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BERGMAN KERNELS AND SYMPLECTIC REDUCTION

Xiaonan Ma, Weiping Zhang

Abstract. — We generalize several recent results concerning the asymptotic ex-
pansions of Bergman kernels to the framework of geometric quantization and estab-
lish an asymptotic symplectic identification property. More precisely, we study the
asymptotic expansion of the G-invariant Bergman kernel of the spin® Dirac operator
associated with high tensor powers of a positive line bundle on a symplectic manifold
admitting a Hamiltonian action of a compact connected Lie group G. We also develop
a way to compute the coefficients of the expansion, and compute the first few of them,
especially, we obtain the scalar curvature of the reduction space from the G-invariant
Bergman kernel on the total space. These results generalize the corresponding results
in the non-equivariant setting, which have played a crucial role in the recent work of
Donaldson on stability of projective manifolds, to the geometric quantization setting.

As another kind of application, we establish some Toeplitz operator type properties
in semi-classical analysis in the framework of geometric quantization.

The method we use is inspired by Local Index Theory, especially by the analytic
localization techniques developed by Bismut and Lebeau.



Résumé. — Nous généralisons des résultats récents sur le développement asymp-
totique du noyau de Bergman au cadre de quantification géométrique, et établissons
une propriété d’identification asymptotique symplectique. Plus précisement, nous
étudions le développement asymptotique du noyau de Bergman G-invariant de
I'opérateur de Dirac spin® associé & une puissance tendant vers 'infini d’un fibré en
droites positif sur une variété symplectique compacte munie d’une action hamiltoni-
enne d’'un groupe de Lie compact connexe. Nous développons aussi une fagon pour
calculer les coéfficients du développement, et nous calculons les premiers termes, en
particulier, nous obtennons la courbure scalaire de la réduction symplectique a partir
du noyau de Bergman G-invariant sur ’espace total. Ces résultats généralisent les
résultats correspondants dans le cas non-équivariant, qui ont joué un réle crucial
dans un travail récent de Donaldson sur la stabilité de variétés projectives, au cadre
de quantification géométrique.

Comme une application de notre développement, nous établissons aussi des pro-
priétés de type de l'opérateur de Toeplitz en limite semi-classique dans le cadre de
quantification géométrique.

Notre méthode est inspirée par la théorie de 'indice local, en particulier les tech-
niques de localisation analytique développé par Bismut-Lebeau.



Dedicated to our teacher Jean-Michel Bismut






CONTENTS

0. Introduction. ... ... ... e 1
1. Connections and Laplacians associated to a principal bundle........ 15
1.1. Connections associated to a principal bundle............................. 15
1.2. Curvatures and Laplacians associated to a principal bundle.............. 17
2. G-invariant Bergman kernels............ .. ... . . i 21
2.1, CasSimir OPEIratOr. ..\ttt ettt et et et e e e 22
2.2, Spin® Dirac Operator. . ... ... ui ittt e e 23
2.3. G-invariant Bergman kernel........ ... ... . i 25
2.4. Localization of the problem and proof of Theorem 0.1................... 27
2.5. Induced operator on U/G....... ... 32
2.6. Rescaling and a Taylor expansion of the operator ®£,®~1............... 33
2.7. Uniform estimate on the G-invariant Bergman kernel.................... 41
2.8. Evaluation of Jyy...oooonii 53
2.9. Proof of Theorem 0.2.. ... ...t 54
3. Evaluation of PU) ... ... .. . . . . 57
3.1, Spectrum of 5 ..o 57
3.2. Evaluation of P("): a proof of (0.12) and (0.13)..............cocvviiin.n. 60
3.3. Aformula for O ... 62
3.4, Example (CPY 2WEG) ..ttt 67
4. Applications. ... ... 71
4.1, Orbifold CaSE. ..ottt 71
4.2. 9-weight Bergman kernel on X ........ ... . i 74
4.3. Averaging the Bergman kernel: a direct proof of (0.15) and (0.16)....... 76
4.4. Berezin-Toeplitz quantization........... .. ... o i 79
4.5. Toeplitz operators on X . ..oouveint i e 85
4.6. Generalization to non-compact manifolds................ ... ... ... .... 90

4.7. Relation on the Bergman kernel on X¢g.......ooooooiiiiiiiii it 92



iv CONTENTS

5. Computing the coefficient ®;.......... ... ... 95
5.1. The second fundamental form of P............ ... ... ... . ... . ... 96
5.2. The operators O1, Oz in (2.102). ..ot 98
5.3. Computation of the coefficient ®1.......... ... 112
5.4. Final computations: the proof of Theorem 0.6........................... 122
5.5. Coeflicient ®1: general case......... ..o 124

6. The coefficient P™)(0,0).........c.oimii i, 127
6.1. The terms \1’171, \1’173, \1’174 ................................................ 127
6.2. The term Wy o . oo 132
6.3. Proof of Theorem 0.7..... ..o e 145

7. Bergman kernel and geometric quantization................. ... ... 147

Bibliography .. ... 149



CHAPTER 0

INTRODUCTION

The study of the Bergman kernel is a classical subject in the theory of several
complex variables, where usually it concerns the kernel function of the projection
operator to an infinite dimensional Hilbert space. The recent interest of the analogue
of this concept in complex geometry mainly started with the paper of Tian [43], which
was in turn inspired by a question of Yau [46]. Here, the projection concerned is,
however, onto a finite dimensional space.

Since [43], the Bergman kernel has been studied extensively in [38], [14], [47],
[25], where the diagonal asymptotic expansion properties for high powers of an ample
line bundle were established. Moreover, the coefficients in the asymptotic expansion
encode geometric information of the underlying complex projective manifolds. This
asymptotic expansion plays a crucial role in the recent work of Donaldson [18], where
the existence of Kahler metrics with constant scalar curvature is shown to be closely
related to the Chow-Mumford stability.

In [17], [28], [30], Dai, Liu, Ma and Marinescu studied the full off-diagonal asymp-
totic expansion of the (generalized) Bergman kernel of the spin® Dirac operator and
the renormalized Bochner—Laplacian associated to a positive line bundle on a com-
pact symplectic manifold. As a by product, they gave a new proof of the results
mentioned in the previous paragraph. They found also various applications therein,
especially as was pointed out in [30], the full off-diagonal asymptotic expansion im-
plies Toeplitz operator type properties. This approach is inspired by the Local Index
Theory, especially by the analytic localization techniques of Bismut-Lebeau [7, §11].
We refer to the above papers as well as the recent book [31] for detail informations
of the Bergman kernel on compact symplectic manifolds.

In this paper, we generalize some of the results in [17], [28] and [30] to the frame-
work of geometric quantization, by studying the asymptotic expansion of the G-
invariant Bergman kernel for high powers of an ample line bundle on symplectic
manifolds admitting a Hamiltonian group action of a compact Lie group G.
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To start with, let (X,w) be a compact symplectic manifold of real dimension 2n.
Assume that there exists a Hermitian line bundle L over X endowed with a Hermitian
connection V¥ with the property that

v—1
0.]. —RL = W
(0.1) 5

)

where RY = (V)2 is the curvature of V%,

Let (E,h*) be a Hermitian vector bundle on X equipped with a Hermitian con-
nection V¥ and let RF denote the associated curvature.

Let ¢7X be a Riemannian metric on X. Let J : TX — TX be the skew-adjoint
linear map which satisfies the relation

(0.2) w(u,v) = g"* (Ju,v)
for u,v e TX.
Let J be an almost complex structure such that
(0.3) 9" (Ju, Jv) = g™ (w,0),  w(Ju, Jv) = w(u,v)

and that w(-,J-) defines a metric on TX. Then J commutes with J and J =
J(=J%)71/2 (cf. (2.8)).

Let VTX be the Levi-Civita connection on (TX, ¢7X) with curvature RTX and
scalar curvature 7X. The connection V7¥ induces a natural connection V94 on
det(T™0 X) with curvature R, and the Clifford connection VI on the Clifford
module A(T*(®VX) with curvature R (cf. Section 2.2).

The spin® Dirac operator D, acts on Q**(X,LP @ E) = @._, Q*(X,LP @ E),
the direct sum of spaces of (0, g)—forms with values in LP ® E. We denote by D;r the
restriction of D), on Q%*V**(X, L? ® E). The index of D} is defined by

(0.4) Ind(D;) = Ker D} — Coker D;f".

Let G be a compact connected Lie group with Lie algebra g and dimg G = ny.
Suppose that G acts on X and its action on X lifts on L and E. Moreover, we
assume the G-action preserves the above connections and metrics on TX, L, E and
J. Then Ind(Dj}) is a virtual representation of G. Denote by (Ker D)%, Ind(D; )
the G-trivial components of Ker D, Ind(D;,r ) respectively.

The action of G on L induces naturally a moment map u : X — g* (cf. (2.16)).
We assume that 0 € g* is a regular value of p.

Set P = p~%(0). Then the Marsden-Weinstein symplectic reduction (Xg =
P/G,wx,) is a symplectic orbifold (X¢ is smooth if G acts freely on P).

Moreover, (L, VL), (E, V) descend to (Lg, VE€), (Eg, VF¢) over X¢ so that the
corresponding curvature condition %RLG = wg holds (cf. [21]). The G-invariant
almost complex structure J also descends to an almost complex structure Jg on T'X¢,
and h', h¥ gTX descend to hlo, hPc gTXc respectively.

One can construct the corresponding spin® Dirac operator D¢g , on Xg.
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Assume for simplicity that G acts freely on P.
The geometric quantization conjecture of Guillemin-Sternberg [21] can be stated
as follows: for any p > 0,

(0.5) dim (Ind(D;)%) = dim (Ind(Dé,p)) :

holds when E is the trivial bundle C on X.

When G is abelian, this conjecture was proved by Meinrenken [34] and Vergne [45].
The remaining nonabelian case was proved by Meinrenken [35] using the symplectic
cut techniques of Lerman, and by Tian and Zhang [44] using analytic localization
techniques.

More generally, by a result of Tian and Zhang [44, Theorem 0.2], for any general
vector bundle E as above, there exists py > 0 such that for any p > pg, (0.5) still
holds.

On the other hand, by [27, Theorem 2.5] (cf. (2.15)), which is a direct consequence
of the Lichnerowicz formula for D), for p large enough, both Coker DZ",' and Coker Da »
are null (cf. also [10], [13]). Thus there exists pg > 0 such that for any p > po,

dim(Ker D,,))¢ = dim(Ker Dg ,,) = dim (Ind(Dé,p))
= / Td(TX¢) ch(LY, ® Eg)
Xa

00 g [ atar

(n —mno)!

+ (et + a1 xe) EEED i ),

where ch(-),¢1(+), Td(-) are the Chern character, the first Chern class and the Todd
class of the corresponding complex vector bundles (7' X is a complex vector bundle
with complex structure Jg).

Set E,, := A(T*OVX)® LP@E. Let { ) be the L?-scalar product on Q**(X, LP ®
E) = ¢~ (X, E,) induced by ¢g7% hL A% asin (1.19).

Let BS be the orthogonal projection from (Q%*(X,LP ® E),( )) on (Ker D,)°.
The G-invariant Bergman kernel is P& (x,2”) (z,2" € X), the smooth kernel of P&
with respect to the Riemannian volume form dvx (z').

Let pry and pr, be the projections from X x X onto the first and the second factor
X respectively. Then P (z,2) is a smooth section of pri(Ep) ® pr3(Ej;) on X x X.
In particular, PS¢ (z,2) € End(Ep), = End(A(T**VX) ® E),.

The G-invariant Bergman kernel PS(x,2”) is an analytic version of (Ker D,)¢. In
view of (0.6), it is natural to expect that the kernel PS (x,2”) should be closely related
to the corresponding Bergman kernel on the symplectic reduction X. The purpose
of this paper is to study the asymptotic expansion of the G-invariant Bergman kernel
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PpG (z,2") as p — 00, and we will relate it to the asymptotic expansion of the Bergman
kernel on the symplectic reduction X¢.

Let d*(z,2") be the Riemannian distance between x, 2’ € X.

In Section 2.4, we prove the following result which allows us to reduce our problem
as a problem near P = p~1(0), it works without the assumption on the freeness of
the action of G on P.

Theorem 0.1. — For any open G-neighborhood U of P in X, g9 > 0, l,m € N, there
exists Cpm > 0 (depending on U, g¢) such that for p > 1, z,2" € X,dX(Gx,2') > &g
orx,x’ € X\U,

(0.7) | P& (x, ") !

em < Cimpd™ ',

where €™ is the €™-norm induced by VE,VE, VTX hl hE and gT¥.

Let U be an open G-neighborhood of 11~1(0) such that G acts freely on U.

For any G-equivariant vector bundle (F, V%) on U, we denote by Fp the bundle
on U/G = B induced naturally by G-invariant sections of F' on U. The connection
V¥ induces canonically a connection V2 on Fp. Let RF? be its curvature. Let

(0.8) pf(K) = VEx — Lix € End(F)

for K € g and KX the corresponding vector field on U.

Note that P{ € (6°°(U x U,priE, ® pr3E;))*¢, thus we can view PY(z, ')
(z, ' € U) as a smooth section of pri(Ey,)p @ pry(E;)p on B x B.

Let g2 be the Riemannian metric on U/G = B induced by g7X. Let VIE be
the Levi-Civita connection on (7'B, g7?) with curvature RTZ. Let Ng be the normal
bundle to X¢ in B. We identify Ng with the orthogonal complement of T'X¢ in
(TB|XG ) gTB)'

Let ¢7X¢, gNe be the metrics on T X, Ng induced by g7 P respectively.

Let PTX¢ PNé be the orthogonal projections from TB|x, on TX¢, Ng respec-
tively. Set

VNG — PNG (VTB|XG)PNG, VTXG — PTXG (VTB|XG)PTXG,

(0.9)
TB _ VTXG ® VNG, A= vTB|XG o OVTB.

Y
Then Ve, 0v"" are Euclidean connections on Ng, TB|x, respectively, VIX¢ is the
Levi-Civita connection on (T X¢, g7*¢)
form.
Denote by vol(Gz) (z € U) the volume of the orbit Gz equipped with the metric
induced by g7%. Following [44, (3.10)], let h(x) be the function on U defined by

(0.10) h(z) = (vol(Gz))'/2.

