conjugate of
T (1,0)X and T ∗(0,1)X the dual bundle of T (0,1)X. We denote by Λq(T ∗(0,1)X) the
bundle of (0, q)-forms on X and by Ω0,q(X,F ) the space of sections of the bundle
Λq(T ∗(0,1)X)⊗ F over X, for some vector bundle F → X.

The Dolbeault operator acting on sections of the holomorphic vector bundle
Lp ⊗ E gives rise to the Dolbeault complex(

Ω0,•(X,Lp ⊗ E), ∂
Lp⊗E)

.

Its cohomology, called Dolbeault cohomology, is denoted by H0,•(X,Lp ⊗ E).

We denote by ∂
Lp⊗E,∗

the formal adjoint of ∂
Lp⊗E

with respect to the L2-scalar
product (2.1). Set

Dp =
√

2
(
∂
Lp⊗E

+ ∂
Lp⊗E,∗ )

,

�Lp⊗E = 1
2
D2
p = ∂

Lp⊗E
∂
Lp⊗E,∗

+ ∂
Lp⊗E,∗

∂
Lp⊗E

.
(2.13)

The operator �Lp⊗E is called the Kodaira-Laplacian. It acts on Ω0,•(X,Lp ⊗ E)
and preserves its Z-grading.

Let us consider first that X is a compact Kähler manifold endowed with a
Kähler form ω and L is a prequantum line bundle. The latter means that there
exists a Hermitian metric hL such that the curvature RL = (∇L)2 of the holomor-
phic Hermitian connection ∇L on (L, hL) satisfies

(2.14) ω =

√−1

2π
RL .

In particular, L is a positive line bundle.
By Hodge theory, the elements of Ker(�Lp⊗E), called harmonic forms, repre-

sent the Dolbeault cohomology. Namely,

(2.15) Ker(Dp|Ω0,q) = Ker(D2
p|Ω0,q) ' H0,q(X,Lp ⊗ E).

and the spaces H0,q(X,Lp⊗E) are finite dimensional. Note that H0,0(X,Lp⊗E)
is the space of holomorphic sections of Lp⊗E, denoted shortly by H0(X,Lp⊗E).
Since X is compact we have H0(X,Lp⊗E) = H0

(2)(X,L
p⊗E) for any Hermitian

metrics on Lp, E and volume form on X. A crucial tool in our analysis of the
Bergman kernel is the following spectral gap of the Kodaira-Laplacian.
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Theorem 2.5 ([6, Th. 1.1], [33, Th. 1.5.5]). There exist constants positive C0, CL
such that for any p ∈ N and any s ∈ Ω0,>0(X,Lp ⊗ E) =

⊕
q>1 Ω0,q(X,Lp ⊗ E),

(2.16) ‖Dps‖2
L2 > (2C0p− CL)‖s‖2

L2 .

The spectrum Spec(�p) of the Kodaira Laplacian �p, is contained in the set
{0}∪ ]pC0 − 1

2
CL,+∞[.

Theorem 2.5 was first proved by Bismut-Vasserot [6, Th. 1.1] using the non-
kählerian Bochner-Kodaira-Nakano formula with torsion due to Demailly, see e.g.
[33, Th. 1.4.12] (note that gTX is arbitrary, we don’t suppose that it is the metric
associated to ω, i.e., gTX(u, v) = ω(u, Jv) for u, v ∈ TxX). By Theorem 2.5, we
conclude:

Theorem 2.6 (Kodaira–Serre vanishing Theorem). If L is a positive line bundle,
then there exists p0 > 0 such that for any p > p0,

(2.17) H0,q(X,Lp ⊗ E) = 0 for any q > 0.

Recall that for a compact manifold X and a holomorphic vector bundle F , the
Euler number χ(X,F ) is defined by

(2.18) χ(X,F ) =
n∑
q=0

(−1)q dimH0,q(X,F ).

By the Riemann-Roch-Hirzebruch Theorem [33, Th. 14.6] we have

(2.19) χ(X,F ) =

∫
X

Td
(
T (1,0)X

)
ch(F ) ,

where Td and ch indicate the Todd class and the Chern character, respectively.
By the Kodaira-Serre vanishing (2.17),

(2.20) dp = dimH0(X,Lp ⊗ E) = χ(X,Lp ⊗ E) , p > p0 .

Therefore, for p > p0,

dimH0(X,Lp ⊗ E) =

∫
X

Td
(
T (1,0)X

)
ch(Lp ⊗ E)

= rk(E)

∫
X

c1(L)n

n!
pn +

∫
X

(
c1(E) +

rk(E)

2
c1(T (1,0)X)

)c1(L)n−1

(n− 1)!
pn−1

+ O(pn−2).

(2.21)

Note that the first Chern class c1(L) is represented by ω (see (2.14)) and c1(E) is

represented by
√−1
2π

Tr[RE]. As a conclusion we have:
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Theorem 2.7. Let (X,ω) be a compact Kähler manifold and let (L, hL) be a
prequantum line bundle satisfying (2.14). Then dp is a polynomial of degree n
with positive leading term 1

n!

∫
X
c1(L)n (the volume of the manifold (X,ω)).

Let us consider now the general situation of a (non-compact) complex man-
ifold (X, J). As before we are given a Hermitian metric on X, that is, a J-
compatible Riemannian metric gTX . We denote by Θ the associated (1, 1)-form,
i.e., Θ(u, v) = gTX(Ju, v), for all x ∈ X and u, v ∈ TxX. We say that the Her-
mitian manifold (X,Θ) is complete if the Riemannian metric gTX is complete.
Consider further a Hermitian holomorphic vector bundle (F, hF ) → X. Let us
denote by Ω0,q

(2)(X,F ) := L2(X,Λq(T ∗(0,1)X)⊗F ). We have the complex of closed,
densely defined operators

(2.22) Ω0,q−1
(2) (X,F )

T=∂
F

−→ Ω0,q
(2)(X,F )

S=∂
F

−→ Ω0,q+1
(2) (X,F ) ,

where T and S are the maximal extensions of ∂
F

, i.e.,

Dom(∂
F

) = {s ∈ Ω0,•
(2)(X,F ) : ∂

F
s ∈ Ω0,•

(2)(X,F )}

where ∂
F
s is calculated in the sense of distributions. Note that Im(T ) ⊂ Ker(S),

so ST = 0. The q-th L2 Dolbeault cohomology is defined by

(2.23) H0, q
(2) (X,F ) :=

Ker(∂
F

) ∩ Ω0,q
(2)(X,F )

Im(∂
F

) ∩ Ω0,q
(2)(X,F )

.

Consider the quadratic form Q given by

Dom(Q) := Dom(S) ∩Dom(T ∗),

Q(s1, s2) =〈Ss1, Ss2〉+ 〈T ∗s1, T
∗s2〉 , for s1, s2 ∈ Dom(Q).

(2.24)

where T ∗ is the Hilbertian adjoint of T . For the following result due essentially
to Gaffney one may consult [33, Prop. 3.1.2, Cor. 3.3.4].

Lemma 2.8. Assume that the Hermitian manifold (X,Θ) is complete. Then the
Kodaira-Laplacian �F : Ω0,•

0 (X,F ) → Ω0,•
(2)(X,F ) is essentially self-adjoint. Its

associated quadratic form is the form Q given by (2.24).

We denote by Rdet the curvature of the holomorphic Hermitian connection
∇det on K∗X = det(T (1,0)X). We have the following generalization of Theorems
2.5 and 2.6.

Theorem 2.9 ([33, Th. 6.1.1], [34, Th. 3.11]). Assume that (X,Θ) is a complete
Hermitian manifold. Let (L, hL) and (E, hE) Hermitian holomorphic vector bun-
dles of rank one and r, respectively. Suppose that there exist ε > 0, C > 0 such
that :

(2.25)
√−1RL > εΘ ,

√−1(Rdet +RE) > −CΘ IdE , |∂Θ|gTX < C,
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Then there exists C1 > 0 and p0 ∈ N such that for p > p0 the quadratic form Qp

associated to the Kodaira-Laplacian �p := �Lp⊗E satisfies

(2.26) Qp(s, s) > C1p ‖s‖2
L2 , for s ∈ Dom(Qp) ∩ Ω0,q

(2)(X,L
p ⊗ E), q > 0 .

Especially

(2.27) H0, q
(2) (X,Lp ⊗ E) = 0 , for p > p0, q > 0

and the spectrum Spec(�p) of the Kodaira Laplacian �p acting on L2(X,Lp⊗E)
is contained in the set {0} ∪ [ pC1,∞[ .

Thus we are formally in a similar situation as in the compact case, that is, the
higher L2 cohomology groups vanish. But we cannot invoke as in the compact
case the index theorem to estimate the dimension of L2 holomorphic sections of
Lp ⊗ E. Instead we can use an analogue of the local index theorem, namely the
asymptotics of the Bergman kernel. Let us denote by α1, . . . , αn the eigenvalues
of
√−1
2π
RL with respect to Θ.

Theorem 2.10 ([34, Cor. 3.12]). Under the hypotheses of Theorem 2.9 we have

(2.28) Pp(x, x) = pnb0(x) +O(pn−1) , p→∞ ,

uniformly on compact sets, where b0 = α1 . . . αn IdE. Hence

(2.29) lim inf
p−→∞

p−n dimH0
(2)(X,L

p ⊗ E) > rk(E)

n!

∫
X

(√−1
2π
RL
)n
.

The asymptotics (2.28) are a particular case of the full asymptotic expansion
of the Bergman kernel, see Corollary 2.15. It can be also deduced with the help
of L2 estimates of Hörmander as done by Tian [41]. The estimate (2.29) shows
that dimH0

(2)(X,L
p ⊗ E) has at least polynomial growth of degree n. It fol-

lows from Fatou’s lemma, applied on X with the measure Θn/n! to the sequence
p−n TrE Pp(x, x) which converges pointwise to TrE b0 on X.

2.3 Model situation: Bergman kernel on Cn

We introduce here the model operator, a Kodaira-Laplace operator on Cn, and
describe explicitly its spectrum. The expansion of the Bergman and Toeplitz
kernels will be expressed in terms of the kernel of the projection on Ker(L ). Our
whole analysis and calculations are based on the Fourier expansion with respect
to the eigenfunctions of L .

Let us consider the canonical real coordinates (Z1, . . . , Z2n) on R2n and the
complex coordinates (z1, . . . , zn) on Cn. The two sets of coordinates are linked by



134 Xiaonan Ma and George Marinescu

the relation zj = Z2j−1 +
√−1Z2j, j = 1, . . . , n. We endow Cn with the Euclidean

metric gTCn . The associated Kähler form on Cn is

ω =

√−1

2

n∑
j=1

dzj ∧ dzj .

We are interested in the space (L2(R2n), ‖ · ‖L2) of square integrable functions on
R2n with respect to the Lebesgue measure. We denote by dZ = dZ1 · · · dZ2n the
Euclidean volume form. For α = (α1, . . . , αn) ∈ Nn, z ∈ Cn, put zα = zα1

1 · · · zαnn .
Let L = C be the trivial holomorphic line bundle on Cn with the canonical

section 1 : Cn → L, z 7→ (z, 1). Let hL be the metric on L defined by

(2.30) |1|hL(z) := exp(−π
2

∑n
j=1 |zj|2) = ρ(Z) for z ∈ Cn .

The space of L2-integrable holomorphic sections of L with respect to hL and dZ is
the classical Segal-Bargmann space of L2-integrable holomorphic functions with
respect to the volume form ρ dZ. It is well-known that {zβ : β ∈ Nn} forms an
orthogonal basis of this space.