, and A is the associated second fundamental

Then h reduces to a function on B.
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Denote by Icg g the projection from A(T*(%1) X)® E onto C® E under the decom-
position A(T*OVX) )@ E = Co E@ A~ (T*OVX)® E, and Icgp, the corresponding
projection on B.

In the whole paper, for any 79 € Xg, Z € Ty, B, we write Z = Z° + Z+, with
720 ¢ Tong, Z+ S NG,ac0~

Let 7502+ € NG,eprOG 20
connection V¢ along the geodesic in X, [0,1] 3 ¢ — exp¢ (tZ°).

o

For eg > 0 small enough, we identify Z € T, B, |Z| < ¢ with exp?
ex

be the parallel transport of Z+ with respect to the

pfOG(ZO)(TZOZL) S
B. Then for z9 € X, Z,Z' € Ty, B, |Z],|Z'| < €9, the map ¥ : TB|x, X TB|xs; —
B x B,

(rz0Z'*))

V(Z,2") = (expf; Ty Z7F), expi

pfoc (29) ( pfoc (Z'0)
is well defined.

We identify (E,)p 7 to (E,)p 2, by using parallel transport with respect to V(¥»)z
along [0,1] 5 u — uZ.

Let g : TB|x, x TB|x, — X be the natural projection from the fiberwise
product of T'B|x, on X¢ onto Xg.

From Theorem 0.1, we only need to understand Pf oW, and under our identification,

P& oW(Z,7") is a smooth section of
75 (End(E,)5) = 73 (End(A(T" OV X) @ E) )
on TB|XG X TB|XG.

Let | |gm/(xg) e the €™ -norm on € (X¢, End(A(T*®VX) @ E)g) induced
by VCiffs vEz hE and ¢TX. The norm | |<€’""(Xc) induces naturally a €™ -norm
along Xg on €°(TB|x, x TB|xs, 75(End(A(T*OVX) @ E)p)), we still denote it
by | |‘5”L’(XG)'

Let dvp, dvx,, dun, be the Riemannian volume forms on (B, g7 ?), (Xg, g

(Ng, g™v¢) respectively. Let k € €°°(TB|x,,R), with kK = 1 on X, be defined by
that for Z € T, B, o € Xg,

TXG),

(0.11) dvp(xo, Z) = k(xo, Z)dUTxOB(Z) = k(xo, Z)dvx, (xo)vaG@O.

The following result is one of the main results of this paper.

Theorem 0.2. — Assume that G acts freely on u=(0) and J = J on p=1(0). Then
there exist Q.(Z,Z') € End(A(T*OVX) ® E)p., (vo € Xg,r € N), polynomials
in Z,7' with the same parity as v, whose coefficients are polynomials in A, RTE,
RCMs  REs B O (pegyy X RIC RE: resp. h, RE, REB; resp. 1) and their
derivatives at xo to order r — 1 (resp. r —2; resp. r; resp. v+ 1), such that if we
denote by

(0.12) PN(Z,2") = Q.(2,2"\P(Z2,Z), Qu(Z,Z') = IcaE,,
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with
(0.13) P(Z,7') =exp ( - g|z0 — 21 = /T (T, 20, Z’0>)
x 27 exp ( — (|2 + |Z/L|2)),
then there exists C" > 0 such that for any k,m,m',m” € N, there exrists C > 0 such
that for xo € Xq, Z,2' € Ty, B, |Z],12'| < g9, M
Plal+la]

0.14) (14 /p|Z+| + J/plZ2 D)™ -
(0.14) (14 /plZ~| + /p|Z"]) s 57927

sup
leel+|a’ [<m

k
<p"+"2° (h&®)(Z)(hs2)(Z')PS o W(2,2') =Y P (P2, wsz’nﬁ)
r=0

¢ (Xe)
< Cpm I (1 5|20 2P A e (VT 5|22+ O (5),

Furthermore, the expansion is uniform in the following sense: for any fized
k,m,m’,m" € N, assume that the derivatives of g7~, ht, VI, h¥, VF and J
with order < 2n+k +m +m’ + 5 run over a set bounded in the €™ —norm taken
with respect to the parameters and, moreover, g*X runs over a set bounded below,
then the constant C is independent of gT%; and the €™ -norm in (0.14) includes
also the derivatives on the parameters.

In (0.14), the term &'(p~>°) means that for any [,l; € N, there exists C;;, > 0 such
that its €' -norm is dominated by Culp_l.

It is interesting to see that the kernel P(Z, Z’) is the product of two kernels : along
T5,Xa, it is the classical Bergman kernel on T, X with complex structure J,,, while
along N¢, it is the kernel of a harmonic oscillator on Ng 4.

Remark 0.3. — i) Theorem 0.2 is a special case of Theorem 2.23 where we do not
assume J = .J on P = ;= (0). In Theorem 3.2, we get explicit informations on P(")
when J verifies (3.2).

ii) If G does not act freely on P, then X¢ is an orbifold. In Section 4.1, we
explain how to modify our arguments to get the asymptotic expansion, Theorem 4.1.
Analogous to the usual orbifold case [17, (5.27)], PS(x,z)(z € P) does not have a
uniform asymptotic expansion if the singular set of X is not empty.

iii) Let V be an irreducible representation of G, let Pz}} be the orthogonal projection
from Q%*(X, L? ® E) on Homg(V,Ker D,,) ® V C Ker D,,. In Section 4.2, we get the
asymptotic expansion of the kernel PZ}} (z,2") from Theorems 0.1, 0.2.

iv) When G = {1}, Theorem 0.2 is [17, Theorem 4.18'].

(D1n the exponential factor of [32, (7)], we missed m’ as in the last line of (0.14) here.
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v) If we take Z = Z' =0 in (0.14), then we get for 2y € Xg,

(0.15) PO(0,0) =27 Iegmy,
and
k
4o . r o
(0.16) P~ 1P (w0) By (w0, wo) — > PL27(0,0)p e xay S P o
r=0 ¢

In Section 4.3, we show that (0.15) and (0.16) are direct consequences of the full off-
diagonal asymptotic expansion of the Bergman kernel [17, Theorem 4.18']. In fact,
one possible way to get Theorem 0.2 is to average the full off-diagonal asymptotic
expansion of the Bergman kernel on X [17, Theorem 4.18'] with respect to a Haar
measure on G. However, we do not know how to get the full off-diagonal expansion,
especially the fast decay along Ng in (0.14) in this way.

In this paper we will apply the analytic localization techniques to prove Theorem
0.2, and this method also gives us an effective way to compute the coefficients in
the asymptotic expansion (cf. §3.2). The key observation is that the G-invariant
Bergman kernel is exactly the kernel of the orthogonal projection to the zero space
of a deformation of DIQ) by the Casimir operator (i.e., to consider Dg — pCas). This
plays an essential role in proving Theorems 0.1, 0.2.

Let .#, be a section of End(A(T*®VX) ® E)p on X¢ defined by

(0.17) fp(xo):/ZEN » 12 (20, Z)PS o W ((x0, Z), (0, Z)) (w0, Z)dvng (Z).

By Theorem 0.1, modulo &(p~°), #,(x) does not depend on ¢y, and

dim(Ker D)) /Tr (y,y)]dvx (y)
X

/ Tr[P, y y)]dvx (y) + O(p~)
(0.18) v
/B B2 (y) T PS (y, y)]dvs(y) + 6/(p~)

— [ Dl a)ldos w0) + 067).
Xa
A direct consequence of Theorem 0.2 is the following corollary.

Corollary 0.4. — Taking Z = Z' € Ng 4,, m =0 in (0.14), we get

0.19 g (B2 P (pZ,/pZ)p~"?
(0.19) |p (h*r)(Z) Z (VPZ,\/pZ)p & (Xe)

<CP_(k+1)/2(1+\/]_7|Z|)_m”—l—ﬁ(p_oo),

In particular, there exist ®, € End(A(T*OVX) ® E)p ., (r € N) which are polyno-
mials in A, RTB, RCfs  REs B O (regp pX  RAt RE. resp. h, R¥5, RE;
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resp. 1), and their derivatives at xo up to order 2r — 1 (resp. 2r — 2; resp. 2r; resp.
2r + 1), and ®9 = Icgry, such that for any k,m’ € N, there exists Cim > 0 such
that for any o € Xg, p € N,

k—1

k
(0.20) p~" I () — Z @, (zo)p™" < Crmep™
r=0

gm'

In the rest of Introduction, we will specify our results in the Kéhler case.

We suppose now that (X,w,J) is a compact Kahler manifold and J = J on X.
Assume also that (L, hY, VE), (E,h¥ VF) are holomorphic Hermitian vector bundles
with holomorphic Hermitian connections, and the action of G on X, L, E' is holomor-
phic.

Let HI(X,LP ® E) (0 < j < n) be the Dolbeault cohomology of the Dolbeault
complex (Q*(X, PR E), 5LP®E) of X with values in L ® E. Espeically, H°(X, LP ®
E) is the space of the holomorphic sections of LP @ E on X.

Let 5Lp®E’* be the formal adjoint of the Dolbeault operator 5”®E7 then
(0.21) D, = \/ﬁ(gL‘“@E n 5L”®E,*)’
and
(0.22) D2=2 (EL')@EELP@E,* n 5L”®E7*5LP®E)

preserves the Z-grading of Q¥*(X, L ® E).
By the Kodaira vanishing theorem, for p large enough,
(0.23) (Ker D,)¢ = H(X,L? ® E)°.
Thus for p large enough, BY(z,2') € (LP ® E), ® (LP ® E)%, and so BY(z,z) €
End(Ey), #p(z0) € End(Ey,). In particular, in (0.15),

(0.24) PO(0,0) =27 Idp,.
Remark 0.5. — In the special case of E = C, Pf(xo, xo) is a non-negative function
on X¢, and (0.16) has been proved in [36, Theorem 1] (without obtaining the infor-

mations on P,Tfr)(o, 0)), while in [37, Theorem 1], it was claimed that Péo)(O, 0)=1.

In [36, Prop. 1], Paoletti showed that for any I € N, there is C' > 0 such that for
any p, |PpG(x, z)| < Cp~! uniformly on any compact subset of X \ (¢~1(0) U R), with
R the subset of unstable points of the action of G. In [37], some Toeplitz opera-
tor type properties on X were also claimed to follow from the analysis of Toeplitz
structures of Boutet de Monvel-Guillemin [11], Boutet de Monvel-Sjéstrand [12] and
Shiffman-Zelditch [40]. If we suppose moreover that G is a torus, Charles [15] has
also a different version on the Toeplitz operator type properties on X¢.

In Section 4.5, we will show that Theorem 0.2 implies properties of Toeplitz oper-
ators on X (which also hold in the symplectic case). In particular, we recover the
results on Toeplitz operators from [15], [37].
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Let h denote the restriction to X¢ of the function A defined in (0.10).

The second main result of this paper is that we can in fact obtain the scalar
curvature rX¢ on the symplectic reduction X¢g from .7,.

We will use the following notation: when a subscript index appears two times in a
formula, we sum up with this index.

Theorem 0.6. — If (X,w) is a compact Kéihler manifold and L,E are holomor-
phic vector bundles with holomorphic Hermitian connections V* VE, J = J, and G
acts freely on p=1(0), then for p large enough, Z,(zo) € End(Eg)z,, and in (0.20),
®,.(x9) € End(Eg)., are polynomials in A, RTB, RFs P RE (resp. h, R ; resp.
w) and their derivatives at xo to order 2r —1 (resp. 2r; resp. 2r+1), and &9 = Idg,,.
Moreover

1 3 ~ 1 _
(0.25) Dy (x9) = S—WT;(OG + EAXG logh + %Rff (W), )).

Here rX¢ s the Riemannian scalar curvature of (T Xq,g**¢), Ax, is the Bochner-
Laplacian on X (cf. (1.21)), and {w}} is an orthonormal basis of T X,

Since the non-equivariant version of this result has already played a crucial role
in the work of Donaldson mentioned before, we have reason to believe that Theorem
0.6 might also play a role in the study of stability properties of projective manifolds.
Indeed, as Donaldson usually interprets his results in the framework of geometric
quantization, this seems likely to be so.

We recover (0.6) from (0.25) after taking the trace, and then the integration on
X¢. Thus (0.25) is a local version of (0.6) in the spirit of the Local Index Theory.
The appearance of the term %A Xo 1og?L is unexpected.

Let T be the torsion of the connection °V' ~ in (1.2) on U. The curvature © of
the principal bundle U — B relates to the torsion T by (1.6).
Following (3.6) and (5.21), we choose {ej } to be an orthonormal basis of Ng x,

and {%} € qui’o)XG to be the holomorphic basis of the normal coordinate on X,
J

and define Tkzm,i}kz as in (5.14). In particular, by Remark 5.3, ’fjkl =0 if G is
abelian.
The G-invariant section i of TY ® End(E) on U is defined by (1.13) and (1.14).
If there is no other specific notification in the next formula (0.26), when we meet
2

the operation | , we will first do this operation, then take the sum of the indices.
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Theorem 0.7. — Under the assumption of Theorem 0.6, for p > 0 large enough,
PpG(x,x) € End(E,) and ngg)(O, 0) € End(E,,). Moreover,

ng [ 1 1 1 -

(0.26) P2(0,0)=2" {griff + ;REG(a—%, 8%) + —Axg logh
3 2

— logh — =v—=1 1 ——‘ 1 ’

87TV6$V6$ ogh . VJT(aZO e 0) Ogh v a Ogh

5 2 2, |
— 2|V, ogh| oI T(ek, ) +

27
) T+ oo Tigp(—Tigi + 37,
+ o Tem + 56 ik (= Trji + 3Tij1)

1 ~
5 (g Pz ) grv + — < A7 T (s o))
3\/_ <~E Jek>v L logh —|—§ <Jeé,vzk}’ﬁff>}.

Remark 0.8. — Certainly, if we only assume that J = J on a neighborhood U of
P = pu71(0), then we still have ®,(x) € End(Eg)s,, as we work on the kernel of the
Dirac operator D,. Set %, 0 = Icgres Iplcors, the component of .#, on C ® Eq.
As the computation is local, we still have Theorem 0.6 with .#, replaced by %,
and S, — S0 = O(p~>) (cf. (5.19)). If we only work on the J-operator, i.e. the
holomorphic sections, in Section 5.5, we explain how to reduce the case of general J
to the case J = J. Same remark holds for P (x, x9).

Let i : P — X be the natural injection.

Let mg : €°(P,LP ® E)¢ — €~ (Xg, LY, ® Eg) be the natural identification.