To introduce the model operator L we set:

bi = −2
∂

∂zi
+ πzi , b+

i = 2
∂

∂zi
+ πzi , L =

∑
i

bi b
+
i .(2.31)

We can interpret the operator L in terms of complex geometry. Let ∂
L

be

the Dolbeault operator acting on Ω0,•(Cn, L) and let ∂
L,∗

be its adjoint with
respect to the L2-scalar product induced by gTCn and hL. We have the isometry
Ω0,•(Cn,C)→ Ω0,•(Cn, L) given by α 7→ ρ−1α. If

�L = ∂
L,∗
∂
L

+ ∂
L
∂
L,∗

denotes the Kodaira Laplacian acting on Ω0,•(Cn, L), then

ρ�Lρ−1 : Ω0,•(Cn,C)→ Ω0,•(Cn,C) ,

ρ�Lρ−1 = 1
2
L +

n∑
j=1

2πdzj ∧ i ∂
∂zj

,

ρ�Lρ−1|Ω0,0 = 1
2
L .

The operator L is the complex analogue of the harmonic oscillator, the operators
b, b+ are creation and annihilation operators respectively. Each eigenspace of L
has infinite dimension, but we can still give an explicit description.

Theorem 2.11 ([33, Th. 4.1.20], [34, Th. 1.15]). The spectrum of L on L2(R2n)
is given by

(2.32) Spec(L ) =
{

4π|α| : α ∈ Nn
}
.
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Each λ ∈ Spec(L ) is an eigenvalue of infinite multiplicity and an orthogonal basis
of the corresponding eigenspace is given by

(2.33) Bλ =
{
bα
(
zβe−π

P
i |zi|2/2

)
: α ∈ Nn with 4π|α| = λ, β ∈ Nn

}
where bα := bα1

1 · · · bαnn . Moreover,
⋃{Bλ : λ ∈ Spec(L )} forms a complete

orthogonal basis of L2(R2n). In particular, an orthonormal basis of Ker(L ) is

(2.34)
{
ϕβ(z) =

(
π|β|
β!

)1/2
zβe−π

P
i |zi|2/2 : β ∈ Nn

}
.

Let P : L2(R2n) −→ Ker(L ) be the orthogonal projection and let P(Z,Z ′)
denote its kernel with respect to dZ ′. We call P(·, ·) the Bergman kernel of L .
Obviously P(Z,Z ′) =

∑
β ϕβ(z)ϕβ(z′) so we infer from (2.34) that

(2.35) P(Z,Z ′) = exp
(− π

2

∑n
i=1

(|zi|2 + |z ′i |2 − 2ziz
′
i

))
.

2.4 Asymptotic expansion of Bergman kernel

In Sections 2.4-2.6 we assume that (X,ω) is a compact Kähler manifold and
(L, hL) is a Hermitian holomorphic line bundle satisfying (2.14). For the sake of
simplicity, we suppose that Riemannian metric gTX is the metric associated to ω,
that is, gTX(u, v) = ω(u, Jv) (or, equivalently, Θ = ω).
In order to state the result about the asymptotic expansion we start by describing
our identifications and notations.
Normal coordinates. Let aX be the injectivity radius of (X, gTX). We denote
by BX(x, ε) and BTxX(0, ε) the open balls in X and TxX with center x and
radius ε, respectively. Then the exponential map TxX 3 Z → expXx (Z) ∈ X is
a diffeomorphism from BTxX(0, ε) onto BX(x, ε) for ε 6 aX . From now on, we
identify BTxX(0, ε) with BX(x, ε) via the exponential map for ε 6 aX . Throughout
what follows, ε runs in the fixed interval ]0, aX/4[.
Basic trivialization. We fix x0 ∈ X. For Z ∈ BTx0X(0, ε) we identify (LZ , h

L
Z),

(EZ , h
E
Z ) and (Lp⊗E)Z to (Lx0 , h

L
x0

), (Ex0 , h
E
x0

) and (Lp⊗E)x0 by parallel transport
with respect to the connections ∇L, ∇E and ∇Lp⊗E along the curve

γZ : [0, 1] 3 u→ expXx0
(uZ) .

This is the basic trivialization we use in this paper.
Using this trivialization we identify f ∈ C∞(X,End(E)) to a family {fx0}x0∈X

where fx0 is the function f in normal coordinates near x0, i.e.,

fx0 : BTx0X(0, ε)→ End(Ex0), fx0(Z) = f ◦ expXx0
(Z) .

In general, for functions in the normal coordinates, we will add a subscript x0

to indicate the base point x0 ∈ X. Similarly, Pp(x, x
′) induces in terms of the
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basic trivialization a smooth section (Z,Z ′) 7→ Pp, x0(Z,Z
′) of π∗ End(E) over

{(Z,Z ′) ∈ TX ×X TX : |Z|, |Z ′| < ε}, which depends smoothly on x0. Here
we identify a section S ∈ C∞

(
TX ×X TX, π∗ End(E)

)
with the family (Sx)x∈X ,

where Sx = S|π−1(x).

Coordinates on Tx0X. Let us choose an orthonormal basis {wi}ni=1 of T
(1,0)
x0 X.

Then e2j−1 = 1√
2
(wj+wj) and e2j =

√−1√
2

(wj−wj), j = 1, . . . , n form an orthonor-

mal basis of Tx0X. We use coordinates on Tx0X ' R2n given by the identification

(2.36) R2n 3 (Z1, . . . , Z2n) 7−→
∑
i

Ziei ∈ Tx0X.

In what follows we also use complex coordinates z = (z1, . . . , zn) on Cn ' R2n.
Volume form on Tx0X. Let us denote by dvTX the Riemannian volume form on
(Tx0X, g

Tx0X), there exists a smooth positive function κx0 : Tx0X → R, satisfying

(2.37) dvX(Z) = κx0(Z)dvTX(Z), κx0(0) = 1,

where the subscript x0 of κx0(Z) indicates the base point x0 ∈ X.
Sequences of operators. Let Θp : L2(X,Lp ⊗ E) −→ L2(X,Lp ⊗ E) be a
sequence of continuous linear operators with smooth kernel Θp(·, ·) with respect
to dvX (e.g. Θp = Tf, p). Let π : TX ×X TX → X be the natural projection
from the fiberwise product of TX on X. In terms of our basic trivialization,
Θp(x, y) induces a family of smooth sections Z,Z ′ 7→ Θp, x0(Z,Z

′) of π∗ End(E)
over {(Z,Z ′) ∈ TX ×X TX : |Z|, |Z ′| < ε}, which depends smoothly on x0.

We denote by |Θp, x0(Z,Z
′)|C l(X) the C l norm with respect to the parameter

x0 ∈ X. We say that

Θp, x0(Z,Z
′) = O(p−∞) , p→∞

if for any l,m ∈ N, there exists Cl,m > 0 such that |Θp, x0(Z,Z
′)|Cm(X) 6 Cl,m p

−l.
The asymptotics of the Bergman kernel will be described in terms of the

Bergman kernel Px0(·, ·) = P(·, ·) of the model operator L on Tx0X
∼= R2n.

Recall that P(·, ·) was defined in (2.35).

Notation 2.12. Fix k ∈ N and ε′ ∈ ]0, aX [ . Let

{Qr, x0 ∈ End(E)x0 [Z,Z
′] : 0 6 r 6 k, x0 ∈ X}

be a family of polynomials in Z,Z ′, which is smooth with respect to the parameter
x0 ∈ X. We say that

(2.38) p−nΘp, x0(Z,Z
′) ∼=

k∑
r=0

(Qr, x0Px0)(
√
pZ,
√
pZ ′)p−r/2 +O(p−(k+1)/2) ,
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on {(Z,Z ′) ∈ TX×XTX : |Z|, |Z ′| < ε′} if there exist C0 > 0 and a decomposition

p−nΘp,x0(Z,Z
′)−

k∑
r=0

(Qr, x0Px0)(
√
pZ,
√
pZ ′)κ−1/2

x0
(Z)κ−1/2

x0
(Z ′)p−r/2

= Ψp, k, x0(Z,Z
′) +O(p−∞) ,

(2.39)

where Ψp, k, x0 satisfies the following estimate: for every l ∈ N there exist Ck, l > 0,
M > 0 such that for all p ∈ N∗

(2.40) |Ψp, k, x0(Z,Z
′)|C l(X) 6 Ck, l p

−(k+1)/2(1+
√
p |Z|+√p |Z ′|)M e−C0

√
p |Z−Z′| ,

on {(Z,Z ′) ∈ TX ×X TX : |Z|, |Z ′| < ε′}.
The sequence Pp . We can now state the asymptotics of the Bergman kernel.
First we observe that the Bergman kernel decays very fast outside the diagonal of
X ×X.

Let f : R→ [0, 1] be a smooth even function such that f(v) = 1 for |v| 6 ε/2,
and f(v) = 0 for |v| > ε. Set

(2.41) F (a) =
(∫ +∞

−∞
f(v)dv

)−1
∫ +∞

−∞
eiva f(v)dv.

Then F (a) is an even function and lies in the Schwartz space S(R) and F (0) = 1.
We have the far off-diagonal behavior of the Bergman kernel:

Theorem 2.13 ([15, Prop. 4.1]). For any l,m ∈ N and ε > 0, there exists a
positive constant Cl,m,ε > 0 such that for any p > 1, x, x′ ∈ X, the following
estimate holds:

(2.42) |F (Dp)(x, x
′)− Pp(x, x′)|Cm(X×X) 6 Cl,m,εp

−l.

Especially,

(2.43) |Pp(x, x′)|Cm(X×X) 6 Cl,m,ε p
−l , on {(x, x′) ∈ X ×X : d(x, x′) > ε} .

The Cm norm in (2.42) and (2.43) is induced by ∇L, ∇E, hL, hE and gTX .

Next we formulate the near off-diagonal expansion of the Bergman kernel.

Theorem 2.14 ([15, Th. 4.18′]). There exist polynomials Jr, x0 ∈ End(E)x0 [Z,Z
′]

in Z,Z ′ with the same parity as r, such that for any k ∈ N, ε ∈]0, aX/4[ , we have

(2.44) p−nPp, x0(Z,Z
′) ∼=

k∑
r=0

(Jr, x0Px0)(
√
pZ,
√
pZ ′)p−

r
2 +O(p−

k+1
2 ) ,

on the set {(Z,Z ′) ∈ TX ×X TX : |Z|, |Z ′| < 2ε}, in the sense of Notation 2.12.
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Let us briefly explain the idea of the proof for Theorems 2.13 – 2.14. Using the
spectral gap property from Theorem 2.5, we obtain (2.42). By finite propagation
speed of solutions of hyperbolic equations, we obtain that F (Dp)(x, x

′) = 0 if
d(x, x′) > ε and F (Dp)(x, ·) depends only on the restriction Dp|B(x,ε), so (2.43)
follows. This shows that we can localize the asymptotics of Pp(x0, x

′) in the
neighborhood of x0. By pulling back all our objects by the exponential map to
the tangential space and suitably extending them we can work on R2n. Thus we
can use the explicit description of the Bergman kernel of the model operator L
given in Section 2.3. To conclude the proof, we combine the spectral gap property,
the rescaling of the coordinates and functional analytic techniques inspired by
Bismut-Lebeau [5, §11].

By setting br(x0) = (J2r, x0Px0)(0, 0), we get from (2.44) the following diagonal
expansion of the Bergman kernel.

Corollary 2.15. For any k, l ∈ N, there exists Ck,l > 0 such that for any p ∈ N,

(2.45)
∣∣∣Pp(x, x)−

k∑
r=0

br(x)pn−r
∣∣∣
C l(X)

6 Ck, l p
n−k−1 ,

where b0(x) = IdE.

The existence of the expansion (2.45) and the form of the leading term was
proved by [41, 12, 46].

The calculation of the coefficients br is of great importance. For this we need
Jr, x0 , which are obtained by computing the operators Fr, x0 defined by the smooth
kernels

Fr, x0(Z,Z
′) = Jr, x0(Z,Z

′)P(Z,Z ′)(2.46)

with respect to dZ ′. Our strategy (already used in [33, 34]) is to rescale the
Kodaira-Laplace operator, take the Taylor expansion of the rescaled operator and
apply resolvent analysis.
Rescaling �p and Taylor expansion. For s ∈ C∞(R2n, Ex0), Z ∈ R2n,
|Z| ≤ 2ε, and for t = 1√

p
, set

(Sts)(Z) := s(Z/t),

Lt := S−1
t κ1/2 t2(2�p)κ−1/2St .

(2.47)

Then by [33, Th. 4.1.7], there exist second order differential operators Or such
that we have an asymptotic expansion in t when t→ 0,

Lt = L0 +
m∑
r=1

trOr + O(tm+1).(2.48)
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From [33, Th. 4.1.21, 4.1.25], we obtain

L0 =
∑
j

bjb
+
j = L , O1 = 0.(2.49)

Resolvent analysis. We define by recurrence fr(λ) ∈ End(L2(R2n, Ex0)) by

f0(λ) = (λ−L0)−1, fr(λ) = (λ−L0)−1

r∑
j=1

Ojfr−j(λ).(2.50)

Let δ be the counterclockwise oriented circle in C of center 0 and radius π/2.
Then by [34, (1.110)] (cf. also [33, (4.1.91)])

(2.51) Fr, x0 =
1

2π
√−1

∫
δ

fr(λ)dλ.

Since the spectrum of L is well understood we can calculate the coefficients
Fr, x0 . Set P⊥ = Id−P. From Theorem 2.11, (2.49) and (2.51), we get

F0, x0 =P, F1, x0 = 0,

F2, x0 =−L −1P⊥O2P −PO2L
−1P⊥,

F3, x0 =−L −1P⊥O3P −PO3L
−1P⊥,

(2.52)

and

F4, x0 = L −1P⊥O2L
−1P⊥O2P −L −1P⊥O4P

+ PO2L
−1P⊥O2L

−1P⊥ −PO4L
−1P⊥

+ L −1P⊥O2PO2L
−1P⊥ −PO2L

−2P⊥O2P

−PO2PO2L
−2P⊥ −P⊥L −2O2PO2P.

(2.53)

In particular, the first two identities of (2.52) imply

J0, x0 = 1, J1, x0 = 0.(2.54)

In order to formulate the formulas for b1 and b2 we introduce now more no-
tations. Let ∇TX be the Levi-Civita connection on (X, gTX). We denote by
RTX = (∇TX)2 the curvature, by Ric the Ricci curvature and by rX the scalar
curvature of ∇TX .

We still denote by ∇E the connection on End(E) induced by ∇E. Consider
the (positive) Laplacian ∆ acting on the functions on (X, gTX) and the Bochner
Laplacian ∆E on C∞(X,E) and on C∞(X,End(E)). Let {ek} be a (local) or-
thonormal frame of (TX, gTX). Then

∆E = −
∑
k

(∇E
ek
∇E
ek
−∇E

∇TXek ek
).(2.55)
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Let Ωq, r(X,End(E)) be the space of (q, r)-forms on X with values in End(E),
and let

∇1,0 : Ωq,•(X,End(E))→ Ωq+1,•(X,End(E))(2.56)

be the (1, 0)-component of the connection ∇E. Let (∇E)∗, ∇1,0∗, ∂
E∗

be the ad-

joints of ∇E, ∇1,0, ∂
E

, respectively. Let D1,0, D0,1 be the (1, 0) and (0, 1) compo-
nents of the connection ∇T ∗X : C∞(X,T ∗X)→ C∞(X,T ∗X ⊗ T ∗X) induced by
∇TX . In the following, we denote by

〈· , ·〉ω : Ω•, •(X,End(E))× Ω•, •(X,End(E))→ C∞(X,End(E))

the C-bilinear pairing 〈α⊗ f, β ⊗ g〉ω = 〈α, β〉f · g, for forms α, β ∈ Ω•, •(X) and
sections f, g ∈ C∞(X,End(E)). Put

RE
Λ =

〈
RE, ω

〉
ω
.(2.57)

Let Ricω = Ric(J ·, ·) be the (1, 1)-form associated to Ric. Set

|Ricω |2 =
∑
i<j

Ricω(ei, ej)
2 , |RTX |2 =

∑
i<j

∑
k<l

〈RTX(ei, ej)ek, el〉2,

Theorem 2.16. We have

(2.58) b1 =
1

8π
rX +

√−1

2π
RE

Λ ,

π2b2 = −∆rX

48
+

1

96
|RTX |2 − 1

24
|Ricω |2 +

1

128
(rX)2

+

√−1

32

(
2rXRE

Λ − 4〈Ricω, R
E〉ω + ∆ERE

Λ

)
− 1

8
(RE

Λ )2 +
1

8
〈RE, RE〉ω +

3

16
∂
E∗∇1,0∗RE .

(2.59)

The terms b1, b2 were computed by Lu [28] (for E = C, the trivial line bundle
with trivial metric), X. Wang [44], L. Wang [43], in various degree of generality.
The method of these authors is to construct appropriate peak sections as in [41],
using Hörmander’s L2 ∂-method. In [15, §5.1], Dai-Liu-Ma computed b1 by using
the heat kernel, and in [34, §2], [32, §2] (cf. also [33, §4.1.8, §8.3.4]), we computed
b1 in the symplectic case. A new method for calculating b2 was given in [36].
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2.5 Asymptotic expansion of Toeplitz operators

We stick to the situation studied in the previous Section, namely, (X,ω) is a
compact Kähler manifold and (L, hL) is a Hermitian holomorphic line bundle
satisfying (2.14), and gTX is the Riemannian metric associated to ω.
In order to develop the calculus of Toeplitz kernels we use the Bergman kernel
expansion (2.44) and the Taylor expansion of the symbol. We are thus led to a
kernel calculus on Cn with kernels of the form FP, where F is a polynomial.
This calculus can be completely described in terms of the spectral decomposition
(2.32)-(2.33) of the model operator L .

For a polynomial F in Z,Z ′, we denote by FP the operator on L2(R2n) defined
by the kernel F (Z,Z ′)P(Z,Z ′) and the volume form dZ according to (2.7).

The following very useful Lemma [33, Lemma 7.1.1] describes the calculus of
the kernels (FP)(Z,Z ′) := F (Z,Z ′)P(Z,Z ′).

Lemma 2.17. For any F,G ∈ C[Z,Z ′] there exists a polynomial K [F,G] ∈
C[Z,Z ′] with degree deg K [F,G] of the same parity as degF + degG, such that

(2.60) ((FP) ◦ (GP))(Z,Z ′) = K [F,G](Z,Z ′)P(Z,Z ′).

Let us illustrate how Lemma 2.17 works. First observe that from (2.31) and
(2.35), for any polynomial g(z, z) ∈ C[z, z], we get

bj ,z P(Z,Z ′) = 2π(zj − z ′j)P(Z,Z ′),

[g(z, z), bj ,z] = 2
∂

∂zj
g(z, z) .

(2.61)

Now (2.61) entails

(2.62) zj P(Z,Z ′) =
bj ,z
2π

P(Z,Z ′) + z ′jP(Z,Z ′).

Specializing (2.61) for g(z, z) = zi we get

(2.63) zi bj ,zP(Z,Z ′) = bj ,z(ziP)(Z,Z ′) + 2δijP(Z,Z ′),

Formulas (2.62) and (2.63) give

zizj P(Z,Z ′) =
1

2π
bj ,z ziP(Z,Z ′) +

1

π
δijP(Z,Z ′) + ziz

′
j P(Z,Z ′) .(2.64)

Using the preceding formula we calculate further some examples for the ex-
pression K [F,G] introduced (2.60). We use the spectral decomposition of L in
the following way. If ϕ(Z) = bαzβ exp

( − π
2

∑n
j=1 |zj|2

)
with α, β ∈ Nn, then

Theorem 2.11 implies immediately that

(Pϕ)(Z) =

 zβ exp
(
− π

2

n∑
j=1

|zj|2
)

if |α| = 0,

0 if |α| > 0.

(2.65)



142 Xiaonan Ma and George Marinescu

The identities (2.62), (2.64) and (2.65) imply that

K [1, zj]P = P ◦ (zjP) = z ′jP, K [1, zj]P = P ◦ (zjP) = zjP,

K [zi, zj]P = (ziP) ◦ (zjP) = ziP ◦ (zjP) = ziz
′
jP,

K [zi, zj]P = (ziP) ◦ (zjP) = ziP ◦ (zjP) = zizjP,

K [z ′i , zj]P = (z ′iP) ◦ (zjP) = P ◦ (zizjP) = 1
π
δijP + ziz

′
jP,

K [z ′i , zj]P = (z ′iP) ◦ (zjP) = P ◦ (zizjP) = 1
π
δijP + z ′izjP.

(2.66)

Thus we get

K [1, zj] = z ′j, K [1, zj] = zj,

K [zi, zj] = ziz
′
j, K [zi, zj] = zizj,

K [z ′i , zj] = K [z′j, zi] = 1
π
δij + z ′izj.

(2.67)

To simplify our calculations, we introduce the following notation. For any
polynomial F ∈ C[Z,Z ′] we denote by (FP)p the operator defined by the kernel
pn(FP)(

√
pZ,
√
pZ ′), that is,

(2.68) ((FP)pϕ)(Z) =

∫
R2n

pn(FP)(
√
pZ,
√
pZ ′)ϕ(Z ′) dZ ′ , for ϕ ∈ L2(R2n).

Let F,G ∈ C[Z,Z ′]. By a change of variables we obtain

((FP)p ◦ (GP)p)(Z,Z
′) = pn((FP) ◦ (GP))(

√
pZ,
√
pZ ′).(2.69)

We examine now the asymptotic expansion of the kernel of the Toeplitz operators
Tf, p. The first observation is that outside the diagonal of X × X, the kernel of
Tf, p has the growth O(p−∞), as p→∞.

Lemma 2.18 ([35, Lemma 4.2]). For every ε > 0 and every l,m ∈ N, there exists
Cl,m,ε > 0 such that

(2.70) |Tf, p(x, x′)|Cm(X×X) 6 Cl,m,εp
−l

for all p > 1 and all (x, x′) ∈ X × X with d(x, x′) > ε, where the Cm-norm is
induced by ∇L,∇E and hL, hE, gTX .

Proof. Due to (2.43), (2.70) holds if we replace Tf, p by Pp. Moreover, from (2.44),
for any m ∈ N, there exist Cm > 0,Mm > 0 such that |Pp(x, x′)|Cm(X×X) < CpMm

for all (x, x′) ∈ X×X. These two facts and formula (2.10) imply the Lemma.

The near off-diagonal expansion of the Bergman kernel (2.44) and the ker-
nel calculus on Cn presented above imply the near off-diagonal expansion of the
Toeplitz kernels. (cf. [35, Lemma 4.6], [33, Lemma 7.2.4])
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Theorem 2.19. Let f ∈ C∞(X,End(E)). There exists a family

{Qr, x0(f) ∈ End(E)x0 [Z,Z
′] : r ∈ N, x0 ∈ X} ,

depending smoothly on the parameter x0 ∈ X, where Qr, x0(f) are polynomials
with the same parity as r and such that for every k ∈ N, ε ∈]0, aX/4[ ,

(2.71) p−nTf, p, x0(Z,Z
′) ∼=

k∑
r=0

(Qr, x0(f)Px0)(
√
pZ,
√
pZ ′)p−r/2 +O(p−(k+1)/2) ,

on the set {(Z,Z ′) ∈ TX ×X TX : |Z|, |Z ′| < 2ε}, in the sense of Notation 2.12.
Moreover, Qr, x0(f) are expressed by

(2.72) Qr, x0(f) =
∑

r1+r2+|α|=r
K
[
Jr1, x0 ,

∂αfx0

∂Zα
(0)

Zα

α!
Jr2, x0

]
.

where K [·, ·] was introduced in (2.60). We have,

Q0, x0(f) = f(x0) ∈ End(Ex0).(2.73)

Proof. Estimates (2.10) and (2.70) learn that for |Z|, |Z ′| < ε/2, Tf, p, x0(Z,Z
′) is

determined up to terms of order O(p−∞) by the behavior of f in BX(x0, ε). Let
ρ : R→ [0, 1] be a smooth even function such that

(2.74) ρ(v) = 1 if |v| < 2; ρ(v) = 0 if |v| > 4.