By a result of Zhang [48, Theorem 1.1 and Proposition 1.2], one sees that for p
large enough, the map

Tgoi* € (X, [P ® E)¢ — ¢*(X¢, L% ® Eg)
induces a natural isomorphism
(0.27) op=mgoi*: H(X,I? ® E)Y — H°(X¢, LY, ® Eg).
(When E = C, this result was first proved in [21, Theorem 3.8].)
The following result is a symplectic version of the above isomorphism which is
proved in Corollary 4.13, as a simple application of the Toeplitz operator type prop-
erties proved in that subsection. It might be regarded as an “asymptotic symplectic

quantization identification”, generalizing the corresponding holomorphic identifica-
tion (0.27).

Theorem 0.9. — If X is a compact symplectic manifold and J = J, then the natural
map o, : (Ker D,)¢ — Ker D¢, defined in (4.88) is an isomorphism for p large
enough.
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Now we go back to the holomorphic situation.

Let (, )12 om; be the metric on LY, ® E¢ induced by h'¢ and hFe.

In view of [44, (3.54)], the natural Hermitian product on ¢°°(X¢, LY, ® E¢) is the
following weighted Hermitian product (, );:

(0.28) <51,32>E=/X (51, 52) 12 176 (201 (o) dvx . (o).

In fact, 7 : (€°°(P,LP @ E)°,(,)) — (¢*°(Xa, LT, ® Eg),(, );) is an isometry.
We still denote by ( ) the scalar product on H°(X, L? ® E)¢ induced by (0.23).

Theorem 0.10. — The isomorphism (2p)_nTOUp is an asymptotic isometry from
(H(X,LP ® E)°,(,)) onto (H°(X¢, LY, ® Eq),{, );), ie., if (P} is an or-
thonormal basis of (H°(X,LP @ E)%,(,)), then

(0.29) (2p) " (ops?, 0507 = 0 +ﬁ(p)

From the explicit formula (0.26), one can also get the coefficient of p~! in the
expansion (0.29) (cf. [31, Problem 7.2]). We leave it to the interested readers.

Remark 0.11. — Theorem 0.10 also admits a natural symplectic extension corre-
sponding to the asymptotic identification result in Theorem 0.9 (cf. Chapter 7).

Let ]BPXG denote the orthogonal projection from (¢°°(Xg, Ly, ® Eg), (, );) onto
{IO(X, L?.®Eg). Letfgfc (w0, 20) (z0, 25 € X@) be the smooth kernel of the operator
PXe with respect to h?(zf)dvx, ().

The following result is an easy consequence of [17, Theorem 1.3].

Theorem 0.12. — Under the assumption of Theorem 0.6, there exist smooth coef-
ficients ®,(zo) € End(Eq)s, which are polynomials in RTX¢, REG (resp. h), and
their derivatives at xo to order 2r — 1 (resp. 2r), and <I>0 = Idg,, such that for any
k,l € N, there exists Ci; > 0 such that for any xo € Xg, p €N,

k
(0.30) p~ R (o) BXE (20, o) — Z @, (zo)p™" - < Cryp "L
r=0
Moreover, the following identity holds,
=~ 1
(0.31) 1 (20) = ——rd + —AXG logh + —REG( 73).

8 *

Remark 0.13. — From (0.25) and (0.31), one sees that in general ®; # @, if h is
not constant on X¢g. This reflects a subtle defect between the Bergman kernel and
the geometric quantization.
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From the works [17], [28] and the present paper, we see clearly that the asymptotic
expansion of Bergman kernel is parallel to the small time asymptotic expansion of the
heat kernel. To localize the problem, the spectral gap property (2.15) and the finite
propagation speed of solutions of hyperbolic equations play essential roles.

Let U be a G-neighborhood of p~1(0) as in Theorem 0.2, in this paper, we will
then work on U/G.

Indeed, after doing suitable rescaling on the coordinates, we get the limit operator
Z9 (cf. (3.13)) which is the sum of two terms, one along T,,X¢g, whose kernel is
infinite dimensional and gives us the classical Bergman kernel as in C"~"°, the other
along Ng, which is a harmonic oscillator and its kernel is one dimensional. This
explains well why we can expect to get the fast decay estimate along Ng in (0.14).

This paper is organized as follows. In Chapter 1, we study connections and Lapla-
cians associated to a principal bundle. In Chapter 2, we localize the problem by using
the spectral gap property and finite propagation speed, then we use the rescaling
technique in local index theory to prove Theorem 2.23 which is a version of Theorem
0.2 without assumption on J. We assume G acts freely on P = p~1(0) in Sections
2.5-2.8, and in Section 4.1 we explain Theorem 4.1, the version of Theorem 0.2 where
we only assume that p is regular at 0. In Chapter 3, we get explicit informations
on the coefficients P(") when J verifies (3.2), thus we get an effective way to com-
pute its first coefficients of the asymptotic expansion (0.14). Especially, we establish
(0.12) and (0.13). In Chapter 4, we explain various applications of our Theorem 0.2,
including Toeplitz operator properties, etc. In Chapter 5, we compute the coefficient
®; in Theorem 0.6 and in the general case: J # J. In Chapter 6, we compute the
coefficient P,Tf)(o, 0) in Theorem 0.7. In Chapter 7, we prove Theorems 0.10, 0.12.

Some results of this paper have been announced in [32, 33].

Notations. — We denote by C, N, Q, R, Z the complex, natural, rational, real, inte-
ger numbers, and C* = C\ {0}, N* = N\ {0}, R* = R\ {0}, Ry = [0, 00[, R} =]0, 00][.
For u € R, we denote by |u| the integer part of u.

For a = (a1, ,am) €N, B=(By,--+,B,,) € C™, we denote by

la| = Zaj, al = H(aj!), B = HB?".
Jj=1 J J

We denote by dim or dim¢ the complex dimension of a complex (vector) space.
We denote also by dimg the real dimension of a space.

For a complex vector bundle F on a manifold X, rank(E) denotes its rank, and
Idg the identity endomorphism. Also, det(E) := A™*k(F)(E) is the determinant line
bundle of E, E* is the dual bundle of E and End(F) := E® E*. The space of smooth
sections of E over X is denoted by €°° (X, E).

If @ is an operator, we denote by Ker(Q) its kernel, Im(Q) its image set.
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If V is a representation of the group G, then we denote its G-invariant sub-space
by V.

In the whole paper, if there is no other specific notification, when an index variable
appears twice in a singe term, it implies that we are summing over all its possible
values.
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February and March, 2005. He would like to thank Professor Jean-Pierre Bourguignon
for the hospitality. The final version of this paper was prepared while the second au-
thor was visiting Ecole Polytechnique. He would like to thank Ecole Polytechnique
for financial support and Université Paris VII for the hospitality.






CHAPTER 1

CONNECTIONS AND LAPLACIANS ASSOCIATED TO A
PRINCIPAL BUNDLE

In this Chapter, for a G-principal bundle 7 : X — B = X/G, we will study the
associated connections and Bochner-Laplacians. The results in this chapter extend
the corresponding ones in [2, §1d)] and [1, §5.1, 5.2] where the metric along the fiber
is parallel along the horizontal direction. These results will be used in Proposition
2.7 and in Sections 3.3, 5.

If G acts only infinitesimal freely on X, then B = X /G is an orbifold. The results
in this chapter can be extended easily to this situation, as will be explained in Section
4.1.

This Chapter is organized as follows. In Section 1.1, we study the Levi-Civita
connection for a principal bundle which extends the results of [2, §1d)]. In Section
1.2, we study the relation of the Laplacians on the total and base manifolds.

1.1. Connections associated to a principal bundle

Let a compact connected Lie group G act smoothly on the left on a smooth manifold
X and dimg G = ng. We suppose temporary that G acts freely on X. Then

m: X - B=X/G

is a G-principal bundle. We denote by TY the relative tangent bundle for the fibration
m: X — B.

Let ¢7X be a G-invariant metric on TX. Let VI be the Levi-Civita connection
on T'X. By the explicit equation for (VI -} in [1, (1.18)], for W, Z, Z’ vector fields
on X,

(1.1) 2(ViXz2,2")=W(2,Z'y+Z(W,Z') - Z' (W, Z)
-W[2,2') —(2,W,Z')) +(Z',[W, Z]).
Let TH X be the orthogonal complement of TY in TX.
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For U € TB, let UY € THX be the lift of U such that 7,U” = U. Let L= be
the corresponding Lie derivative.

Let g7Y, gTHX be G-invariant metrics on TY,TH X induced by g7*. Let PTY,
PT"X be the orthogonal projections from T'X onto 7Y, THX.

Let ¢g”2 be the metric on T'B induced by gTHX. Let V7B be the Levi-Civita
connection on (T'B, g7?) with curvature RT5. Set

(1.2) vTix _ mvTB  yTY — pTYyTX pTY, oyt - gTY g yTiX

Then VT"X , 0v"X define Euclidean connections on THX , TX, and VTV is the
connection on TY induced by VI¥ (cf. [2, Def. 1.6]).
Let T be the torsion ofOVTX, andlet S € T*X®End(TX), ¢7Y € T*BEnd(TY)
be defined by
TX

(1.3) S=vTX oy 7, gty = (") N Lyug™Y) for U e TB.

Then S is a 1-form on X taking values in skew-adjoint endomorphisms of T'X.

By [6, Theorem 1.2] (cf. [5, Theorems 1.1 and 1.2]) the proof of which can also be
found in [1, Prop. 10.2] where one applies directly (1.1), we know that V7Y is the
Levi-Civita connection on TY along the fiber Y, and for U € T'B,

1 _ 1.
(1.4) Vik =Lyn + §(QTY) YLyng™ ) = Lyn + 595Y~

Let g be the Lie algebra of G. For K € g, we denote by KX = %e’”{xh:o the
corresponding vector field on X, then gKX = (Ad,(K ));; Thus we can identify the
trivial bundle X x g with Ad-action of G on g to the G-equivariant bundle T'Y by
the map K — KX,

Let 8 : TX — g be the connection form of the principal bundle 7 : X — B such
that TH X = Ker 6, and O its curvature.

For K,,Ky € g, U,V € TB, as U is G-invariant, we have
(1.5) Lyn K{* = —[K{5, U™ =0.

By (1.4), (1.5), we get T € A*(T*X) ® TY and
T(UHa VH) = @(UHv VH) = _PTY[UHa VH]) T(Kixa Kéx) = 07
(1.6) 1

_ 1,
TU ET) = 56" (Lyng ™ KT = 5007 KT

And by (1.1), (1.4), (1.5) and (1.6), for W € TX, we have (cf. also [2, (1.28)], [1,
Prop. 10.6]),

SWYTY)cTHX, SWUMVH eTy,
(1.7) 2(S(UM K VT =2(S(K{)UH, v = (17U, v, K,
(S(EHUT KXY = — (S(K K, UT)

= SUM (RS KX = (T K, ).
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Let {e;} be an orthonormal basis of TB. By (1.3) and (1.7), for Y a section of TY,

1
(1.8) VIZYy =vITy + 5 (T, el),Y)el.
Proposition 1.1. — Let {fi};°, be a G-invariant orthonormal frame of TY , then
ng
(1.9) S Vvirfi=o.
1=1
Proof. — (1.9) is analogous to the fact that any left invariant volume form on G is

also right invariant. We only need to work on a fiber Y3, b € B.
Let dvy be the Riemannian volume form on Yj.
By using Ly, fi = Vﬁ?/fl — V};Yfk and dvy is preserved by V7Y on Y, we get

no

(1.10) Ly, dvy = (V7Y fr, fi) dvy.
=1

Now from Ly, =iz d¥ +dYiy, and <V§€Yfk, fl> is G-invariant and (1.10), we get

no

(1.11) OZA Lfkdvy=Z<V£Yfk7fl>/ dvy .

=1 Yo
From (1.11), we get (1.9). O
Remark 1.2. — If ¢g"Y is induced by a family of Adg-invariant metric on g under
the isomorphism from X x g to TY defined by K — K, then (1.9) is trivial. In this

case, as in [19, Theorem 11.3], for Y7, Y2 two G-invariant sections of 7Y, by (1.1), we
have

1
(1.12) ViYY, = 5[Yl,YQ].

1.2. Curvatures and Laplacians associated to a principal bundle

Let (F,h!") be a G-equivariant Hermitian vector bundle on X with a G-invariant
Hermitian connection V¥ on X. For any K € g, denote by L the infinitesimal
action induced by K on the corresponding vector bundles.

Let uf” be the section of g* ® End(F) on X defined by,

(1.13) pf(K)=Vhx —Lg for K €g.

By using the identification X x g — TY, pf" defines a G-invariant section % of
TY ® End(F) on X such that

(1.14) (" KX) = u" (K).
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The curvature R/ of the Hermitian connection V¥ — 1#(f) on F is G-invariant.
Moreover as V' is G-invariant, by (1.13),

(1.15) R (KX, v) = [Lg,VE — p"(0)](v) =0
for K € g,veTX, and
(1.16) Ry = RF =V (u" () + p7(0) A (6).

The Hermitian vector bundle (F, k") induces a Hermitian vector bundle (Fp, hf?)
on B by identifying G-invariant sections of F' on X.
For s € €(B, Fp) ~ €>(X, F)¢, we define

(1.17) ViPs=Vius.

Then V5 is a Hermitian connection on Fp with curvature R¥5.
Observe that V2 is the restriction of the connection V¥ — uf' () to €°(X, F)¢,
and R2 is the section induced by Rfj. From (1.16), for Uy, Us € T B, we get

(1.18) R (Uy,Us) = RT(U{", U3") — 4" (©) (U1, Ua).

Let dvx be the Riemannian volume form on (X, g7X). We define a scalar product
on (X, F) by

(1.19) (s1,82) = /X<51,32)F(x) dvx (z).

As in (1.19), hf2, g8 induce a natural scalar product ( ) on (B, Fi).
Denote by vol(Gz) (z € X) the volume of the orbit Gz equipped with the metric
induced by ¢7X. The function

h(z) = \/vol(Gx), z € X,

as in (0.10) is G-invariant and defines a function on B.
Denote by 7g : €% (X, F)¢ — ¥>(B, Fg) the natural identification. Then the
map

(1.20) ® = hrg : (€°(X,F),(,)) = (¢(B, Fg),(,))

is an isometry.

Let {e,}™ ; be an orthonormal frame of TX.