For |Z|, |Z ′| < ε/2, we get

Tf, p, x0(Z,Z
′) = O(p−∞)

+

∫
Tx0X

Pp,x0(Z,Z
′′)ρ(2|Z ′′|/ε)fx0(Z

′′)Pp,x0(Z
′′, Z ′)κx0(Z

′′) dvTX(Z ′′) .
(2.75)

We consider the Taylor expansion of fx0 :

fx0(Z) =
∑
|α|6k

∂αfx0

∂Zα
(0)

Zα

α!
+ O(|Z|k+1)

=
∑
|α|6k

p−|α|/2
∂αfx0

∂Zα
(0)

(
√
pZ)α

α!
+ p−

k+1
2 O(|√pZ|k+1).

(2.76)

We multiply now the expansions given in (2.76) and (2.44). Note the presence of
κx0 in the definition (2.39) of (2.38). Hence we obtain the expansion of

κ1/2
x0

(Z)Pp, x0(Z,Z
′′)(κx0fx0)(Z

′′)Pp, x0(Z
′′, Z ′)κ1/2

x0
(Z ′)
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which we substitute in (2.75). We integrate then on Tx0X by using the change of
variable

√
pZ ′′ = W and conclude (2.71) and (2.72) by using formulas (2.60) and

(2.69).
From (2.54) and (2.72), we get

Q0, x0(f) = K [1, fx0(0)] = fx0(0) = f(x0) .(2.77)

The proof of Lemma 2.19 is complete.

As an example, we compute Q1, x0(f). By (2.48), (2.67) and (2.72) we obtain

Q1, x0(f) = K
[
1,
∂fx0

∂Zj
(0)Zj

]
=
∂fx0

∂zj
(0)zj +

∂fx0

∂zj
(0)z ′j .(2.78)

Corollary 2.20. For any f ∈ C∞(X,End(E)), we have

(2.79) Tf, p(x, x) =
∞∑
r=0

br,f (x)pn−r + O(p−∞) , br,f ∈ C∞(X,End(E)) .

Proof. By taking Z = Z ′ = 0 in (2.71) we obtain (2.79), with br,f (x) = Q2r,x(f).

Since we have the precise formula (2.71) for Q2r,x(f) we can give a closed
formula for the first coefficients br,f . In [36], we computed the coefficients b1,f , b2,f ,
from (2.79). These computations are also relevant in Kähler geometry (cf. [20],
[21], [26]).

Theorem 2.21 ([36, Th. 0.1]). For any f ∈ C∞(X,End(E)), we have:

(2.80) b0, f = f, b1, f =
rX

8π
f +

√−1

4π

(
RE

Λf + fRE
Λ

)− 1

4π
∆Ef .

If f ∈ C∞(X), then

π2b2, f =π2b2f +
1

32
∆2f − 1

32
rX∆f −

√−1

8

〈
Ricω, ∂∂f

〉
+

√−1

24

〈
df,∇ERE

Λ

〉
ω

+
1

24

〈
∂f,∇1,0∗RE

〉
ω
− 1

24

〈
∂f, ∂

E∗
RE
〉
ω

−
√−1

8
(∆f)RE

Λ +
1

4

〈
∂∂f,RE

〉
ω
.

(2.81)
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2.6 Algebra of Toeplitz operators, Berezin-Toeplitz star-
product

Lemma 2.18 and Theorem 2.19 provide the asymptotic expansion of the kernel
of a Toeplitz operator Tf, p . Using this lemma we can for example easily ob-
tain the expansion of the kernel of the composition Tf, pTg, p, for two sections
f, g ∈ C∞(X,End(E)). The result will be an asymptotic expansion of the type
(2.71). Luckily we can show that the existence of a such asymptotic expansion
characterizes Toeplitz operators (in the sense of Definition 2.4). We have the
following useful criterion which ensures that a given family is a Toeplitz operator.

Theorem 2.22. Let {Tp : L2(X,Lp ⊗ E) −→ L2(X,Lp ⊗ E)} be a family of
bounded linear operators. Then {Tp} is a Toeplitz operator if and only if satisfies
the following three conditions:

(i) For any p ∈ N, Pp Tp Pp = Tp .

(ii) For any ε0 > 0 and any l ∈ N, there exists Cl, ε0 > 0 such that for all p > 1
and all (x, x′) ∈ X ×X with d(x, x′) > ε0,

(2.82) |Tp(x, x′)| 6 Cl,ε0p
−l.

(iii) There exists a family of polynomials {Qr, x0 ∈ End(E)x0 [Z,Z
′]}x0∈X such

that:

(a) each Qr, x0 has the same parity as r,

(b) the family is smooth in x0 ∈ X and

(c) there exists 0 < ε′ < aX/4 such that for every x0 ∈ X, every Z,Z ′ ∈ Tx0X
with |Z|, |Z ′| < ε′ and every k ∈ N we have

(2.83) p−nTp, x0(Z,Z
′) ∼=

k∑
r=0

(Qr, x0Px0)(
√
pZ,
√
pZ ′)p−

r
2 +O(p−

k+1
2 ),

in the sense of Notation 2.12.

Proof. In view of Lemma 2.18 and Theorem 2.19 it is easy to see that conditions
(i)-(iii) are necessary. To prove the sufficiency we use the following strategy. We
define inductively the sequence (gl)l>0, gl ∈ C∞(X,End(E)) such that

(2.84) Tp =
m∑
l=0

Pp gl p
−l Pp +O(p−m−1) , for every m > 0 .

Let us start with the case m = 0 of (2.84). For an arbitrary but fixed x0 ∈ X, we
set

(2.85) g0(x0) = Q0, x0(0, 0) ∈ End(Ex0) .
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Then show that

(2.86) p−n(Tp − Tg0, p)x0(Z,Z
′) ∼= O(p−1) ,

which implies the case m = 0 of (2.84), namely,

(2.87) Tp = Pp g0 Pp +O(p−1).

A crucial point here is the following result.

Proposition 2.23 ([35, Prop. 4.11]). In the conditions of Theorem 2.22 we have
Q0, x0(Z,Z

′) = Q0, x0(0, 0) for all x0 ∈ X and all Z,Z ′ ∈ Tx0X.

The proof is quite technical, so we refer to [35, p. 585-90].
Coming back to the proof of (2.86), let us compare the asymptotic expansion

of Tp and Tg0, p = Pp g0 Pp. Using the Notation 2.12, the expansion (2.71) (for
k = 1) reads
(2.88)
p−nTg0, p, x0(Z,Z

′) ∼= (g0(x0)Px0 +Q1, x0(g0)Px0 p
−1/2)(

√
pZ,
√
pZ ′) +O(p−1) ,

since Q0, x0(g0) = g0(x0) by (2.73). The expansion (2.83) (also for k = 1) takes
the form

(2.89) p−nTp, x0
∼= (g0(x0)Px0 +Q1, x0Px0 p

−1/2)(
√
pZ,
√
pZ ′) +O(p−1) ,

where we have used Proposition 2.23 and the definition (2.85) of g0. Thus, sub-
tracting (2.88) from (2.89) we obtain
(2.90)
p−n(Tp − Tg0, p)x0(Z,Z

′) ∼= ((Q1, x0 −Q1, x0(g0))Px0

)
(
√
pZ,
√
pZ ′) p−1/2 +O(p−1) .

Thus it suffices to prove:

(2.91) F1, x := Q1, x −Q1, x(g0) ≡ 0 .

which is done in [35, Lemma 4.18]. This finishes the proof of (2.86) and (2.87).
Hence the expansion (2.84) of Tp holds for m = 0. Moreover, if Tp is self-adjoint,
then from (4.70), (4.71) follows that g0 is also self-adjoint.

We show inductively that (2.84) holds for every m ∈ N. To handle (2.84) for
m = 1 let us consider the operator p(Tp−Ppg0Pp). The task is to show that p

(
Tp−

Tg0, p
)

satisfies the hypotheses of Theorem 2.22. The first two conditions are easily
verified. To prove the third, just subtract the asymptotics of Tp, x0(Z,Z

′) (given by
(2.83)) and Tg0, p, x0(Z,Z

′) (given by (2.71)). Taking into account Proposition 2.23
and (2.91), the coefficients of p0 and p−1/2 in the difference vanish, which yields
the desired conclusion. Proposition 2.23 and (2.87) applied to p(Tp−Ppg0Pp) yield
g1 ∈ C∞(X,End(E)) such that (2.84) holds true for m = 1.

We continue in this way the induction process to get (2.84) for any m. This
completes the proof of Theorem 2.22.
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Recall that the Poisson bracket { · , · } on (X, 2πω) is defined as follows. For
f, g ∈ C∞(X), let ξf be the Hamiltonian vector field generated by f , which is
defined by 2πiξfω = df . Then

(2.92) {f, g} := ξf (dg).

Theorem 2.24 ([35, Th. 1.1], [33, Th. 7.4.1]). The product of the Toeplitz oper-
ators Tf, p and Tg, p, with f, g ∈ C∞(X,End(E)), is a Toeplitz operator, i.e., it
admits the asymptotic expansion in the sense of (2.12):

(2.93) Tf, p Tg, p =
∞∑
r=0

p−rTCr(f,g), p +O(p−∞),

where Cr are bi-differential operators, Cr(f, g) ∈ C∞(X,End(E)), C0(f, g) = fg.
If f, g ∈ (C∞(X), {·, ·}) with the Poisson bracket defined in (2.92), we have

(2.94)
[
Tf, p , Tg, p

]
=

√−1

p
T{f, g}, p +O(p−2).

Proof. Firstly, it is obvious that Pp Tf, p Tg, p Pp = Tf, p Tg, p. Lemmas 2.18 and
2.19 imply Tf, p Tg, p verifies (2.82). Like in (2.75), we have for Z,Z ′ ∈ Tx0X,
|Z|, |Z ′| < ε/4:

(2.95) (Tf, p Tg, p)x0(Z,Z
′) =

∫
Tx0X

Tf, p, x0(Z,Z
′′)ρ(4|Z ′′|/ε)Tg, p, x0(Z

′′, Z ′)

× κx0(Z
′′) dvTX(Z ′′) + O(p−∞).

By Lemma 2.19 and (2.95), we deduce as in the proof of Lemma 2.19, that for
Z,Z ′ ∈ Tx0X, |Z|, |Z ′| < ε/4, we have

p−n(Tf, p Tg, p)x0(Z,Z
′) ∼=

k∑
r=0

(Qr, x0(f, g)Px0)(
√
pZ,
√
pZ ′)p−

r
2 +O(p−

k+1
2 ),

(2.96)

and with the notation (2.60),

Qr, x0(f, g) =
∑

r1+r2=r

K [Qr1, x0(f), Qr2, x0(g)].(2.97)

Thus Tf, p Tg, p is a Toeplitz operator by Theorem 2.22. Moreover, it follows from
the proofs of Lemma 2.19 and Theorem 2.22 that gl = Cl(f, g), where Cl are
bi-differential operators.

From (2.60), (2.73) and (2.97), we get

(2.98) C0(f, g)(x) = Q0, x(f, g) = K [Q0, x(f), Q0, x(g)] = f(x)g(x) .
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The commutation relation (2.94) follows from

(2.99) C1(f, g)(x)− C1(g, f)(x) =
√−1{f, g} IdE .

There are two ways to prove (2.99). One is to compute directly the difference
and to use some of the identities (2.66). This method works also for symplectic
manifolds, see [35, p. 593-4], [33, p. 311]. On the other hand, in the Kähler case one
can compute explicitly each coefficient C1(f, g) (which in the general symplectic
case is more involved), and then take the difference. The formula for C1(f, g) is
given in the next theorem. This finishes the proof of Theorem 4.2.

Theorem 2.25 ([36, Th. 0.3]). Let f, g ∈ C∞(X,End(E)). We have

C0(f, g) =fg,

C1(f, g) =− 1

2π

〈∇1,0f, ∂
E
g
〉
ω
∈ C∞(X,End(E)),

C2(f, g) = b2, f, g − b2, fg − b1, C1(f, g).

(2.100)

If f, g ∈ C∞(X), then

C2(f, g) =
1

8π2

〈
D1,0∂f,D0,1∂g

〉
+

√−1

4π2

〈
Ricω, ∂f ∧ ∂g

〉
− 1

4π2

〈
∂f ∧ ∂g,RE

〉
ω
.

(2.101)

The next result and Theorem 2.24 show that the Berezin-Toeplitz quantization
has the correct semi-classical behavior.

Theorem 2.26. For f ∈ C∞(X,End(E)), the norm of Tf, p satisfies

(2.102) lim
p→∞
‖Tf, p‖ = ‖f‖∞ := sup

06=u∈Ex, x∈X
|f(x)(u)|hE/|u|hE .

Proof. Take a point x0 ∈ X and u0 ∈ Ex0 with |u0|hE = 1 such that |f(x0)(u0)| =
‖f‖∞. Recall that in Section 2.4, we trivialized the bundles L, E in normal
coordinates near x0, and eL is the unit frame of L which trivializes L. Moreover,
in this normal coordinates, u0 is a trivial section of E. Considering the sequence
of sections Spx0

= p−n/2Pp(e
⊗p
L ⊗ u0), we have by (2.44),

(2.103)
∥∥Tf, p Spx0

− f(x0)Spx0

∥∥
L2 6

C√
p
‖Spx0
‖L2 ,

which immediately implies (2.102).

Note that if f is a real function, then df(x0) = 0, so we can improve the bound
Cp−1/2 in (2.103) to Cp−1.
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Remark 2.27. (i) Relations (2.94) and (2.102) were first proved in some special
cases: in [24] for Riemann surfaces, in [14] for Cn and in [8] for bounded symmetric
domains in Cn, by using explicit calculations. Then Bordemann, Meinrenken and
Schlichenmaier [7] treated the case of a compact Kähler manifold (with E = C)
using the theory of Toeplitz structures (generalized Szegö operators) by Boutet
de Monvel and Guillemin [9]. Moreover, Schlichenmaier [38] (cf. also [23], [13])
continued this train of thought and showed that for any f, g ∈ C∞(X), the prod-
uct Tf, p Tg, p has an asymptotic expansion (4.5) and constructed geometrically an
associative star product.

(ii) The construction of the star-product can be carried out even in the presence
of a twisting vector bundle E. Let f, g ∈ C∞(X,End(E)). Set

(2.104) f ∗~ g :=
∞∑
k=0

Ck(f, g)~k ∈ C∞(X,End(E))[[~]] ,

where Cr(f, g) are determined by (4.5). Then (2.104) defines an associative star-
product on C∞(X,End(E)) called Berezin-Toeplitz star-product (cf. [23, 38] for
the Kähler case with E = C and [33, 35] for the symplectic case and arbitrary
twisting bundle E). The associativity of the star-product (2.104) follows im-
mediately from the associativity rule for the composition of Toeplitz operators,
(Tf, p ◦Tg, p) ◦Tk, p = Tf, p ◦ (Tg, p ◦Tk, p) for any f, g, k ∈ C∞(X,End(E)), and from
the asymptotic expansion (4.5) applied to both sides of the latter equality.

The coefficients Cr(f, g), r = 0, 1, 2 are given by (2.100). Set

(2.105) {{f, g}} :=
1

2π
√−1

(〈∇1,0g, ∂
E
f〉ω − 〈∇1,0f, ∂

E
g〉ω
)
.

If fg = gf on X we have

(2.106)
[
Tf, p , Tg, p

]
=
√−1
p
T{{f,g}}, p +O(p−2

)
, p→∞.

Due to the fact that {{f, g}} = {f, g} if E is trivial and comparing (2.94) to
(2.106), one can regard {{f, g}} defined in (2.105) as a non-commutative Poisson
bracket.

2.7 Quantization of compact Hermitian manifolds

Throughout Sections 2.4-2.6 we supposed that the Riemannian metric gTX was
the metric associated to ω, that is, gTX(u, v) = ω(u, Jv) (or, equivalently, Θ = ω).
The results presented so far still hold for a general non-Kähler Riemannian metric
gTX .

Let us denote the metric associated to ω by gTXω := ω(·, J ·). The volume form
of gTXω is given by dvX,ω = (2π)−ndet(ṘL)dvX (where dvX is the volume form of

gTX). Moreover, hEω := det( Ṙ
L

2π
)−1hE defines a metric on E. We add a subscript
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ω to indicate the objects associated to gTXω , hL and hEω . Hence 〈 ·, ·〉ω denotes the
L2 Hermitian product on C∞(X,Lp ⊗ E) induced by gTXω , hL, hEω . This product
is equivalent to the product 〈 ·, ·〉 induced by gTX , hL, hE.

Moreover, H0(X,Lp ⊗ E) does not depend on the Riemannian metric on X
or on the Hermitian metrics on L, E. Therefore, the orthogonal projections from
(C∞(X,Lp ⊗ E), 〈 ·, ·〉ω) and (C∞(X,Lp ⊗ E), 〈 ·, ·〉) onto H0(X,Lp ⊗ E) are the
same. Hence Pp = Pp, ω and therefore Tf, p = Tf, p, ω as operators. However, their
kernels are different. If Pp, ω(x, x′), Tf, ω, p(x, x′), (x, x′ ∈ X), denote the smooth
kernels of Pp, ω, Tf, p, ω with respect to dvX,ω(x′), we have

Pp(x, x
′) = (2π)−ndet(ṘL)(x′)Pp, ω(x, x′) ,

Tf, p(x, x
′) = (2π)−ndet(ṘL)(x′)Tf, p, ω(x, x′) .

(2.107)

Now, for the kernel Pp, ω(x, x′), we can apply Theorem 2.14 since gTXω (·, ·) =
ω(·, J ·) is a Kähler metric on TX. We obtain in this way the expansion of
the Bergman kernel for a non-Kähler Riemannian metric gTX on X, see [33,
Th. 4.1.1, 4.1.3]. Of course, the coefficients br reflect in this case the presence of
gTX . For example

b0 = det(ṘL/(2π)) IdE,(2.108)

and

(2.109) b1 =
1

8π
det
(ṘL

2π

)[
rXω − 2∆ω

(
log(det(ṘL))

)
+ 4
√−1〈RE, ω〉ω

]
.

Using the expansion of the Bergman kernel Pp, ω(·, ·) we can deduce the expansion
of the Toeplitz operators Tf, p, ω and their kernels, analogous to Theorem 2.19,
Corollary 2.20 and Theorem 2.24. By (2.107), the coefficients of these expansion
satisfy

bf, r = (2π)−ndet(ṘL)bf, r, ω ,

Cr(f, g) = Cr, ω(f, g) .
(2.110)

Since X is compact, (2.107) allowed to reduce the general situation considered
here to the case ω = Θ and apply Theorem 2.16. However, if X is not compact,
the trick of using (2.107) does not work anymore, because the operator associated
to gTXω , hL, hEω might not have a spectral gap. But under the hypotheses of
Theorem 2.9 the spectral gap for Dp exists, so we can extend these results to
certain complete Hermitian manifolds in the next section.

2.8 Quantization of complete Hermitian manifolds

We return to the general situation of a complete manifold already considered in
§2.2. The following result, obtained in [34, Th. 3.11], extends the asymptotic
expansion of the Bergman kernel to complete manifolds.
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Theorem 2.28. Let (X,Θ) be a complete Hermitian manifold, (L, hL), (E, hE)
be Hermitian holomorphic vector bundles of rank one and r, respectively. Assume
that the hypotheses of Theorem 2.9 are fulfilled. Then the kernel Pp(x, x

′) has a full
off–diagonal asymptotic expansion analogous to that of Theorem 2.14 uniformly
for any x, x′ ∈ K, a compact set of X. If L = KX := det(T ∗(1,0)X) is the canonical
line bundle on X, the first two conditions in (5.5) are to be replaced by

hL is induced by Θ and
√−1Rdet < −εΘ,

√−1RE > −CΘ IdE .

The idea of the proof is that the spectral gap property (2.26) of Theorem 2.9
allows to generalize the analysis leading to the expansion in the compact case
(Theorems 2.13 and 2.14) to the situation at hand.

Remark 2.29. Consider for the moment that in Theorem 2.28 we have Θ =√−1
2π
RL. Since in the proof of Theorem 2.28 we use the same localization technique

as in the compact case, the coefficients Jr,x in the expansion of the Bergman
kernel (cf. (2.44)), in particular the coefficients br(x) = J2r,x(x) of the diagonal
expansion have the same universal formulas as in the compact case. Thus the
explicit formulas from Theorem 2.16 for b1 and b2 remain valid in the case of
the situation considered in Theorem 2.28. Moreover, in the general case when√−1

2π
RL > εΘ (for some constant ε > 0), the first formulas in (2.107) and (2.108),

(2.109) are still valid.

Let C∞const(X,End(E)) denote the algebra of smooth sections of X which are
constant map outside a compact set. For any f ∈ C∞const(X,End(E)), we con-
sider the Toeplitz operator (Tf, p)p∈N as in (2.9). The following result generalizes
Theorems 4.2 and 2.26 to complete manifolds.

Theorem 2.30 ([35, Th. 5.3]). Let (X,Θ) be a complete Hermitian manifold, let
(L, hL) and (E, hE) be Hermitian holomorphic vector bundles on X of rank one
and r, respectively. Assume that the hypotheses of Theorem 2.9 are fulfilled. Let
f, g ∈ C∞const(X,End(E)). Then the following assertions hold:

(i) The product of the two corresponding Toeplitz operators admits the asymptotic
expansion (4.5) in the sense of (2.12), where Cr are bi-differential operators,
especially, supp(Cr(f, g)) ⊂ supp(f) ∩ supp(g), and C0(f, g) = fg.

(ii) If f, g ∈ C∞const(X), then (2.94) holds.

(iii) Relation (2.102) also holds for any f ∈ C∞const(X,End(E)).

(iv) The coefficients Cr(f, g) are given by Cr(f, g) = Cr, ω(f, g), where ω =
√−1
2π
RL

(compare (2.110)).
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3 Berezin-Toeplitz quantization on Kähler orb-

ifolds

In this Section we review the theory of Berezin-Toeplitz quantization on Kähler
orbifolds, especially we show that set of Toeplitz operators forms an algebra. Note
that the problem of quantization of orbifolds appears naturally in the study of the
phenomenon of “quantization commutes to reduction”, since the reduced spaces
are often orbifolds, see e.g. [30], or in the problem of quantization of moduli spaces.

Complete explanations and references for Sections 3.1 and 3.2 are contained in
[33, §5.4], [35, §6]. Moreover, we treat there also the case of symplectic orbifolds.

This Section is organized as follows. In Section 3.1 we recall the basic defi-
nitions about orbifolds. In Section 3.2 we explain the asymptotic expansion of
Bergman kernel on complex orbifolds [15, §5.2], which we apply in Section 3.3 to
derive the Berezin-Toeplitz quantization on Kähler orbifolds.