Let (E,h%) be a Hermitian vector bundle on X and let V¥ be a Hermitian con-
nection on E. The usual Bochner Laplacians A”, Ay are defined by

(1.21) AP =% ((vfa)2 — V@zfea) , Ax =A%
a=1
Let {f;}7°, be a G-invariant orthonormal frame of 7Y, and {f'} its dual frame,
and let {e;} be an orthonormal frame of TB, then {e, f;} is an orthonormal frame
of TX.
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To simplify the notation, for 01,09 € TY ® End(F'), we denote by (o1, 02),mv €
End(F) the contraction of 01 ® o5 on the part of TY by ¢7¥. In particular,

no

(1.22) (@, @) grv = > (@", f1)* € End(F).

1=1

The following result extends [1, Prop. 5.6, 5.10] where FF = X xg V for a G-
representation V, and where g7 is induced by a fixed Adg-invariant metric on g
under the isomorphism from X x g to TY defined by K — KX (Thus h is constant
on B).

Theorem 1.3. — As an operator on €°°(B, Fg), we have
~F ~F 1
(1.23) SAF O = AFB — (pF iF) oy — EABh.

Proof. — At first by (1.6) and (1.7),
(129) 1 (eih) = 3 (Lo dvy = 3 (Lo ' 1) = 2 (Lo 1)
= 2 (Larg™) (i fi) = 3 (TCEH, ), fi) = =5 (S el

As fif' is G-invariant, then (", f;) is also a G-invariant sectlon of End(F ).
By (113)7 VZ _< 7fl> On.{goo(X7F) 7and by (13)a fl fl— fl fl+5(fl)f17
thus by (1.20), we get for 1 <1 < ny,

(125) @[V = Vo J07 = @, 1) = (I, VEY f) — b5 07
From (1.7), (1.9), (1.21), (1.22), (1.24) and (1.25), we have
(1.26)

AP P! = —mim @[(VE)? - Ve ot - i@[(vg) = Vg |27
= =1
no

~ _ - 1
=hATPRTE = ) = 2(esh)VEPRT = AT — (0F ) oy — - Aph.
=1






CHAPTER 2

G-INVARIANT BERGMAN KERNELS

In this Chapter, we study the uniform estimate with its derivatives on t = ﬁ of
the G-invariant Bergman kernel P (z,z’) of D2 as p — oo.

The first main difficulty is to localize the problem to arbitrary small neighborhoods
of P = p~1(0), so that one can study the G-invariant Bergman kernel in the spirit
of [17]. Our observation here is that the G-invariant Bergman kernel is exactly the
kernel of the orthogonal projection on the zero space of an operator £,, which is a
deformation of DIQ7 by the Casimir operator. Moreover, £, has a spectral gap property
(cf. (2.24), (2.25)). In the spirit of [17, §4], this allows us to localize the problem to a
problem near a G-neighborhood of Gx. By combining with the Lichnerowicz formula,
we get Theorem 0.1 in Section 2.4.

After localizing the problem to a problem near P, we first replace X by G x R?"—"0,
then we reduce it to a problem on R2*~"0, On R??»~™ the problem in Section 2.7 is
similar to a problem on R?" considered in [17, §4.3].

Comparing with the operator in [17, §4.3], we have an extra quadratic term along
the normal direction of Xg. This allows us to improve the estimate in the normal
direction. After suitable rescaling, we will introduce a family of Sobolev norms defined
by the rescaled connection on LP and the rescaled moment map in this situation, then
we can extend the functional analysis techniques developed in [17, §4.3] and [7, §11].

This Chapter is organized as follows. In Section 2.1, we recall a basic property on
the Casimir operator of a compact connected Lie group. In Section 2.2, we recall the
definition of spin® Dirac operators for an almost complex manifold. In Section 2.3,
we introduce the operator £, to study the G-invariant Bergman kernel Pf of DTQI. In
Section 2.4, we explain that the asymptotic expansion of Pf (z,2") is localized on a
G-neighborhood of Gz, and we establish Theorem 0.1. In Section 2.5, we show that
our problem near P is equivalent to a problem on U/G for any open G-neighborhood
U of P. In Section 2.6, we derive an asymptotic expansion of ®L£,®~! in coordinates
of U/G. In Section 2.7, we study the uniform estimate, with its derivatives on ¢,
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of the Bergman kernel associated to the rescaled operator £ from ®L£,®~!, using
the heat kernel. In Theorem 2.21, we estimate uniformly the remaining term of the
Taylor expansion of e %% for u > ug > 0, 0 <t <ty <1. In Section 2.8, we identify
—uy , with the Volterra expansion of
the heat kernel, thus giving a way to compute the coefficient P,g) in Theorem 0.2. In
Section 2.9, we prove Theorem 0.2 except (0.12) and (0.13).

We use the notation in Chapter 1. In Sections 2.5-2.9, we assume G acts freely on

P = pu~1(0).

Jru, the coefficient of the Taylor expansion of e

2.1. Casimir operator

Let G be a compact connected Lie group with Lie algebra g and dimg G = ng. We
choose an Adg-invariant metric on g such that it is the minus Killing form on the
semi-simple part of g.

Let {K;}72, be an orthogonal basis of g and { K7} be its dual basis of g*.

The Casimir operator Cas of g is defined as the following element of the universal
enveloping algebra U(g) of g,

no
(2.1) Cas =Y K,K;.
j=1
Then Cas is independent of the choice of {K;} and belongs to the center of Uf(g).
Let t be the Lie algebra of a maximum torus T of G, and t* its dual. Let | |
denote the norm on t* induced by the Adg-invariant metric on g.
Let W C t* be the fundamental Weyl chamber associated to the set of positive
roots At of G, and its closure W C t*.
Let I = {K € t;exp(2nrK) = 1 € T} be the integer lattice such that T = t/271,
and P = {a € t*;a(I) C Z} the lattice of integral forms.
Let og be the half sum of the positive roots of G.
By the Weyl character formula [19, Theorem 8.21], the irreducible representations
of G correspond one to one to ¥ € W N P, the highest weight of the representation.
Moreover, for any irreducible representation p : G — End(V') with highest weight
¥ € W N P, classically, the action of Cas on V is given by (cf. [19, Theorem 10.6]),

(2.2) p(Cas) = —(|9 + ec|* — |oc|*) 1dv .
Set
(2.3) vii= inf (|94 o0c* - lecl?) > 0.
0AYEWNP

By (2.2), for any representation p : G — End(V), if the G-invariant subspace V¢
of V is zero, then

(2.4) —p(Cas) > v1 Idy .
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2.2. Spin® Dirac operator

Let (X,w) be a compact symplectic manifold of real dimension 2n. Assume that
there exists a Hermitian line bundle L over X endowed with a Hermitian connection
V% with the property that
(2.5)

E RL = w,
2
where R = (V)2 is the curvature of (L, V%).
Let (E,h”) be a Hermitian vector bundle on X with Hermitian connection V¥
and its curvature R”.
Let ¢7X be a Riemannian metric on X.
Let J: TX — TX be the skew—adjoint linear map which satisfies the relation

(2.6) w(u,v) = g7 (Ju,v)
for u,v € TX.
Let J be an almost complex structure such that
(2.7) gTX (Ju, Jv) = g% (u,v),  w(Ju, Jv) = wlu,v),
and that w(-, J-) defines a metric on TX. Then J commutes with J and
—(JT ) = w(-, T

is positive by our assumption. Thus —JJ € End(7T'X) is symmetric and positive, and
one verifies easily that

(28) —JT = (<T)VE T =33
The almost complex structure J induces a splitting
TX ®R (C = T(170)X @ T(Ovl)X,

where T(19) X and TV X are the eigenbundles of J corresponding to the eigenvalues
v/—1 and —/—1 respectively. Let T*(1:0 X and T*©1V X be the corresponding dual
bundles.

For any v € TX ®g C with decomposition v = vy o+ vg1 € TAOX ¢ TOD X let
7} o € T*®YX be the metric dual of v1 9. Then

(2.9) c(v) = V2(T] g A ~iug,)

defines the Clifford action of v on A(T*(®1) X)), where A and i denote the exterior and
interior multiplications respectively.
Set
(2.10) vy = inf R (u,w)/|ul2rx > 0.
uETa(cl’O)X, zeX
Let VTX be the Levi-Civita connection of the metric ¢g7X with curvature RTX.
We denote by PT"X the projection from TX ®g C to T X.
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Let VT""X = pT®7X gTX pT™”X he the Hermitian connection on 70X
induced by VI¥ with curvature RT"”X " Let V9t be the connection on det(T10) X)
induced by vIeox,

Formally,

(2.11) AT OV X) = S(TX) @ (det(THY X))1/2,

here S(TX) is the possible (non-existent) spinors bundle associated to (X,g?™%),
and (det(T(1% X))1/2 is the possible (non-existent) square root of det(7?X). By
[24, pp.397-398], [31, §1.3], VTX induces canonically a Clifford connection VI on
A(T*OD X) and its curvature RCT (cf. also [27, §2]).

Let {e,}q be an orthonormal basis of TX. Then

: 1 1 (1,0
Cliff _ TX 710 x
(2.12) R = 1 Eb (R eq,ep)cleq)cler) + 3 Tr [R } i

For p € N, we denote by LP := L®P. Let VFr be the connection on
(2.13) E, =NT""VX)@ P E

induced by VCf v and V¥,

Let ( )p, be the metric on E, induced by g”*, h* and h¥.

The L2-scalar product { ) on Q%*(X,LP ® E), the space of smooth sections of
E,, is given by (1.19). We denote the corresponding norm by ||| z2.

Definition 2.1. — The spin® Dirac operator D,, is defined by

2n
(2.14) Dpi=Y clea)VE : QO (X, P @ E) — Q" (X, I’ ® E).

a=1

Clearly, D, is a formally self-adjoint, first order elliptic differential operator on
Q0*(X, LP ® E), which interchanges Q%*V*(X, [P ® E) and Q%°4(X, L ® E).

If A is any operator, we denote by Spec(A) the spectrum of A.

The following result was proved in [27, Theorems 1.1, 2.5] by applying directly the
Lichnerowicz formula (cf. also [8, Theorem 1] in the holomorphic case).

Theorem 2.2. — There exists Cp, > 0 such that for any p € N and any s €
POUX, PR E) = @q>1 N(X, LP @ E),

(2.15) IDpslZ2 > (2pro — CL)s]1Z: -

Moreover Spec(D2) C {0} U [2pry — Cr, +o0l.
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2.3. G-invariant Bergman kernel

Suppose that the compact connected Lie group G acts on the left of X, and the
action of G lifts on L, E and preserves the metrics and connections, w and the almost
complex structure J.

Let u: X — g* be defined by

(2.16) 2/ —1p(K) := p(K) = Vi« — Lg, K €g.
Then p is the corresponding moment map (cf. [1, Example 7.9]), i.e. for any K € g,
(2.17) du(K) = igxw.

For V a subspace of Q%*(X, L? ® E), we denote by V' the orthogonal complement
of Vin (Q%*(X,LP ® E),{ )).

Let Q%*(X,LP® E)Y, (Ker D,,)“ be the G-invariant subspaces of Q%*(X, LP ® E),
Ker D,,. Let PpG be the orthogonal projection from Q%*(X, L? ® E) on (Ker D,)“.
Definition 2.3. — The G-invariant Bergman kernel PPG({E, z') (z,2’ € X) of Dy, is
the smooth kernel of PPG with respect to the Riemannian volume form dvx (z').

Let {Sf}fil (d, = dim(Ker D,)%) be any orthonormal basis of (Ker D,) with
respect to the norm || || 2, then

dp
(2.18) PS(z,a') = 3 SP(a) @ (SP())" € (Ep)s @ (B}
=1

Especially, P¢(z,z) € End(E,), ~ End(A(T**VX) ® E),.
We use the notation pf in (1.13) now.
Observe that the Lie derivative L on T X is given by

(2.19) LV = VXV - VX KX,
Thus
(2.20) pt X (K) = VIX KX € End(TX).

By (2.11), the action on A(T*1 X) induced by "X (K) is given by
2n
. 1 1 :
(221) MCIIH(K) _ Z E C(ea)C(vZaXKX) 4 5 Tr[PT(l O)XVTXKX]

a=1
Thus the action Lg of K on smooth sections of A(T*(%DX) is given by (cf. also [44,
(1.24)))
(2.22) Lg =V — O ().
By (2.16) and (2.22), the action Lx of K on Q¥*(X,LP ® E) is V?X — uPr (K)
with
(2.23) p (K) = 2mv/=1pu(K) + p* (K) + 1" (K).
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Definition 2.4. — The (formally) self-adjoint operator £, acting on (2%*(X, LP ®
E),(,)) is defined by,

L)
(2.24) L,=D}-p> LkLk,
=1

The following result will play a crucial role in the whole paper.

Theorem 2.5. — The projection PpG is the orthogonal projection from Q% (X, LP ®
E) onto Ker(L,). Moreover, there exist v, Cr, > 0 such that for any p € N,

Ker(£,) = (Ker D,,)¢,

(2.25) Spec(L,)C{0}U [2pv — O, +09].

Proof. — By (2.24), for any s € Q"*(X,LP ® E),

no
(2.26) (Lps,s) = [ Dpsliz +p Y L7z

i=1
Thus £,s = 0 is equivalent to
(2.27) Dps=Lg,s=0.
This means s is fixed by the G-action. Thus we get the first equation of (2.25).

For s € (KerL,)!, there exist s; € QO%(X,LP @ E)Y N (Ker D), so €
(Q%*(X, LP ® E)¥)*, such that s = s; + s2. Clearly,

Dys1 € Q% (X, LP ® E)Y, Dpsy € (X, LP @ E)9)*.
By Theorem 2.2 and (2.4),
(2.28) (Lps,s) = —p(p(Cas)sa, s2) + || Dpsal1 + | Dpsi 7
> pri|sallze + (2pvo — Cr) 51|72,
from which we get (2.25). O

We assume that 0 € g* is a regular value of u. Then Xg = p~1(0)/G is an
orbifold (X¢ is smooth if G acts freely on P = p~1(0)). Furthermore, w descends
to a symplectic form wg on Xg. Thus one gets the Marsden-Weinstein symplectic
reduction (Xg,wea).