3.1 Preliminaries about orbifolds

We begin by the definition of orbifolds. We define at first a category Ms as
follows : The objects ofMs are the class of pairs (G,M) where M is a connected
smooth manifold and G is a finite group acting effectively on M (i.e., if g ∈ G
such that gx = x for any x ∈ M , then g is the unit element of G). Consider two
objects (G,M) and (G′,M ′). For g ∈ G′, ϕ ∈ Φ, we define gϕ : M → M ′ by
(gϕ)(x) = g(ϕ(x)) for x ∈ M . A morphism Φ : (G,M) → (G′,M ′) is a family of
open embeddings ϕ : M →M ′ satisfying :

i) For each ϕ ∈ Φ, there is an injective group homomorphism λϕ : G → G′ that
makes ϕ be λϕ-equivariant.

ii) If (gϕ)(M) ∩ ϕ(M) 6= ∅, then g ∈ λϕ(G).

iii) For ϕ ∈ Φ, we have Φ = {gϕ, g ∈ G′}.
Definition 3.1 (Orbifold chart, atlas, structure). Let X be a paracompact Haus-
dorff space. An m-dimensional orbifold chart on X consists of a connected open
set U of X, an object (GU , Ũ) of Ms with dim Ũ = m, and a ramified covering

τU : Ũ → U which is GU -invariant and induces a homeomorphism U ' Ũ/GU .

We denote the chart by (GU , Ũ)
τU−→ U .

An m-dimensional orbifold atlas V on X consists of a family of m-dimensional
orbifold charts V(U) = ((GU , Ũ)

τU−→ U) satisfying the following conditions :

(i) The open sets U ⊂ X form a covering U with the property:

For any U,U ′ ∈ U and x ∈ U ∩ U ′, there exists U ′′ ∈ U
such that x ∈ U ′′ ⊂ U ∩ U ′.(3.1)
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(ii) For any U, V ∈ U , U ⊂ V there exists a morphism ϕV U : (GU , Ũ)→ (GV , Ṽ ),
which covers the inclusion U ⊂ V and satisfies ϕWU = ϕWV ◦ϕV U for any U, V,W ∈
U , with U ⊂ V ⊂ W .

It is easy to see that there exists a unique maximal orbifold atlas Vmax con-
taining V ; Vmax consists of all orbifold charts (GU , Ũ)

τU−→ U , which are locally
isomorphic to charts from V in the neighborhood of each point of U . A maximal
orbifold atlas Vmax is called an orbifold structure and the pair (X,Vmax) is called
an orbifold. As usual, once we have an orbifold atlas V on X we denote the
orbifold by (X,V), since V uniquely determines Vmax .

In Definition 3.1 we can replace Ms by a category of manifolds with an addi-
tional structure such as orientation, Riemannian metric, almost-complex structure
or complex structure. We impose that the morphisms (and the groups) preserve
the specified structure. So we can define oriented, Riemannian, almost-complex
or complex orbifolds.

Definition 3.2 (regular and singular set). Let (X,V) be an orbifold. For each

x ∈ X, we can choose a small neighborhood (Gx, Ũx) → Ux such that x ∈ Ũx
is a fixed point of Gx (it follows from the definition that such a Gx is unique
up to isomorphisms for each x ∈ X). We denote by |Gx| the cardinal of Gx.
If |Gx| = 1, then X has a smooth manifold structure in the neighborhood of x,
which is called a smooth point of X. If |Gx| > 1, then X is not a smooth manifold
in the neighborhood of x, which is called a singular point of X. We denote by
Xsing = {x ∈ X; |Gx| > 1} the singular set of X, and Xreg = {x ∈ X; |Gx| = 1}
the regular set of X.

It is useful to note that on an orbifold (X,V) we can construct partitions
of unity. First, let us call a function on X smooth, if its lift to any chart of the
orbifold atlas V is smooth in the usual sense. Then the definition and construction
of a smooth partition of unity associated to a locally finite covering carries over
easily from the manifold case. The point is to construct smooth GU -invariant
functions with compact support on (GU , Ũ).

Definition 3.3 (Orbifold Riemannian metric). Let (X,V) be an arbitrary orb-
ifold. A Riemannian metric on X is a Riemannian metric gTX on Xreg such that
the lift of gTX to any chart of the orbifold atlas V can be extended to a smooth
Riemannian metric.

Certainly, for any (GU , Ũ) ∈ V , we can always construct a GU -invariant Rie-

mannian metric on Ũ . By a partition of unity argument, we see that there exist
Riemannian metrics on the orbifold (X,V).

Definition 3.4. An orbifold vector bundle E over an orbifold (X,V) is defined

as follows : E is an orbifold and for any U ∈ U , (GE
U , p̃U : ẼU → Ũ) is a

GE
U -equivariant vector bundle and (GE

U , ẼU) (resp. (GU = GE
U/K

E
U , Ũ), where
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KE
U = ker(GE

U → Diffeo(Ũ))) is the orbifold structure of E (resp. X). If GE
U acts

effectively on Ũ for U ∈ U , i.e. KE
U = {1}, we call E a proper orbifold vector

bundle.

Note that any structure on X or E is locally Gx or GE
Ux

-equivariant.

Let E be an orbifold vector bundle on (X,V). For U ∈ U , let Ẽpr
U be the

maximal KE
U -invariant sub-bundle of ẼU on Ũ . Then (GU , Ẽ

pr
U ) defines a proper

orbifold vector bundle on (X,V), denoted by Epr.
The (proper) orbifold tangent bundle TX on an orbifold X is defined by

(GU , T Ũ → Ũ), for U ∈ U . In the same vein we introduce the cotangent bundle
T ∗X. We can form tensor products of bundles by taking the tensor products of
their local expressions in the charts of an orbifold atlas.

Let E → X be an orbifold vector bundle and k ∈ N ∪ {∞}. A section
s : X → E is called C k if for each U ∈ U , s|U is covered by a GE

U -invariant C k

section s̃U : Ũ → ẼU . We denote by C k(X,E) the space of C k sections of E on
X.

Integration on orbifolds. If X is oriented, we define the integral
∫
X
α for a

form α over X (i.e. a section of Λ(T ∗X) over X) as follows. If supp(α) ⊂ U ∈ U
set

(3.2)

∫
X

α :=
1

|GU |
∫

eU α̃U .
It is easy to see that the definition is independent of the chart. For general α we
extend the definition by using a partition of unity.

If X is an oriented Riemannian orbifold, there exists a canonical volume ele-
ment dvX on X, which is a section of Λm(T ∗X), m = dimX. Hence, we can also
integrate functions on X.

Metric structure on orbifolds. Assume now that the Riemannian orbifold
(X,V) is compact. We define a metric on X by setting for x, y ∈ X,

d(x, y) = Infγ

{∑
i

∫ ti
ti−1
| ∂
∂t
γ̃i(t)|dt

∣∣∣γ : [0, 1]→ X, γ(0) = x, γ(1) = y,

such that there exist t0 = 0 < t1 < · · · < tk = 1, γ([ti−1, ti]) ⊂ Ui,

Ui ∈ U , and a C∞ map γ̃i : [ti−1, ti]→ Ũi that covers γ|[ti−1,ti]

}
.

Then (X, d) is a metric space. For x ∈ X, set d(x,Xsing) := infy∈Xsing
d(x, y).

Kernels on orbifolds. Let us discuss briefly kernels and operators on orb-
ifolds. For any open set U ⊂ X and orbifold chart (GU , Ũ)

τU−→ U , we will

add a superscript ˜ to indicate the corresponding objects on Ũ . Assume that
K̃(x̃, x̃ ′) ∈ C∞(Ũ × Ũ , π∗1Ẽ ⊗ π∗2Ẽ∗) verifies

(g, 1)K̃(g−1x̃, x̃ ′) = (1, g−1)K̃(x̃, gx̃ ′) for any g ∈ GU ,(3.3)
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where (g1, g2) acts on Ẽex × Ẽ∗ex ′ by (g1, g2)(ξ1, ξ2) = (g1ξ1, g2ξ2).

We define the operator K̃ : C∞0 (Ũ , Ẽ)→ C∞(Ũ , Ẽ) by

(3.4) (K̃ s̃)(x̃) =

∫
eU K̃(x̃, x̃ ′)s̃(x̃ ′)dveU(x̃ ′) for s̃ ∈ C∞0 (Ũ , Ẽ) .

For s̃ ∈ C∞(Ũ , Ẽ) and g ∈ GU , g acts on C∞(Ũ , Ẽ) by: (g · s̃)(x̃) := g · s̃(g−1x̃).

We can then identify an element s ∈ C∞(U,E) with an element s̃ ∈ C∞(Ũ , Ẽ)
verifying g · s̃ = s̃ for any g ∈ GU .

With this identification, we define the operator K : C∞0 (U,E)→ C∞(U,E) by

(3.5) (Ks)(x) =
1

|GU |
∫

eU K̃(x̃, x̃ ′)s̃(x̃ ′)dveU(x̃ ′) for s ∈ C∞0 (U,E) ,

where x̃ ∈ τ−1
U (x). Then the smooth kernel K(x, x′) of the operator K with respect

to dvX is

K(x, x′) =
∑
g∈GU

(g, 1)K̃(g−1x̃, x̃ ′).(3.6)

Let K1,K2 be two operators as above and assume that the kernel of one of
K̃1, K̃2 has compact support. By (3.2), (3.3) and (3.5), the kernel of K1 ◦ K2 is
given by

(3.7) (K1 ◦ K2)(x, x′) =
∑
g∈GU

(g, 1)(K̃1 ◦ K̃2)(g−1x̃, x̃ ′).

3.2 Bergman kernel on Kähler orbifolds

In this section we study the asymptotics of the Bergman kernel on orbifolds.

Dolbeault cohomology of orbifolds. Let X be a compact complex orbifold of
complex dimension n with complex structure J . Let E be a holomorphic orbifold
vector bundle on X.

Let OX be the sheaf over X of local GU -invariant holomorphic functions over
Ũ , for U ∈ U . The local GE

U -invariant holomorphic sections of Ẽ → Ũ define a
sheaf OX(E) over X. Let H•(X,OX(E)) be the cohomology of the sheaf OX(E)
over X. Notice that by Definition, we have OX(E) = OX(Epr). Thus without lost
generality, we may and will assume that E is a proper orbifold vector bundle on
X.

Consider a section s ∈ C∞(X,E) and a local section s̃ ∈ C∞(Ũ , ẼU) covering

s. Then ∂
eEU
s̃ covers a section of T ∗(0,1)X ⊗E over U , denoted ∂

E
s|U . The family

of sections {∂Es|U : U ∈ U} patch together to define a global section ∂
E
s of

T ∗(0,1)X ⊗ E over X. In a similar manner we define ∂
E
α for a C∞ section α of

Λ(T ∗(0,1)X)⊗E over X. We obtain thus the Dolbeault complex (Ω0,•(X,E), ∂
E

) :

(3.8) 0 −→ Ω0,0(X,E)
∂
E

−→ · · · ∂
E

−→ Ω0,n(X,E) −→ 0.
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From the abstract de Rham theorem there exists a canonical isomorphism

H•(Ω0,•(X,E), ∂
E

) ' H•(X,OX(E)).(3.9)

In the sequel, we also denote H•(X,OX(E)) by H•(X,E).

Prequantum line bundles. We consider a complex orbifold (X, J) endowed
with the complex structure J . Let gTX be a Riemannian metric on TX compatible
with J . There is then an associated (1, 1)-form Θ given by Θ(U, V ) = gTX(JU, V ).
The metric gTX is called a Kähler metric and the orbifold (X, J) is called a Kähler
orbifold if Θ is a closed form, that is, dΘ = 0. In this case Θ is a symplectic form,
called Kähler form. We will denote the Kähler orbifold by (X, J,Θ) or shortly by
(X,Θ).

Let (L, hL) be a holomorphic Hermitian proper orbifold line bundle on an
orbifold X, and let (E, hE) be a holomorphic Hermitian proper orbifold vector
bundle on X.

We assume that the associated curvature RL of (L, hL) verifies (2.14), i.e.,
(L, hL) is a positive proper orbifold line bundle on X. This implies that ω :=√−1

2π
RL is a Kähler form on X, (X,ω) is a Kähler orbifold and (L, hL,∇L) is a

prequantum line bundle on (X,ω).
Note that the existence of a positive line bundle L on a compact complex

orbifold X implies that the Kodaira map associated to high powers of L gives a
holomorphic embedding of X in the projective space. This is the generalization
due to Baily of the Kodaira embedding theorem (see e.g. [33, Theorem 5.4.20]).

Hodge theory. Let gTX = ω(·, J ·) be the Riemannian metric on X induced by

ω =
√−1
2π
RL. Using the Hermitian product along the fibers of Lp, E, Λ(T ∗(0,1)X),

the Riemannian volume form dvX and the definition (3.2) of the integral on an
orbifold, we introduce an L2-Hermitian product on Ω0,•(X,Lp ⊗ E) similar to

(2.1). This allows to define the formal adjoint ∂
Lp⊗E,∗

of ∂
Lp⊗E

and the operators
Dp and �p as in (2.13) . Then D2

p preserves the Z-grading of Ω0,•(X,Lp ⊗ E).
We note that Hodge theory extends to compact orbifolds and delivers a canonical
isomorphism

(3.10) Hq(X,Lp ⊗ E) ' Ker(D2
p|Ω0,q).

Spectral gap. By the same proof as in [31, Theorems 1.1, 2.5], [6, Theorem 1],
we get vanishing results and the spectral gap property.

Theorem 3.5. Let (X,ω) be a compact Kähler orbifold, (L, hL) be a prequantum
holomorphic Hermitian proper orbifold line bundle on (X,ω) and (E, hE) be an
arbitrary holomorphic Hermitian proper orbifold vector bundle on X.
Then there exists C > 0 such that for any p ∈ N

(3.11) Spec(D2
p) ⊂ {0}∪ ]4πp− C,+∞[,
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and D2
p|Ω0,>0 is invertible for p large enough. Consequently, we have the Kodaira-

Serre vanishing theorem, namely, for p large enough,

(3.12) Hq(X,Lp ⊗ E) = 0 , for every q > 0.

Bergman kernel. As in §2.1, we define the Bergman kernel as the smooth kernel
with respect to the Riemannian volume form dvX(x′) of the orthogonal projection
(Bergman projection) Pp from C∞(X,Lp ⊗ E) onto H0(X,Lp ⊗ E).

Let dp = dimH0(X,Lp ⊗ E) and consider an arbitrary orthonormal basis

{Spi }dpi=1 of H0(X,Lp ⊗E) with respect to the Hermitian product (2.1) and (3.2).

In fact, in the local coordinate above, S̃pi (z̃) are Gx-invariant on Ũx, and

Pp(y, y
′) =

dp∑
i=1

S̃pi (ỹ)⊗ (S̃pi (ỹ′))∗,(3.13)

where we use ỹ to denote the point in Ũx representing y ∈ Ux.
Asymptotics of the Bergman kernel. The Bergman kernel on orbifolds has
an asymptotic expansion, which we now describe. We follow the same pattern
as in the smooth case. The spectral gap property (3.11) shows that we have the
analogue of Theorem 2.13, with the same F as given in (2.41):

(3.14) |Pp(x, x′)− F (Dp)(x, x
′)|Cm(X×X) 6 Cl,m,εp

−l.

As pointed out in [29], the property of the finite propagation speed of solutions
of hyperbolic equations still holds on an orbifold (see the proof in [33, Appendix
D.2]). Thus F (Dp)(x, x

′) = 0 for every for x, x′ ∈ X satisfying d(x, x′) > ε.
Likewise, given x ∈ X, F (Dp)(x, ·) only depends on the restriction of Dp to
BX(x, ε). Thus the problem of the asymptotic expansion of Pp(x, ·) is local.

For any compact set K ⊂ Xreg, the Bergman kernel Pp(x, x
′) has an asymptotic

expansion as in Theorem 2.14 by the same argument as in Theorem 2.13.
Let now x ∈ Xsing and let (GU , Ũ)

τU−→ U be an orbifold chart near x. We

recall that for every open set U ⊂ X and orbifold chart (GU , Ũ)
τU−→ U , we add

a superscript ˜ to indicate the corresponding objects on Ũ . Let ∂U = U \ U ,

U1 = {x ∈ U, d(x, ∂U) > ε}. Then F (D̃p)(x̃, x̃
′) is well defined for x̃, x̃ ′ ∈ Ũ1 =

τ−1
U (U1). Since g · F (D̃p) = F (D̃p)g, we get

(3.15) (g, 1)F (D̃p)(g
−1x̃, x̃′) = (1, g−1)F (D̃p)(x̃, gx̃

′) ,

for every g ∈ GU , x̃, x̃ ′ ∈ Ũ1. Formula (3.6) shows that for every x, x′ ∈ U1 and

x̃, x̃ ′ ∈ Ũ1 representing x, x′, we have

(3.16) F (Dp)(x, x
′) =

∑
g∈GU

(g, 1)F (D̃p)(g
−1x̃, x̃ ′).
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In view of (3.16), the strategy is to use the expansion for F (D̃p)(·, ·) in order
to deduce the expansion for F (Dp)(·, ·) and then for Pp(·, ·), due to (3.14). In the
present situation the kernel P takes the form

(3.17) P(Z̃, Z̃ ′) = exp
(
− π

2

∑
i

(|z̃i|2 + |z̃′i|2 − 2z̃iz̃
′
i

))
.

For details we refer to [33, § 5.4.3].

3.3 Berezin-Toeplitz quantization on Kähler orbifolds

We apply now the results of Section 3.2 to establish the Berezin-Toeplitz quantiza-
tion on Kähler orbifolds. We use the notations and assumptions of that Section.

Toeplitz operators on orbifolds. We define Toeplitz operators as a family
{Tp} of linear operators Tp : L2(X,Lp ⊗ E) −→ L2(X,Lp ⊗ E) satisfying the
conditions from Definition 2.4.

For any section f ∈ C∞(X,End(E)), the Berezin-Toeplitz quantization of f is
defined by

(3.18) Tf, p : L2(X,Lp ⊗ E) −→ L2(X,Lp ⊗ E) , Tf, p = Pp f Pp .

Now, by the same argument as in Lemma 2.18, we get

Lemma 3.6. For any ε > 0 and any l,m ∈ N there exists Cl,m,ε > 0 such that

(3.19) |Tf, p(x, x′)|Cm(X×X) 6 Cl,m,εp
−l

for all p > 1 and all (x, x′) ∈ X × X with d(x, x′) > ε, where the Cm-norm is
induced by ∇L,∇E and hL, hE, gTX .

As in Section 2.5 we obtain next the asymptotic expansion of the kernel
Tf, p(x, x

′) in a neighborhood of the diagonal.
We need to introduce the appropriate analogue of the condition introduced in

the Notation 2.12 in the orbifold case, in order to take into account the group
action associated to an orbifold chart. Let {Θp}p∈N be a sequence of linear op-
erators Θp : L2(X,Lp ⊗ E) −→ L2(X,Lp ⊗ E) with smooth kernel Θp(x, y) with
respect to dvX(y).

Condition 3.7. Let k ∈ N. Assume that for every open set U ∈ U and every
orbifold chart (GU , Ũ)

τU−→ U , there exists a sequence of kernels {Θ̃p,U(x̃, x̃ ′)}p∈N
and a family {Qr, x0}06r6k, x0∈X such that

(a) Qr, x0 ∈ End(E)x0 [Z̃, Z̃
′] ,

(b) {Qr, x0}r∈N, x0∈X is smooth with respect to the parameter x0 ∈ X,
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(c) for every fixed ε′′ > 0 and every x̃, x̃ ′ ∈ Ũ the following holds

(g, 1)Θ̃p,U(g−1x̃, x̃ ′) = (1, g−1)Θ̃p,U(x̃, gx̃ ′) for any g ∈ GU (cf. (3.15)),

Θ̃p,U(x̃, x̃ ′) = O(p−∞) for d(x, x′) > ε′′,

Θp(x, x
′) =

∑
g∈GU

(g, 1)Θ̃p,U(g−1x̃, x̃ ′) + O(p−∞),

(3.20)

and moreover, for every relatively compact open subset Ṽ ⊂ Ũ , the relation
(3.21)

p−n Θ̃p,U,ex0(Z̃, Z̃
′) ∼=

k∑
r=0

(Qr, ex0Pex0)(
√
pZ̃,
√
pZ̃ ′)p−

r
2 +O(p−

k+1
2 ), for x̃0 ∈ Ṽ ,

holds in the sense of (2.38).

Notation 3.8. If the sequence {Θp}p∈N satisfies Condition 3.7, we write

(3.22) p−n Θp, x0(Z,Z
′) ∼=

k∑
r=0

(Qr, x0Px0)(
√
pZ,
√
pZ ′)p−

r
2 +O(p−

k+1
2 ) .

Note that although the Notations 3.8 and 2.12 are formally similar, they have
different meaning.

Lemma 3.9. The smooth family Qr, x0 ∈ End(E)x0 [Z̃, Z̃
′] in Condition 3.7 is

uniquely determined by Θp.

Proof. Clearly, for W ⊂ U , the restriction of Θ̃p,U to W̃ × W̃ verifies (3.20), thus

we can take Θ̃p,W = Θ̃p,U |fW×fW . Since GU acts freely on τ−1
U (Ureg) ⊂ Ũ , we deduce

from (3.20) and (3.21) that

Θp, x0(Z,Z
′) = Θ̃p, U, ex0(Z̃, Z̃

′) + O(p−∞) ,(3.23)

for every x0 ∈ Ureg and |Z̃|, |Z̃ ′| small enough. We infer from (3.21) and (3.23)

that Qr, x0 ∈ End(E)x0 [Z̃, Z̃
′] is uniquely determined for x0 ∈ Xreg . Since Qr, x0

depends smoothly on x0, its lift to Ũ is smooth. Since the set τ−1
U (Ureg) is dense

in Ũ , we see that the smooth family Qr, x0 is uniquely determined by Θp.

Lemma 3.10. There exist polynomials Jr, x0 , Qr,x0(f) ∈ End(E)x0 [Z̃, Z̃
′] so that

Theorem 2.14, Lemmas 2.18, 2.19 and (2.78) still hold under the notation (3.22).
Moreover,

(3.24) J0, x0 = IdE, J1, x0 = 0.
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Proof. The analogues of Theorems 2.13-2.14 for the current situation and (3.15),
(3.16) show that Theorem 2.14 and Lemmas 2.18, 2.19 still hold under the notation
(3.22). By (2.49), we have O1 = 0. Hence (2.52) entails (3.24). Moreover, (3.14)
implies

Tf, p(x, x
′) =

∫
X

F (Dp)(x, x
′′)f(x′′)F (Dp)(x

′′, x′)dvX(x′′) + O(p−∞).(3.25)

Therefore, we deduce from (3.7), (3.15), (3.16) and (3.25) that Lemmas 2.19 and
(2.78) still hold under the notation (3.22).

We have therefore orbifold asymptotic expansions for the Bergman and Toeplitz
kernels, analogues to those for smooth manifolds. Following the strategy used in
§2.6 we can prove a characterization of Toeplitz operators as in Theorem 2.22 (see
[35, Th. 6.11]).

Proceeding as in §2.6 we can show that the set of Toeplitz operators on a
compact orbifold is closed under the composition of operators, so forms an algebra.