Moreover, (L, VL), (E, V) descend to (Lg, VE€), (Eg, VF¢) over X¢ so that the
corresponding curvature condition holds [21] :

(2.29) ERLG = wa.
2T

The G-invariant almost complex structure J also descends to an almost complex
structure Jg on TXg, and h hF, ¢gTX descend to hle, hFe gTXe,

We can construct the corresponding spin® Dirac operator D¢, on Xg.
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Let Pgp be the orthogonal projection from Q% (X, LY, ® E¢) on Ker D¢, and
let Pg ,(x,x") be the smooth kernel of Pg , with respect to the Riemannian volume
form dvx, (2').

The purpose of this paper is to study the asymptotic expansion of PPG (z,2") when
p — oo, and we will relate it to the asymptotic expansion of the Bergman kernel Pg
on X(;.

2.4. Localization of the problem and proof of Theorem 0.1

Let a® be the injectivity radius of (X, g7¥), and € €]0,aX /4[. f z € X, Z € T X,
let R > u — x, = expy (uZ) € X be the geodesic in (X, g7%), such that zq =
xZ, %M:o =7.

For z € X, we denote by BX(x,¢) and BT+ (0,¢) the open balls in X and T, X
with center z and radius ¢, respectively. The map 7, X > Z — expX(Z) € X is a
diffeomorphism from BT:X(0,¢) on BX(z,¢) for ¢ < a’X.

From now on, we identify BT=%X(0,¢) with BX (z,¢) for ¢ < a* /4.

Let f : R — [0,1] be a smooth even function such that
(2.30) f(v):{ 1 for |v] <e/2,

0 for |v]>e.
Set

(2.31) F(a) = (/+°° f(v)dv>71 /+°° e f(v)dv.

Then F'(a) is an even function and lies in the Schwartz space S(R) and F(0) = 1.
Let F' be the holomorphic function on C such that F(a2) = F(a). The restriction
of F to R lies in the Schwartz space S(R).
Let ﬁ(ﬁp)(x, 2') be the smooth kernel of ﬁ(ﬁp) with respect to the volume form
dvx (x').

Proposition 2.6. — For anyl,m € N, there exists Cy ., > 0 such that forp > Cp /v,
(2.32) |F(Lp)(z,2") = PS (2,0 |gm (xxx) < CLamp ™"
Here the €™ norm is induced by VI, VE, VOt pL BE and g7X.

Proof. — For a € R, set

(2.33) Gp(a) = 1py+0o[(a) F(a).
Then by Theorem 2.5, for p > Cf /v,
(2.34) ﬁ(ﬁp) - PpG = ¢p(£p)-

By (2.31), for any m € N there exists C},, > 0 such that
(2.35) sup |a|™|F(a)| < Cp.
a€R



28 CHAPTER 2. G-INVARIANT BERGMAN KERNELS

As X is compact, there exist {z;}/_;, C X such that {U; = BX(z,¢)}l_, is a
covering of X. We identify BT=:X(0,¢) with BX(x;,¢) by geodesics as above.

We identify (E,)z for Z € BT=:%(0,¢) to (E,)., by parallel transport with respect
to the connection V¥ along the curve vz : [0,1] 3 u — expy (uZ).

Let {e,}2", be an orthonormal basis of T, X. Let €,(Z) be the parallel transport
of e, with respect to VTX along the above curve.

Let T'F, ', U be the corresponding connection forms of VZ, VI and VO with
respect to any fixed frame for E, L, A(T*(Y X) which is parallel along the curve
under the trivialization on U;. Then I'” is a usual 1-form.

Denote by Vi the ordinary differentiation operator on 7, X in the direction U.
Then
EP

€j

(2.36) VEr =V 4 pTE 4 TC L TE D) = ¢(€))

Let {¢;} be a partition of unity subordinate to {U;}.
For [ € N, we define a Sobolev norm on the I-th Sobolev space H'(X, E,) by

l 2n
(2.37) Islz =D D Ve, Ve, (@i8)ll2

@ k=041, ,ix=1
Then by (2.36), there exist C,C’,C" > 0 such that for p > 1, s € H*(X, E,),
(238) D28l o — C"pRlsllce < sl < CID2s 2 + p2s] ).
Observe that D, commutes with the G-action, thus
(2.39) [D,, Li,] = 0.
By (2.24), (2.39), and the facts that D, is self-adjoint and L, is skew-adjoint, we

know

(2.40) ||Lpsl|7> = |D2s|132 +p°|I Y Lk, Lk,sl|32 — 2pRe Y (D2s, Lk, Lk, s)
J J

= | DFslze +p°1 Y Lic;Lic;sl7e + 20 Y || Lie; Dpsllie.
i i

From (2.38) and (2.40), there exists C' > 0 such that
(2.41) Isllzzz < CUILps] L2 + p2lIsl|z2)-

Let @ be a differential operator of order m € N with scalar principal symbol and
with compact support in U;, then

(2.42) [£,,Q] = [D2,Q] — pZ[LKjLKwQ]

is a differential operator of order m + 1. Moreover, by (2.23), (2.36), the leading term
of order m — 1 differential operator in [Lx, Lk, Q] is p[(TY — 2mv/=1p)(K;))2, Q).
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Thus by (2.41) and (2.42),

4
(2.43) 1Qsllzz < C(I1£,Qsllz2 + p* Q5] 2)
<

C
CUIQLysl 1> + pllsll gy + DIl + Pllsll gy ).
This means

m—+1

(2.44) Isll gzm+> < Conp™™ 2 Y (|L] sl 2.
j=0

Moreover, from

(L3 8y(£,)Q5. ') = (5. Q" 6p(L)EY S,
(2.33) and (2.35), we know that for any I, m’ € N, there exists Cj,,» > 0 such that
forp > 1,

(2.45) 125" 65 (L) Q8] 22 < Cramrp™ 5] 2.

We deduce from (2.44) and (2.45) that if @1, Q2 are differential operators of order
m,m’ with compact support in U;, U; respectively, then for any [ > 0, there exists
C; > 0 such that for p > 1,

(2.46) 1Q16(Ly)Q25| 2 < Cip™"|1s]| 2
On U; x Uj, by using Sobolev inequality and (2.34), we get Proposition 2.6. O

Observe that K jX are vector fields along the orbits of the G-action, thus the contri-
bution of pL, L, in the wave operator cos(t,/L,) will propagate along the G-orbits,
and the principal symbol of £, is given by

o(Lp) (&) = €7 +p ) (K[),€)? for & e T*X.
J

By the finite propagation speed for solutions of hyperbolic equations [16, §7.8],

[41, §4.4], [42, 1. §2.6, §2.8], [31, Append. D.2], F(L,)(x,z') only depends on the
restriction of £, to G- BX(z,¢) and

(2.47) F(L)(z,2') =0, ifd*(Gz,a')>e.

(When we apply the proof of [42, §2.6, §2.8], [31, Append. D.2], we need to suppose
that X1, Yo therein are G-space-like surfaces for the operator g—; + Df,).

Combining with Proposition 2.6, we know that the asymptotic of P& (z,2’) as
p — oo is localized on a neighborhood of Gz.

Proof of Theorem 0.1. — From Proposition 2.6 and (2.47), we get (0.7) for any z, 2’ €
X, d¥(Gz,2") > 9. Now we will establish (0.7) for z,2’ € X \ U.

Recall that U is a G-open neighborhood of P = p~1(0).

As 0 is a regular value of p, there exists e¢g > 0 such that p : Xa, =
p= (B9 (0,2¢0)) — B9 (0,2¢) is a submersion, Xs, is a G-open subset of X.
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Fix €, €9 > 0 small enough such that X, C U, and d* (z,y) > 4e for any z € X,
y € X\U. Then V,, = X \ X, is a smooth G-manifold with boundary 9V, .

Consider the operator £, on V,, with the Dirichlet boundary condition. We denote
it by L, p. Note that £, p is self-adjoint.

Still from [42, §2.6, §2.8], [31, Append. D.2], the wave operator cos(t\/Lp D)
is well defined and cos(t+/L, p)(z, ") only depends on the restriction of £, to G -
BX(x,t) N V,,, and is zero if dX (Gz,2’) > t. Thus, by (2.31),

(2.48) F(L,)(z,2') = F(Lpp)(z,a'), ifza’ e X\U.

Now for s € 65°(Ve,, Ep), after taking an integration over G, we can get the
decomposition s = s1 + so with s; € QU*(X,LP ® E)Y, 55 € (Q%*(X,LP @ E)%)*+
and supp(s) C Veg \ 0Va,.

Since Z?;?GLKI.LIQ commutes with the G-action, L,s1 € QU*(X,LP @ E)Y,
L,s2 € (Q%*(X, LP @ E)Y)L and, by (2.24), (2.28),

(2.49)  (Lps,s) = (Lps1,s1) + (Lpsa, s2)
= || Dps2||Z2 — p(p(Cas)sz, s2) + (Dys1, 51)
> puvy|sal|2e + <D12781, 51).

To estimate the term (Dgsl, s1), we will use the Lichnerowicz formula.
Recall that the Bochner-Laplacian AF» on E, is defined by (1.21).
Let r¥ be the Riemannian scalar curvature of (T'X, g7*).

Let {w,} be an orthonormal frame of (710X, 7). Set

wa ==Y R (wa, W) 0" A i, ,
a,b
(2.50) 7(2) = > RM(we,@.),  RE =Y RF(w,, ),

c(R) = Z (RE n %Tr[RT(l’O)X]) (easep) cleq) cley) .
a<b

The Lichnerowicz formula [1, Theorem 3.52] (cf. [27, Theorem 2.2]) for D2 is
(2.51) Dz27 = AP —2pwy — pr+ 11 + ¢(R).
Especially, as supp(s;) C Vg, \ 9V, from (2.51), we get
(2.52) (D2s1,s1) = [V 51|72 — p{(2wq + 7)s1, 51) + (37 + c(R))s1, 51).
Since s; € Q%*(X, LP ® E)%, from (1.13), for any K € g,

(2.53) Virest = (L 4 pP (K))si = p (K)s.
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From (2.23) and (2.53), there exist C,C’ > 0 such that
' E '
(2.54) IVErsil|7. > C) IVixsillze = C > N (Kj)sil2
J ' J

> Cp?lllulsillie — C'llsill7e = Cegp?sillie — C'llsalle.
From (2.49)-(2.54), for p large enough,
(2.55) (Lps, s) = priflsallze + Cp?[Is1ll7e.
Thus there are C,C’ > 0 such that for p > 1,
(2.56) Spec(L, p) C [Cp— C', .

Now as K jX |av€0 € TOV,, for any j, thus Lg, preserves the Dirichlet boundary
condition. We get for [ € N,

(2'57) LKj ¢p(£p,D) = ¢p(£P7D)LKj7 (ﬁp,D)l¢p(ﬁp,D) = ¢p(£p,D)(£p,D)l~
Thus from (2.24), (2.39) and (2.57),
(2.58) D> < Ly,

and for [ € N, (D;D)l commutes with the operator ¢,(Lp p).

Let ¢,(Lp,p)(x,2") be the smooth kernel of ¢,(L, p) with respect to dvx (z').

Then from the above argument we get that (Dfm)l(Df)’w,)kqbp(ﬁpp)(x, x') verifies
the Dirichlet boundary condition for x,z’ respectively for any [,k € N.

By (2.36) and the elliptic estimate for Laplacian with Dirichlet boundary condition
[42, Theorem 5.1.3], there exists C' > 0 such that for s € H*"*3(X, E,)NH}(X, E,),
p € N,we have

(259) ||SHH12)”m,+2 < C(HDZS”H%"" +p2||SHHZm+1).

Thus if Q1, Q- are differential operators of order 2m, 2m’ with compact support in
Ui, U; respectively, by (2.59) and (2.58), as in (2.44), we get for s € 65°(Ve,, Ep),

/

(2:60)  [|Q16p(Lp,0) Q2512 < Cp"™ ™ 3" (D) p) 6 (L) (D5 ) sl 12

Jj1=0j2=0

< Cp4m+4m, Z Z H(cp,D)j1 ¢p(£p,D)(£p,D)j2sHL2'

Jj1=072=0
From (2.56), (2.60), as in (2.46), we get

(2.61) 1Q16p(Lp,0)Q2ll 12 < Cop™ |3 2.

By using Sobolev inequality as in the proof of Proposition 2.6, from (2.32), (2.48)
and (2.61), we get Theorem 0.1. O
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2.5. Induced operator on U/G

Let U be a G-neighborhood of P = 1~1(0) in X such that G acts freely on U, the
closure of U. We will use the notation as in Introduction and Sections 1.1, 1.2 with
X therein replaced by U, especially B = U/G.

Let m : U — B be the natural projection with fiber Y. Let TY be the sub-bundle
of TU generated by the G-action, let g7, ¢7” be the metrics on TY, TP induced
by g7X.

Let THU, THP be the orthogonal complements of 7Y in TU, (TP, gT"). Let
gTHU be the metric on 77U induced by ¢g7¥, and it induces naturally a Riemannian
metric ¢7F on B.

Let dvp be the Riemannian volume form on (B, g7 ?).

Recall that in (1.20), we defined the isometry

® = hng : (Cgoo(Uv Ep)G’<v >) - ((goo(B’Ep,B)’<v >)

By (1.14), ufr defines a G-invariant section » of TY ® End(E,) on U.

Remark that wq, 7, c¢(R) in (2.50) are G-invariant. We still denote by wq, 7, c(R)
the induced sections on B.

As a direct corollary of Theorem 1.3 and (2.51), we get the following result,

Proposition 2.7 — As an operator on €°°(B, Ep, ),
(2.62) ®L,>7' =OD2P!

B~ 1
= APrm _ <‘LLEP,ILLEp>gTY — EABh — 2pwq — pT + %’I‘X +c(R).

From Theorem 0.1, Prop. 2.6 and (2.47), modulo & (p~°°), Pf(x, x') depends only
the restriction of £, on U.

To get a complete picture on PpG (z,2'), we explain now that modulo &(p~°),
PpG (z,2') depends only on the restriction of ®L£,®~! on any neighborhood of X¢ in
B.

As in the proof of Theorem 0.1, we will fix ¢y > 0 small enough such that Xs,, =
p~ (B9 (0,2¢))C U, and the constant £ > 0 verifying that d¥(z,y) > 4¢ for any
r € Xe,y€ X\U. Set B, = m(X,)-

Let F(®L,® 1) (z,2') (2,2 € B,) be the smooth kernel of F(®L,®~') with
respect to dvg(z’). We will also view ﬁ(@ﬁpé_l) as a G x G-invariant section of
prify, @ prak, on X, X X,

Theorem 2.8. — For any I,m € N, there exists Cj,, > 0 such that for p > 1,
z, ' € X,

(2.63)  [h(2)h(2") P (x,2") = F(BL, ") (w (), w(2'))lgm (x. xx.g) < Cromp ™"
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Proof. — Let Q : € (X,E,) — €>~(X,E,)“ be the orthogonal projection and
Q'+ =1d—Q. Then Dy, £, commute with @, Q*, thus
(2.64) ﬁ(ﬁp) = ﬁ(ﬁp)Q + ﬁ(ﬁp)Ql
Let (ﬁ(ﬁp)Q)(x,x’), (ﬁ(ﬁp)QL)(x,x’) be the Schwartz kernel of the operators
F(L£,)Q, F(L£,)Q* with respect to dvx (z').

Now, by (2.4), (2.24), on Im(Q1), Spec(L,) C [pv1,+oc[. As £, commutes with

Q*, by the same argument as in (2.32), (2.46), we get for any [,m € N, there exists
Ci,m > 0 such that for p > 1,

(2.65) (F(L)QY) (@, 2| (x.y x X.g) < Cromp ™"

Let d®(-,-) be the Riemannian distance on B.

By (2.62) and the finite propagation speeglv for solutions of hyperbolic equations
[16, §7.8], [41, §4.4] (cf. [31, Append. D), F(®L,P1)(x,2’) only depends on the
restriction of ®£,®~! to BP(z,¢) and
(2.66) F(®L,® V) (z,2') =0, if dB(z,2') >e.

Now by (2.47), (2.66) and the isometry ® in (1.20), we get
(2.67) B(F(L,)Q)0 ' = F(BL,PY).

From (2.67), for z,2' € X.,, we have

(2.65) B h()(F(£,)Q) (@, 2') = F(@L,0")(x(x), 7(x).

In fact, by (0.10) and (2.67), for any s € €5°(Be,, Ep.c),
(F(PL,D)s)(m(x)) = (R(F(L,)Q)P"s)(r(x))

= h(x)/X (ﬁ(ﬁp)Q)(aﬁ,x')hil(x')s(x')dvx(x')

€0

(2.69)

~ h(z) /B (F(Ly)Q) (@, )h(y)s(y ) (o).

€0

From (2.32), (2.64), (2.65) and (2.68), we get (2.63). O

Theorem 2.8 and (2.66) help us to understand that the asymptotic behavior of
PE(x,a’) is local near X¢. In the rest, we will not use directly Theorem 2.8.

2.6. Rescaling and a Taylor expansion of the operator ®£,d~!

Recall that Ng is the normal bundle of Xg in B, and we identify Ng as the
orthogonal complement of TX¢ in (TB|x., 9" ?).

Let PTXc PNc be the orthogonal projection from TB|x, on TX¢g, Ng.

Recall that Ve, 0y”? are connections on Ng, TB on X¢, and A is the associated
second fundamental form defined in (0.9).

We fix zp € Xg.
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If W e Ty Xa, let R 3t — xy = expaf(tW) € X be the geodesic in X¢ such
that $t|t:0 = Zo, %hzo =W.
W e ToXa, W < & V€ Ny let twV € N xe

parallel transport of V' with respect to the connection VV¢ along the curve [0, 1] 3
t — exp¢ (tW).

If Z € TpB, Z = 72°+ Z+, 72° € T\, Xg, Z+ € Ny, 129,124 < &, we
identify Z with exp® Tz0Z%). This identification is a diffeomorphism from

be the natural

pfoff'(ZO)(
BIXc(0,e) x BY¢(0,¢) into an open neighborhood % (z¢) of z in B. We denote it
by ¥, and % (z0) N X¢ = BLX4(0,¢) x {0}.

From now on, we use indifferently the notation B.X¢(0,e) x BY¢(0,¢) or % (x0),
zgor 0, ---.

We identify (Lg)z, (Ep)z and (Ep )z t0 (LB)zy: (EB)z, and (Ep B)e, by using
parallel transport with respect to VL5, VF5 and VEr.5 along the curve 7, : [0,1] 3
U — uz.

Recall that THU C TX is the horizontal bundle for 7 : U — B defined in Section
2.5.

Let PT"U be the orthogonal projection from T'X onto THU.

For W € TB, let WH € THU be the horizontal lift of W.

For yo € 77! (z0), we define the curve 7, : [0,1] — X to be the lift of the curve 7,
with 79 = yo and % € THU. Then on 7= *(BTB(0,¢)), we use the parallel transport
with respect to VX, V¥ and VF» along the curve 7, to trivialize the corresponding
bundles. By (1.17), the previous trivialization is naturally induced by this one.

This also gives a trivialization of 771 (BT5(0,¢)) as Gx BT2(0, ¢), and the G-action
on G x BTB(0,¢) induced from its action on 7=1(BT5(0,¢)) is

(2.70) 9(1,2) = (9, 2).

Let {el}, {ej} be orthonormal basis of Ty Xa, Nz, then {ei} = {ef e} is
an orthonormal basis of T,,B. Let {e'} be its dual basis. We will also denote
U, (e?), \I'*(ejl) by €?, ejl. Thus in our coordinates,

(2.71) a7m = €1 % =e;.

In what follows, for ¢ > 0 small enough, we will extend the geometric objects
on BTB(xg,¢) to R?"~"0 ~ T, B (here we identify (Z1, -+, Zan_n,) € R to
>; Ziei € Ty, B) such that D, will become the restriction of a spin® Dirac operator
on G x R?"~™0 agsociated to a Hermitian line bundle with positive curvature. In this
way, we can replace X by G x R?""n0,

First of all, we denote by Lo, Ey the trivial bundles L|gy,, E|ay,, lifted on X =
G x R?"~"0and we still denote by V¥, V¥, h etc. the connections and metrics on
Lo, Ey on 7= 1(BT=0B(0,4¢)) induced by the above identification. Then hl, h¥ is
identified with the constant metrics A0 = hfwvo, hPo = hFv.
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Set
(272)  RY=>Zfey =2zt RO=> Z)=2" R=R"+R"=2Z
7 7

Then R is the radial vector field on R?"~ "0,
Let € > 0 with € < £9/2. Let ¢ : R — [0, 1] be a smooth even function such that

(2.73) pv)=11if |v]| <2; @) =0 if |v] > 4.

Let ¢. : Xo — Xo be the map defined by ¢.(g,2) = (9,¢(|Z|/e)Z) for (g9,2Z) €
G x R2n—no,

Let g7%0(g,2) = ¢7% (0:(9, 2)), Jo(g, Z) = J(¢-(g, Z)) be the metric and almost-
complex structure on Xj.

Let VFo = 0*V¥ then VE0 is the extension of V¥ on 771 (BT=05(0,¢)).

Let VL0 be the Hermitian connection on (Lo, h*°) on G x R2"~"0 defined by that
for Z € R2n—"o,

(2.74)

1
Vi = oV 4 (1— () RE (RY, PIY ) + 5 (1= () ) RE (RY, PV ).

We calculate directly that its curvature R0 = (V£E0)? is

(2.75)
RE = giRY +a((1 - p( ) RE (2, PIY ) +

€

S0 - P(2)RE (2,1 )

L TY TY L (pTHU
:Rwe(Z)(Pyo "Pyo ')+Ryo(P "')

Yo
VA H H
+ 9 (E)(RY,(z) — Ry)(E) U P
VA H
+e(Z) (R, () — Ry)(Py U PRY)
2]\ 2" L TY L TY
- @'(T)M N Ry (Z, Py ) = Ry (2, P, )]
z* H H
z
— (B 7 MG (2. Py ) = R (2P V)
Here Z* € T, B is the dual of Z € T, B with respect to the metric gTwo B,
From (2.75), one deduces that R is positive in the sense of (2.10) for e small
enough, and the corresponding constant v for R is bigger than %VO uniformly for
Yo € P.
From now on, we fix € as above.
Now G acts naturally on Xy by (2.70), and under our identification, the G-action
on L, E on G x BT=B(0,¢) is exactly the G-action on L|gy,, E|cy,-
We define a G-action on Lg, Fy by its G-action on Gy, then it extends the G-action

on L, E on G x BT=0B(0,¢) to Xo.
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By (2.17), for any K € g, W € TP on P = u~1(0), we have
REW, KX) = —2nv/—1w(W, K¥) = 2nv/—=1W (u(K)) = 0,
(2'76) L H X L 1\NH X
R 70)(R7, K%)= R3 z0y(R7)7, K7).

Observe that for (1,2) € G x R**~" by (2.70), %*K()ffz) = KX for K € g, by
(2.16), the moment map px, : Xo — g* of the G-action on Xj is given by

2.77) 20V~ Tpx,(K) 1,2y = (1 — (Z))RE (RT, KX) + 20V —Tp(K) . (1,2)-

Now from the choice of our coordinate, we know that px, = 0 on G x R?"=2m0 x {0}.
Moreover,

(278)  20V=Tu(K)p.1.2) = Bt ) (02 (RO, KX) + 0(o(12)|211 24)).
From our construction, (2.77) and (2.78), we know that

(2.79) pxh(0) = G x R** 72" x {0}.

By (2.76) and (2.77), for Z € T, B, |Z]| > 4e,

(2.80) 2V =1 px, (K) 1,2 = Ry, (RT)M, K).

Let Dg(o be the Dirac operator on Xy associated to the above data by the construc-
tion in Section 2.2. By the argument in [27, p. 656-657] and the proof of Theorem
2.5, we know the analogue of Theorems 2.2, 2.5 still holds for Dgfo. Let Cl)fo be the
operator on Xy defined as in (2.24). Then there exists C' > 0 such that for p > 1,

(2.81) Spec (Cffo) Cc {0} U[pr — C,+o0].
Set
(2.82) Eo,p = MNT* OV X)) @ LE @ Ejp.

Let gTP0 be the metric on By = R2"~" induced by g7X¢, and let dvg, be the
Riemannian volume form on (By, g7 5?).

The operator @Eif‘)@_l is also well-defined on T, B ~ R?"~"0,

Let P,, , be the orthogonal projection from L?(R?"~" (Ey ,)pg,) onto Ker(@ﬁi,%(b_l)
on R~ Let Py, ,(Z,2Z'") (Z,Z' € R*"~"0) be the smooth kernel of P, , with
respect to dvg,(Z’). As before, we view P, , as a G x G-invariant section of
pri(Eop) @ pry(Eop)* on Xo x Xo.

Let pr be the orthogonal projection from Q°%*(X,, LE® Ey) onto (Ker Difo)G, and
let P§7,(x, ') be the smooth kernel of P§’, with respect to the volume form dvx, ().

Note that ® in (1.20) defines an isometry from (Ker D;0)¢ = Ker £X° onto
Ker(®LYX0®™1), as in (2.68), we get

(2.83) h(x)h(x')P(fp(x, 2') = Py p(m(z), 7(2")).
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Proposition 2.9. — For any l,m € N, there exists Cj,, > 0 such that for z,z’ €
G x BT=0B(0,¢),
(2.84) (P(fp — PY)(z,2) <Cpmp~!

p xm

Proof. — By the analogue of Theorems 2.2, 2.5, we know that for z,2/ € G x
BTxB(0,¢), P§’, — F(L;°) verifies also (2.32), and for 2,2’ € G x BT=5(0,¢),

F(LE) (@,0') = F(Ly) (@, )
by finite propagation speed. Thus we get (2.84). O

Let T*O:D X, be the anti-holomorphic cotangent bundle of (Xo,Jp). Since
Jo(g, Z) = J(pe:(g,2)), T;’(S[’)I)XO is naturally identified with T;i(();;l,)z),JXO'

Let VCiflo be the Clifford connection on A(T*(%V) X;) induced by the Levi-Civita
connection VT*0 on (X, g7X0). Let RFo, RTXo RCliflo he the corresponding curva-
tures on Eo, T Xy and A(T*(OV X,) (cf. (2.12)).

We identify A(T*OV X)(, z) with AT X) by identifying first A(T*0D X) ;.2

with A(T;E(();)Z),JXO)’ which in turn is identified with A(T;ég’l)X) by using parallel
transport along u — ug. (g, Z) with respect to V1o, We also trivialize A(T*1) X,)
in this way.

Let St be a G-invariant unit section of L|gy,. Using Sr, and the above discussion,
we get an isometry

AT OV X)) @ LE @ Ey ~ (AT OV X) ® E)|r-1(20) =t Blr—1(20)-

For any 1 < i < 2n — ng, let €;(Z) be the parallel transport of e; with respect
to the connection °VTB along [0,1] 3 u — uZ°, and with respect to the connection
VTE along [1,2] 3 u — Z° + (u — 1)Z+.

Recall that A, R+ have been defined in (0.9), (2.72).

The following Lemma extends [1, Prop. 1.28] (cf. also [17, Lemma 4.5]).

Lemma 2.10. — The Taylor expansion of €;(Z) with respect to the basis {e;} to
order r is a polynomial of the Taylor expansion of the curvature coefficients of RTP
to order r — 2 and A to order r — 1.

Proof. — Let 0; = V., be the partial derivatives along e;.

Let I'T be the connection form of VT'5 with respect to the frame {¢;} of TB. By
the definition of our fixed frame, we have i I'T? = 0. Asin [1, (1.12)],
(2.85) LiTTB =i dTTP = ip, (dTTB 4 TTB ATTB) = i RTB,

Let ©(Z) = (9§(Z))2"_"° be the (2n — ng) X (2n — ng)-matrix such that

ij=1

(2.86) ei = 01(2)%(2), &(2)=(O(2) " )jer.



38 CHAPTER 2. G-INVARIANT BERGMAN KERNELS

Set 07(Z) =3, 0! (Z)et and

(2.87) 0=> edwe;=> ¢7¢; e T"BoTB.
J J
As VT8 is torsion free, VIB0 = 0. Thus the R?"~"0_valued one-form 6 = (67 (Z))
satisfies the structure equation,

(2.88) do+TTB Ao =0.
By the same proof of [1, Prop. 1.27], we have

(2.89) RE=>Zje(2), igub=) Ziey=27"
J J

Here under our trivialization by {€;}, we consider Z+ = (0, Z{",- -+ , Z;. ) as a R"~"0-
valued function.