Theorem 3.11 ([35, Th. 6.13]). Let (X,ω) be a compact Kähler orbifold and let
(L, hL) be a holomorphic Hermitian proper orbifold line bundle satisfying the pre-
quantization condition (2.14). Let (E, hE) be an arbitrary holomorphic Hermitian
proper orbifold vector bundle on X.

Consider f, g ∈ C∞(X,End(E)). Then the product of the Toeplitz opera-
tors Tf, p and Tg, p is a Toeplitz operator, more precisely, it admits an asymptotic
expansion in the sense of (2.11), where Cr(f, g) ∈ C∞(X,End(E)) and Cr are bi-

differential operators defined locally as in (2.93) on each covering Ũ of an orbifold

chart (GU , Ũ)
τU−→ U . In particular C0(f, g) = fg.

If f, g ∈ C∞(X), then (2.94) holds.
Relation (2.102) also holds for any f ∈ C∞(X,End(E)).

Remark 3.12. As in Remark 2.27, Theorem 3.11 shows that on every compact
Kähler orbifold X admitting a prequantum line bundle (L, hL), we can define in
a canonical way an associative star-product

(3.26) f ∗~ g =
∞∑
l=0

~lCl(f, g) ∈ C∞(X,End(E))[[~]]

for every f, g ∈ C∞(X,End(E)), called the Berezin-Toeplitz star-product . More-
over, Cl(f, g) are bi-differential operators defined locally as in the smooth case.

4 Quantization of symplectic manifolds

We will briefly describe in this Section how to generalize the ideas used before
in the Kähler case in order to study the Toeplitz operators and Berezin-Toeplitz
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quantization for symplectic manifolds. For details we refer the reader to [33, 35].
We recall in Section 4.1 the definition of the spinc Dirac operator and formulate
the spectral gap property for prequantum line bundles. In Section 4.2 we state
the asymptotic expansion of the composition of Toeplitz operators.

4.1 Spectral gap of the spinc Dirac operator

We will first show that in the general symplectic case the kernel of the spinc

operator is a good substitute for the space of holomorphic sections used in Kähler
quantization.

Let (X,ω) be a compact symplectic manifold, dimRX = 2n, with compatible
almost complex structure J : TX → TX. Let gTX be the associated Rieman-
nian metric compatible with ω, i.e., gTX(u, v) = ω(u, Jv). Let (L, hL,∇L) → X
be Hermitian line bundle, endowed with a Hermitian metric hL and a Hermitian
connection ∇L, whose curvature is RL = (∇L)2. We assume that the prequanti-
zation condition (2.14) is fulfilled. Let (E, hE,∇E) → X be a Hermitian vector
bundle. We will be concerned with asymptotics in terms of high tensor powers
Lp ⊗ E, when p→∞, that is, we consider the semi-classical limit ~ = 1/p→ 0.

Let ∇det be the connection on det(T (1,0)X) induced by the projection of the
Levi-Civita connection ∇TX on T (1,0)X. Let us consider the Clifford connec-
tion ∇Cliff on Λ•(T ∗(0,1)X) associated to ∇TX and to the connection ∇det on
det(T (1,0)X) (see e.g. [33, § 1.3]). The connections ∇L, ∇E and ∇Cliff induce
the connection

∇p = ∇Cliff ⊗ Id + Id⊗∇Lp⊗E on Λ•(T ∗(0,1)X)⊗ Lp ⊗ E.

The spinc Dirac operator is defined by

(4.1) Dp =
2n∑
j=1

c(ej)∇p,ej : Ω0,•(X,Lp ⊗ E) −→ Ω0,•(X,Lp ⊗ E) .

where {ej}2n
j=1 local orthonormal frame of TX and c(v) =

√
2(v∗1,0 ∧ −iv 0,1) is

the Clifford action of v ∈ TX. Here we use the decomposition v = v 1,0 + v 0,1,
v 1,0 ∈ T (1,0)X, v 0,1 ∈ T (0,1)X.

If (X, J, ω) is Kähler then Dp =
√

2(∂ + ∂
∗
) so Ker(Dp) = H0(X,Lp ⊗ E) for

p � 1. The following result shows that Ker(Dp) has all semi-classical properties
of H0(X,Lp ⊗E). The proof is based on a direct application of the Lichnerowicz
formula for D2

p. Note that the metrics gTX , hL and hE induce an L2-scalar product

on Ω0,•(X,Lp ⊗ E), whose completion is denoted (Ω0,•
(2)(X,L

p ⊗ E), ‖ · ‖L2).

Theorem 4.1 ([31, Th. 1.1, 2.5], [33, Th. 1.5.5]). There exists C > 0 such that for
any p ∈ N and any s ∈⊕k>0 Ω0,k(X,Lp ⊗ E) we have

(4.2) ‖Dps‖2
L2 ≥ (4πp− C)‖s‖2

L2 .
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Moreover, the spectrum of D2
p verifies

Spec(D2
p) ⊂ {0} ∪ [4πp− C,+∞[ .(4.3)

By the Atiyah-Singer index theorem we have for p� 1

(4.4) dim Ker(Dp) =

∫
X

Td(T (1,0)X) ch(Lp ⊗ E) = rk(E)
pn

n!

∫
X

ωn +O(pn−1) .

Theorem 4.1 shows the forms in Ker(Dp) concentrate asymptotically in the L2

sense on their zero-degree component and (4.4) shows that dim Ker(Dp) is a poly-
nomial in p of degree n, as in the holomorphic case.

4.2 Toeplitz operators in spinc quantization

Let us introduce the orthogonal projection Pp : Ω0,•
(2)(X,L

p ⊗ E) −→ Ker(Dp),
called the Bergman projection in analogy to the Kähler case. Its integral kernel is
called Bergman kernel . The Toeplitz operator with symbol f ∈ C∞(X,End(E))
is

Tf,p : Ω0,•
(2)(X,L

p ⊗ E)→ Ω0,•
(2)(X,L

p ⊗ E) , Tf,p = PpfPp

In analogy to the Kähler case we define a (generalized) Toeplitz operator is a se-
quence (Tp) of linear operators Tp ∈ End(Ω0,•

(2)(X,L
p⊗E)) verifying Tp = Pp Tp Pp ,

such that there exist a sequence gl ∈ C∞(X,End(E)) with the property that for
all k ≥ 0, there exists Ck > 0 so that (2.11) is fulfilled.

A basic fact is that the Bergman kernel Pp(·, ·) of the Dirac operator has an
asymptotic expansion similar to Theorems 2.13 and 2.14. This was shown by Dai-
Liu-Ma in [15, Prop. 4.1 and Th. 4.18′] (see also [33, Th. 8.1.4]). By the Bergman
kernel expansion of Dai-Liu-Ma we obtain the expansion of the integral kernels of
Tf, p , similar to Theorem 2.19. Moreover, the characterization of Toeplitz oper-
ators in terms of the off-diagonal asymptotic expansion of their integral kernels,
formulated in Theorem 2.22, holds also in the symplectic case (cf. [35, Th. 4.9],
[33, Lemmas 7.2.2, 7.2.4, Th. 7.3.1]). We obtain thus the symplectic analogue of
Theorem 2.24.

Theorem 4.2 ([35, Th. 1.1], [33, Th. 8.1.10]). Let f, g ∈ C∞(X,End(E)). The
composition (Tf, p ◦ Tg, p) is a Toeplitz operator, i.e.,

(4.5) Tf, p ◦ Tg, p =
∞∑
r=0

p−rTCr(f, g), p +O(p−∞),

where Cr are bi-differential operators, C0(f, g) = fg and Cr(f, g) ∈ C∞(X,End(E)).
Let f, g ∈ C∞(X) and let {·, ·} be the Poisson bracket on (X, 2πω), defined as in
(2.92). Then

(4.6) C1(f, g)− C1(g, f) =
√−1{f, g} IdE,
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and therefore

(4.7)
[
Tf, p , Tg, p

]
=

√−1

p
T{f, g}, p +O(p−2).

Thus the construction of the Berezin-Toeplitz star-product can be carried out
also in the case of symplectic manifolds. Namely, for f, g ∈ C∞(X,End(E)) we set
f ∗~ g :=

∑∞
k=0 Ck(f, g)~k ∈ C∞(X,End(E))[[~]], where Cr(f, g) are determined

by (4.5). Then ∗~ is an associative star product.
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Boston, Boston, MA, 1999, pp. 1– 23.

[13] L. Charles, Berezin-Toeplitz operators, a semi-classical approach, Comm.
Math. Phys. 239 (2003), 1–28.

[14] L. A. Coburn, Deformation estimates for the Berezin-Toeplitz quantization,
Comm. Math. Phys. 149 (1992), no. 2, 415–424.

[15] X. Dai, K. Liu, and X. Ma, On the asymptotic expansion of Bergman kernel,
J. Differential Geom. 72 (2006), 1– 41; announced in C. R. Math. Acad. Sci.
Paris 339 (2004), no. 3, 193–198.

[16] S. K. Donaldson, Some numerical results in complex differential geometry,
Pure Appl. Math. Q. 5 (2009), No. 2, 571– 618.

[17] M. R. Douglas, S. Klevtsov, Bergman kernel from path integral, Comm. Math.
Phys. 293 (2010), 205–230.

[18] , Black holes and balanced metrics, arXiv: 0811.0367.

[19] B. V. Fedosov, Deformation quantization and index theory, Mathematical
Topics, 9, Akademie Verlag, Berlin, 1996.

[20] J. Fine, Calabi flow and projective embeddings, with an Appendix by K. Liu
and X. Ma, J. Differential Geom. 84 (2010), 489-523.

[21] , Quantisation and the Hessian of Mabuchi energy, arXiv: 1009.4543.

[22] P. Halmos, V. S. Sunder, Bounded integral operators on L2 spaces, Ergeb-
nisse der Mathematik und ihrer Grenzgebiete, 96, Springer-Verlag, Berlin-
New York, 1978.

[23] A. V. Karabegov and M. Schlichenmaier, Identification of Berezin-Toeplitz
deformation quantization, J. Reine Angew. Math. 540 (2001), 49–76.

[24] S. Klimek and A. Lesniewski, Quantum Riemann surfaces. I. The unit disc,
Comm. Math. Phys. 146 (1992), no. 1, 103–122.

[25] B. Kostant, Quantization and unitary representations. I. Prequantization,
Lectures in modern analysis and applications, III, Springer, Berlin, 1970,
pp. 87–208. Lecture Notes in Math., Vol. 170.



Berezin-Toeplitz quantization and its kernel expansion 165

[26] K. Liu and X. Ma, A remark on ‘some numerical results in complex differ-
ential geometry’, Math. Res. Lett. 14 (2007), no. 2, 165–171.

[27] , Asymptotic of the operators Qk, (2008), Appendix to [20].

[28] Z. Lu, On the lower order terms of the asymptotic expansion of Tian-Yau-
Zelditch, Amer. J. Math. 122 (2000), no. 2, 235–273.

[29] X. Ma, Orbifolds and analytic torsions, Trans. Amer. Math. Soc. 357 (2005),
no. 6, 2205–2233.

[30] X. Ma, Geometric quantization on Kähler and symplectic manifolds, Interna-
tional Congress of Mathematicians, vol. II, Hyderabad, India, August 19-27
(2010), 785–810.

[31] X. Ma and G. Marinescu, The spinc Dirac operator on high tensor powers of
a line bundle, Math. Z. 240 (2002), no. 3, 651–664.

[32] , The first coefficients of the asymptotic expansion of the Bergman
kernel of the spinc Dirac operator, Internat. J. Math. 17 (2006), no. 6, 737–
759.

[33] , Holomorphic Morse inequalities and Bergman kernels, Progress in
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[46] S. Zelditch, Szegö kernels and a theorem of Tian, Internat. Math. Res. Notices
(1998), 317–331.

Xiaonan Ma
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