Substituting (2.89) and (Lg. —1)Z+ = 0 into the identity iz (df +TTB AQ) =0,
we obtain
(2.90)

(Lri —1)Lgi = (Lgy —1)(dZ*- +TTBZY) = (L. TTP)Z+ = (ig . RTP)Z+.

Here we consider R7P as a matrix of 2-forms, so that RT2Z~ is a vector of 2-forms,
and @ is a R?""0-valued 1-form.
By (2.89) and (2.90), we get

(2.91) ie;(Lps — 1)Lg10"(Z) = (RTP(R*,¢;)R*,&) (Z).

We will denote by 9+, 9° the partial derivatives along Ng, T X respectively. Then
we have the following Taylor expansions of (2.91): for j € {2(n—ng)+1, -+ ,2n—no},
i.e. e; € Ng, by Lpiel = e, we have

2.92 12 Lot oﬁei 70 (ZJ')O‘ —(RTB(RL e REEN (7
(292) > (lat P +lat (@) 6)(2°) i = (RTPRTe)RY &) (2).

lot[>1

and for j € {1,---,2(n —no)}, i.e. e € TXq, by Lrel =0, we have

1 1\
298) Y (ot~ ot @) 02 L = (R RS eRE ) (2),

lat|>1

From (2.92), (2.93), we still need to obtain the Taylor expansions for 9§(Z0), (1<
i,j < 2n —ng) and (9;705)(Z°), (1 < j < 2(n—np)).
By our construction, we know that for ¢ or j € {2(n — ng) +1,---,2n —no},

(2.94) e (2% = et (2%, 9}(20) =0;;.
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By [1, (1.21)] (cf. [17, (4.35)]), we know that on R?"~2m0 x {0}, for i,j €
{17 T ,2(71— nO)};

05(0) = b; 5,
0 . 0\’
B9 S (a0 41000 )0/ L = (RT¥6 (RO RO, 21) (29),
[a0]>1 '
while by (0.9), (2.86), and [e f,e]l] 0 (cf. (2.71)), we get

(2.96) (95 05)(2°) = e (e, €0)(2°) = (V[ Pef, &) (2°)

= (Vi er, &)(2°) = (Ve ex )(2°) = —(A(e)el ex )(2°).

Let RTXc¢ RN¢ be the curvatures of VI X¢ VNe. By (0.9),
(2.97) RTXe 4 pNe 4 A2 4 OVTBA = RTB|x. € AX(TX¢) @ End(TB).

For1 < j<2(n—ng),2(n—ng)+1<i<2n—ngp, i’ =i—2(n—nyp), by [eé,eg] =0,
as in (2.96), we get

(2.98)  (9p0;)(2°) = ejc (€], €0)(2°) = (Vi eir,€)(2°) = (VT ei i) (2°).

e -
J 3

By [1, Prop. 1.18] (cf. (2.103)) and (2.98), the Taylor expansion of (9;6%)(Z°) at 0
to order r only determines by those of RN¢ to order r — 1.

Now by (2.86), (2.92)-(2.98) determine the Taylor expansion of ¢’(Z) to order m
in terms of the Taylor expansion of the curvature coefficients of R7? to order m — 2
and A to order m — 1.

By (2.86), we get Lemma 2.10. O

Let durp be the Riemannian volume form on (7, B, g’ B).
Let x(Z) (Z € R?"~™) be the smooth positive function defined by the equation

(2.99) dvp,(Z) = k(Z)dvrp(2),
with x(0) = 1.
For s € ¢ (R*~™ E, ) and Z € R~ for ¢ = \/ﬁ, set

(Se8)(Z) :=s(Z/t), Vi:= 8 "tr3VFrBok~3G,,

(2.100) 1 1
Ly =S, PRIOD OO kT2 S,

As in (1.18), we denote by RI=, RFs ROz the curvatures on Lp,Ep,
A(T*OD X) 5 induced by VL VE VCift on X,

Asin (1.14), i € TY, i¥ € TY ® End(E), i € TY ®@ End(A(T*OV X)) are
sections induced by g, uE uChH (2.17), (2.23).

Denote by Vy the ordinary differentiation operator on T, B in the direction V.

Denote by (0%RL#),  the tensor (0% REE), (e, e;) := 0%(REE (€1, €5))xq-
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Theorem 2.11. — There exist A; j, (resp. Bir, Cr) (r € N,i,5 € {1,---,2n—mnp})
polynomials in Z, and A, ;. is a homogeneous polynomial in Z with degree r, the
degree on Z of By is < r+ 1 (resp. Cp is < r+ 2), and has the same parity with
r — 1 (resp. 1), with the following properties:

~ the coefficients of A; ;, are polynomials in RTP (resp. A) and their derivatives
at xo to order r — 2 (resp. r —1);

— the coefficients of B, are polynomials in RTP, RMEs  REE  (resp. A, RL®)
and their derivatives at xo to order r — 2 (resp. v — 1, 1);

~ the coefficients of C,. are polynomials in RTE, RCfts  REs X Tr[RT(l'O)X],
RE (resp. A, i¥, g ; resp. h, RY, RF2; resp. p) and their derivatives at xq to
order r — 2 (resp. r — 1; resp. r; resp. v+ 1).

— if we denote by

Or = Ai,j,rveivej + Bi,rvei + Cra

2.101 o 1 2

(2101) == > (vej + 3Rl (R, ej)) — 2Wd my — Tay + 472 PTY J0 R,
j=1

then

(2.102) Ly =L+ 10, + o™

r=1
Moreover, there exists m’ € N such that for any k € N, t < 1, [tZ]| < ¢, the derivatives
of order < k of the coefficients of the operator O(t™ 1) are dominated by Ct™+1(1 +
1z

Proof. — Let T'P52_ T'L5 and T3 be the connection forms of VF2, VE5 and VClifi
with respect to any fixed frames for Eg, Lp and A(T*(1:%) X) g which are parallel along
the curve 7, : [0,1] > u — uZ under our trivialization on BT=05(0,¢). Then I'F% is
a End(CY™ #)-valued 1-form on R?"~"0 and I'*# is a 1-form on R?"~"0,

Now for I'* = T'E5 T'Ls or TClffs and R* = RFE, RL5 or RCfE respectively, by
the definition of our fixed frame and [1, Proposition 1.18] (cf. also [31, Prop. 1.2.4]),
the Taylor coefficients of I'*(e;)(Z) at xo to order r only determines by those of R®
to order r — 1, and

(63 [ ] ZO/ 1 o ® Zo{
(2.103) zl_: (0°T )mo(ej)J =T | ;1(8 R®): (R, €j)a.
Especially,
o 1 L4
(2.104) T%(ej) = SR2,(Roe5) + O(1Z]).

By (2.100), for t = 1//p, if | Z| < \/pe, then

(2.105) Vi = k¥ (tZ) (v + (trC“ffB F0PE 4 %PLB)(tZ)) K3 (12).
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Moreover, set
(2.106) (VEPe)(2) =T5(Z)ex,  9i(2) = 9" P (ei e)(2) = 0705 (2),

then Pfj is the connection form of VB with respect to the frame {e;}.
Let (g%) be the inverse matrix of (g;;), then

(2.107) APrs = — 3" gl (Vﬁp’BVii”'B - rfjvf;ﬁ),
‘!j

and by (1.1), (2.99),

K(Z) = (det gij)'/*(2),
(2.108) k1w
Iy =39 (0igjt + 0j9i — D1gij)-

By (2.62), (2.100) and (2.107)2,
(2.109) Z4(Z) = —g"(tZ)(Vie,Vie, — It Z)Ve,) — (tA"? t735P) grv (tZ)
—wa(tZ) — T(tZ) + 1 (%«X +¢(R) - %ABOh) (t2).
By (2.23),
(2.110)
<tﬁEp7tﬁEp>gTY — _47r2|%/7|§TY + <4ﬂ_\/__1ﬁ+t2(ﬁCliH _’_ﬁE)’ﬁCliH +ﬁE>gTy.

By (2.6), (2.17), and fi,, = 0, for yo € P, 7w(yo) = xo, we get for K € g,

(2.111) — (el KX )y, = w(K¥,efl) = Vo (u(K)) = (VI 1, K¥)y,,
thus
(2.112) 2o (Z) = [VRY filiey + O(2Z1) = |PTY 3., RI2 + 6(2]7).

By Lemma 2.10, (2.103), (2.105), (2.109) and (2.112), we know that £} has the
expansion (2.102), in particular, we get the formula .£3 in (2.101).

By (2.97), (2.103) and (2.109), we get the properties on A; ; », B; r.

By (2.97), (2.109) and (2.110), we get the properties on C,.

The proof of Theorem 2.11 is complete. o

2.7. Uniform estimate on the G-invariant Bergman kernel

Recall that the operators .2, V; were defined in (2.100), and Eg = A(T**Y X)) ®
Ey. We have trivialized the bundle Eg g, to Ep 5, in Section 2.6. We still denote by
hEo.B0 the metric on the trivial bundle E By 00 R~ induced by the correspond-
ing metric on Eg p,. By our trivialization, (Fg 5, hEo-#0) is identified to the trivial
Hermitian vector bundle (Ep 4, hEB.20),

We also denote by (, ), r» and [ [[o,r2 the scalar product and the L? norm on
¢°°(Tyy B, EpB 4,) induced by gTzoB hEo.50 asin (1.19).
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Let fix,, i%» be the G-invariant sections of 7Y, TY ® End(Ej ;) on X induced
by px,, pFor asin (1.14).

Let {fi} be a G-invariant orthonormal frame of TY on 7 (B (xg,¢)), then
(fo,)z = (fi)p.(z) is a G-invariant orthonormal frame of 7Yy on Xo.

Definition 2.12. — Set
1 .
(2.113) Dy ={Vie,, 1 <i<2n—ng; ¥<MX0, Jo)(tZ),1 <1< ng}.

For k € N*, let DF be the family of operators acting on (T}, B, Ep 4,) which can
be written in the form Q = Q1 -+ - Qk, Qi € Ds.

For s € € (T4, B,Ep 4,), k > 1, set

lslto= [ (D) ns..,dor,5(2)
n—nqo

k
IslF k= lslFo+>_ > llQsllzo.

=1 QeD}

(2.114)

We denote by (s',s), ; the inner product on ¢*°(Ty, B, Ep,s,) corresponding to
I 1.

Let H}* be the Sobolev space of order m with norm || |sm. Let H; ' be the
Sobolev space of order —1 and let || ||s,—1 be the norm on H; ' defined by ||s;—1 =
supozsem} | (8,8 )0 1/118lle1-

If A e LHPHY) (m,m' € Z), we denote by ||A||;n’m, the norm of A with
respect to the norms || ||¢,m and || |l¢,m-

Then .4 is a formally self-adjoint elliptic operator with respect to || |74, and is
a smooth family of operators with respect to the parameter xg € X¢.

Theorem 2.18. — There exist constants C1,Co,C5 > 0 such that for t €]0,1] and
any 5,8 € C(R*~"0 Ep ),

(Z35.5), 4 = Cillsllf.1 — Callsllf o,
<

(2.115)
[(Z45,8), 4] < Callslleal

SI| t,1-

Proof. — By (2.80) and our construction for Lg, Ey on X, we know for Z € T,, B,
|Z| > 4e,

(2.116) uEor (K)1,z) = p Ry, (RM)™, K).
Thus from (2.109) and (2.114),

(2.117) <$2tsv S>t,0 = ”vtsHtZ,O —t? <<ﬁE0’paﬁE0’p>gT" (tZ)s, S>t,0

1
+ <(—25’t_1wd —S7r + 287 (3 + ¢(R) — EABoh)> s, 8> .
£,0

s
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From (2.77), (2.110), (2.116), and our construction on V0,

(2.118)
2 NE[)r ~E0 2 % 1 -~ 2 2
L2 (o o) g (12)5,5), 4 > 20 Y |3 o fon) (42)s]|, = CtllslEo.
From (2.117) and (2.118), we get (2.115). O

Recall that v is the constant in (2.25).

Let § be the counterclockwise oriented circle in C of center 0 and radius v/4, and
let A be the oriented path in C which goes parallel to the real axis from 400 + 7 to
5 + 4 then parallel to the imaginary axis to g — i and the parallel to the real axis to
400 — 1.

an
k y via | vi2

Theorems 2.14-2.16 are the analogues of [17, Theorems 4.8-4.10] (cf. also [31,
Theorems 4.1.10-4.1.12]). Especially, the proofs of Theorems 2.14, 2.16 are exactly
the same as the proof of [17, Theorems 4.8, 4.10], we include the proofs for the sake
of completeness.

Theorem 2.14. — There exist to > 0, C > 0 such that for t €]0,tp], A € 6 UA and
20 € Xg, (A — Z)~! exists and
=23 < ¢,

(2.119) -
A=) T < e+ AP).

Proof. — By (2.25), (2.62) for D;f, and (2.100), there exists to > 0 such that for
t E]O, to],

(2.120) Spec (Z5) € {0} U [v, +oo.

Thus (A — Z4) 71 exists for A € U A.
The first inequality of (2.119) is from (2.120).
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By (2.115), for Ao € R, A\g < —2Cs, (Ao — Z4)~! exists, and we have ||(Ao —
L5 < & Now,
(2121) A=) =N~ L) = (A= 2)A = 23) " (o — )7
Thus for A € §UA, from (2.121), we get
1 4
= (1+ ;|)\—)\0|).

1

(2.122) IO =) <

Now we change the last two factors in (2.121), and apply (2.122), we get

Z1y— 1 A — Nl 4
. _pty-1—LL o 4 0 ST
(2.123) I =) < o g (1 A= )
<C(1+|AP).
The proof of our Theorem is complete. O

Proposition 2.15. — Take m € N*. There exists Cp, > 0 such that for t €]0,1],
Q1 Qm € Dy U{Z;}7"™ and s,5' € €5°(R*"" Ep ., ),

(2.124) ‘<[Q1, (@2, [Qm, 23] ls,s"), 4

Proof. — Note that [V, Z;] = d;;. By (2.109), we know that [Z;, . Z}] verifies
(2.124).

Recall that by (2.77) and (2.80), (Ve, {(fix,, fo,1))(tZ) is uniformly bounded with
its derivatives for ¢ € [0, 1] and
(2125) vei </-7X07f0,l> = (61<,L7X07 f07l>)m0 = W(,f(),la ei)ﬂfo
for | Z| > 4e. Thus [1(fix,. fo,)(tZ), Z3] also verifies (2.124).

Note that by (2.100),
(2.126) (Vi Vie,] = (RY0P0 (t2) + 2 RE 50 (t2)) (€5, ;).

Thus from (2.109), (2.125) and (2.126), we know that [V, ,-Z4] has the same struc-
ture as 2y for t €]0,1], i.e. [Vie,,-Z4] has the type as

< Clls|

sl

(2127) Z 227 (t, tZ)Vtein@j + Z C; (t, tZ)quei

17 [
1 . 1.
+ 3 [d12)7 Gixes fon 42) + i v (42)] + c.12),

where d € C; a;(t,Z),ci(t, Z),cj(t, Z),c(t, Z) and their derivatives on Z are uni-
formly bounded for Z € R?"~"0 t € [0,1]; moreover, they are polynomials in ¢. In
fact, for [Vi,, Z4], d =0 in (2.127).

Let (Vi.,)* be the adjoint of Vi, with respect to (, ), ,, then by (2.114),

(2.128) (Vie)" = =Vie, —t(k7'Ve,k)(t2),
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the last term of (2.128) and its derivatives in Z are uniformly bounded in Z €
R?"=m0 ¢ € [0,1].

By (2.127) and (2.128), (2.124) is verified for m = 1.

By iteration, we know that [Q1,[Q2,...,[@m,-Z4]...]] has the same structure
(2.127) as .Z4. By (2.128), we get Proposition 2.15. O

Theorem 2.16. — For any t €]0,to], A € SUA, m € N, the resolvent (A — £4)~*
maps H" into H;”H. Moreover for any o € N?>"="0 there exist N € N, Cy 1y > 0
such that for t €)0,t0], A€ JUA, s € 6.°(R*™ 0 Ep ,,),

(2129) 2%\ = Z)  sllemsr < Cam(L+ DY D012 s -

a’'<a

Proof. — For Q1, -+ ,Qm € Di, Qm+1,- s, Qmyjal € {Zi}fgl_"o, we can express
Q1 Qmeja)(A— Z4)~1 as a linear combination of operators of the type

(2:130) [Q1, Qv Qs A = L0 7] Qs -+ Qs 7/ <+ al.
Let %; be the family of operators
Ze ={(Qj, Qs - [Qji. L] - I}

Clearly, any commutator [Q1, [Qs2, . .. [Qm/, (A—Z4)71]...]] is a linear combination
of operators of the form

(2.131) A=Z) " RN = L) 'Ry Ryp (A = £3) 7}
with Ry, -+, Ry € K.

By Proposition 2.15, the norm || ||;"~" of the operators R; € %, is uniformly
bound by C.

By Theorem 2.14, we find that there exist C' > 0, N € N such that the norm
| |2 of operators (2.131) is dominated by C(1 + |[A2)V. O

Let mp : TB xg T B — B be the natural projection from the fiberwise product of
TB on B.

Let e=%%:(Z,Z"), (Lie="%2)(Z, Z'") be the smooth kernels of the operators e™"%2 |
Lhe % with respect to dvr, B(Z').

Note that .Z% are families of differential operators with coefficients in End(Eg ,,) =
End(A(T*OVX) @ E)p.,. Thus we can view e %% (Z,2'), (Lie "%:)(Z,2Z') as
smooth sections of 75 (End(A(T**YX)® E)p) on TB x5 TB.

Let VFr4(EB) be the connection on End(A(T*(*V X)® E) g induced by V5 and
VEs And VEr(EB)  pE and ¢TX induce naturally a €™-norm for the parameter
xg € Xg.

As in Introduction, for Z € T, B, we will write Z = Z0 + Z+ with Z° € Ty Xa,
Zt € Ng 4y
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In the following result, we adapt [17, Theorem 4.11] to the present situation. The
new point is that the kernels here have the fast decay estimate along the normal
direction Ng z,.

Theorem 2.17. — There exists C"” > 0 such that for any m,m',m",r € N, ug > 0,
there exists C > 0 such that for t €]0,to], u > wg, Z,2' € Ty, B,

laltle’l  gr
YA YA

"

sup (14|25 + |z e "% (7,7")

lal+]a’|<m

¢ (Xa)
20"
U

7 1
< C(1 4|20 + | 2702 ntrtmi+1)+m oy (—Z/U, - |Z — Z’|2),
(2.132) , 2
(1+IZL|+IZ'l|)m”} i
su _—
d 02°02'" Ot

lal+|a’|<m

Lhe~ %2 (2,2")

20"

/ 1
< C(1 4 |20 +|z°))2(ntrdm’+04m oy ( i |Z — Z/|2),

where €™ (X¢) is the €™ norm for the parameter o € Xg.

Proof. — By (2.120), for any k € N*,

k—1
uzp_ D)
2miuk—1

_ t —1)]671(]{? — ].)' _ _ _
ot uly _ ( / uA A\ — ot k A — gt k+1 d.
e =l R LCERZ R OEZ

/ e\ — Z5) R,
(2.133) ouA

From Theorem 2.16, we deduce that if Q € U™, D!, there are N € N, C,,, > 0 such
that for any A € § U A,

(2.134) 1RO —-23) "™ I7" < Con(1 + APV,

Recall that £7? is self-adjoint with respect to || [|+,0. After taking the adjoint of
(2.134), we get

(2.135) I =257 QI < Crn(1+ Y.
From (2.133), (2.134) and (2.135), we get if Q,Q’ € Uf;lDi,

Qe % Q'[|7° < Cpei™,

1Q(Le™%)Q'| " < Crme 2"

Let | | be the usual Sobolev norm on ¢’*°(R*"~"0 Ep ) induced by hEs.=0 =
hAT OV X)@E) 520 and the volume form dvr, p(Z) as in (2.114).

Observe that by (2.105), (2.114), there exists C > 0 such that for s €
€ (Two B, EB g, ), supp(s) C BT=08(0,q), m > 0,

(2.136)

1
(2.137) ot " Isllem <s

m < CL+q)™s]lt,m-
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Now (2.136), (2.137) together with Sobolev’s inequalities imply that if Q, Q" €
U, D, for K, (L) = e~ 1%e~ "% or e3¥“ Lle "% | we have

(2.138) sup  |QzQy Ku( L (Z, 2" < C(1+ ¢q)*"+2.
1Z112"|<q
By (2.77), (2.78) and (2.80),

CNp 2 1.
(2.139) Z ;WXO, fO,l>(tZ)‘ = |¥MXQ|£2]TY(tZ) > C|ZH .
=1

Thus by (2.105), (2.138), (2.139), we derive (2.132) with the exponentials 3",
e~2"% for the case when r = m’ = 0 and C” = 0, i.e.

glal+la’|
0202
< C(]. + |ZO| + |ZIO|)2n+m+2.

(2.140) sup (1424 + |Z'L|)M”’

lal+|a’|[<m

Ku(Z5)(2.2")

To obtain (2.132) in general, we proceed as in the proof of [4, Theorem 11.14].
Note that the function f is defined in (2.30). For ¢ > 1, put

too v? v
(2.141) K, o(a) = /_ exp(ivV/2ua) exp(—?)(l - f(é\/@v)) \;l%

Then there exist C’,C; > 0 such that for any ¢ > 0, m,m’ € N, there is C' > 0 such
that for u > ug, a € C, |Im(a)| < ¢, 0 > 1, we have

, C
(2.142) lal ™| K ) (0)] < Cexp (Clczu _71 )

02
For any ¢ > 0, let V. be the image of {\ € C,|Im(\)| < ¢} by the map A — A\2.
Then

1
Ve = {>‘ € C,Re(}) > 4_021m(>‘)2 - 62}7

and 6 UA C V, for ¢ large enough. N
Let K, , be the holomorphic function such that K, ,(a?) = K, ,(a). By (2.142),
for A € V,

_ C
(2.143) IAIE (W] < Clexp (c’c% o )

Using finite propagation speed of solutions of hyperbolic equations (cf. [41, §4.4],
[31, Append. DJ) and (2.141), we find that there exists a fixed constant (which
depends on ¢) ¢ > 0 such that

2.144 K, 7' = e (2, if |1Z -2 >Co.
Ko (L2, 2 L(7,7") it|Z-7'=(

By (2.143), we see that given k € N, there is a unique holomorphic function
K, .1(A) defined on a neighborhood of V. such that it verifies the same estimates as

K, , in (2.143) and IN(ugk(/\) — 0 as A — +00; moreover

(2.145) K YO0/ (= 1)1 = Ky (V).



48 CHAPTER 2. G-INVARIANT BERGMAN KERNELS

Thus as in (2.133),

- 1 - B
Runl) = 5 [ RuasNO— 2™,
(2.146) N 1‘5“ N
LRl 2) = 577 [ Kuar WO =27 = (0= 2™ an
y (2.134), (2.135) and by proceeding as in (2.136)-(2.138), we find that for
Ku ( ) = Kuo(a) or aKyo(a), for |Z],|2'| < q,

glol+la’|

2.147 sup (14|24 + |2+ 2"+m+”7'"+2‘7,Ku LN, 7!
T sp (14|75 +127) KA.

leel+|a’ [<m

< C(1 4 ¢)*" T2 exp(C'Pu — %92).
Setting ¢ € N*, [o— £|Z — Z’|| < 1 in (2.147), we get for a, o verifying | + |o/| <
m,
glal+la’]
02002
< O+ |20] 4+ 202+ exp(C?

(2.148) (14|24 +]Z2"* )™ K. (%)(Z.2)

%)

Take §; = g:iﬁz, from (2.140)%1x (2.148)'791 and (2.144), we get (2.132) for
- 2
r=m'=0.
To get (2.132) for r > 1, note that from (2.133), for k > 1
O e (DMK - 1)!/ 20" t\—k
2.149 —e vt = L o v A — ZH7kd.
( ) atre 27Tiuk_1 SUA 87&74( 2)

O (Lheu?).

We have the similar equation for 7

Set

J J
(2.150) I, = {(k,r) = (ki)Y ki =k+ 43, ri=r ki € N*}.
i=0 i=1

Then there exist a¥ € R such that

1 t T t
Ao = - ) o gy TG gy,
(2.151) o » o
atr()‘_f;) = Z arAr(/\7t)'
(k,[‘)elk,r

We claim that AX(\,#) is well defined and for any m € N, k > 2(m +r + 1),
Q, Q' € U™ DL there exist C' >0, N € N such that for A € §U A,

(2.152) IQAXAH)Q'slleo < CA+ MDY D 12%5] 0.

|Bl<2r
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In fact, by (2.109), 3—;.,?2"‘ is a combination of

arl . 87‘2 87‘3 87‘4
ij g o° ~Eqo
T (g (tZ))’ (8tr2 vtﬁi)? Otrs (q(tZ))a Otra (t</1' ) fo,l(tZ»)v

where ¢ runs over the functions ¥, etc., appearing in (2.109). Now g%(q(tZ)) (resp.
3;1 (t(uPor | fo)(t2)), 3;—31%@) (r1 = 1) are functions of the type as ¢'(tZ)Z”,
|B] < 71 (vesp. r1 + 1) (where ¢/, as g, runs over the functions ¥, etc., appearing in
(2.109)), with ¢'(Z) and its derivatives on Z being bounded smooth functions on Z.

Let %, be the family of operators of the type
'@2 = {[fleju [szsz’ s [szsz’XZt] - ]]}

with f;, smooth bounded (with its derivatives) functions and Q;, € Dy U{Z; }?ZI”O
Now for the operator AX(\,¢)Q’, we will move first all the term Z” in ¢/(tZ)Z” as
above to the right hand side of this operator, to do so, we always use the commutator
trick, i.e., each time, we consider only the commutation for Z;, not for Z? with |3| > 1.
Then AX(),)Q’ is as the form EIBK?T LgQgZﬁ, and Q7 is obtained from Q" and

its commutation with Z7.

" Ly
ot™i

Now we move all the terms Vi, (111, fo)(tZ) in
the operator Lf.

Then as in the proof of Theorem 2.16, we get finally that QAX(\,#)Q’ is as the
form 35 féZ # where Z} is a linear combination of operators of the form

to the right hand side of

(2.153) QA —f{)"“éRl()\ _D%t)—k’lRQ...Rl,()\ _ip?f,)—k;,Qm "

with Ry,--+ Ry € %}, Q" € U, DL, Q" € U DL, |B| < 2r, and Q" is obtained
from @’ and its commutation with Z7.

By the argument as in (2.134) and (2.135), as k > 2(m +r + 1), we can split the
above operator to two parts

QO — LY RO R (N — L5 MRy - Ri(\ — .2
()\—gg)—(ki—ki’)...Rl,o\_gg)—k;,Q/// //7

and the || [|2%norm of each part is bounded by C(1 + ||2)V.

Thus the proof of (2.152) is complete.

By (2.149), (2.151) and (2.152), we get the similar estimates (2.140), (2.148) for
3—;6_"15, (f?; (Lte~u#2) with the exponential 2n 4 m + 2r + 2 instead of 2n +m + 2
therein.

Thus we get (2.132) for m’ = 0.

Finally, for U € T X¢ a vector on Xg,

) £k —1 1 —1)! 7 En
(2.154) v ErdEo) —ugy M/é Kt Erd®e)(\ — 2k,
@]

2miuk—1
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Now, by using the similar formula (2.151) for VZ* End(E5) (A — Z4)~F by replacing
% by Vg* End(EB).,iﬂzt, and remark that Vg* End(EB)i@t is a differential operator
on Ty, B with the same structure as .%;.

Then by the above argument, we get (2.132) for m’ > 1. O

Let Py be the orthogonal projection from (T}, B, Eg 4,) to the kernel of £
with respect to (, >t70. Set

1
(2.155) F. (L = —/ e A\ = L7l

21 Ja
By (2.120),

t JrOO t
(2.156) F (L =e"%2 Py, = Lhem 22 gy,

Let Py +(Z,2"), Fu,(£4)(Z,Z") be the smooth kernels of Py, F,,(£4) with respect
to d'UTmOB(Z/)~

Corollary 2.18. — With the notation in Theorem 2.17,

i 8‘a|+‘a" 8T
2.157 sup  (L+ [ZH|+ |2 | ——m == Fu( L) (2,7
(2.157) \amaﬂgm( Z5 | +12") 870827 o (Z5) ( )(@n/(p)

/ 1
< O(1+ 20|+ | 270 2im P 2m 202 exp(—cvu = O\ Z = Z).

Proof. — Note that tvu+ 2¢2|Z — Z'|2 > \/C"v|Z — Z'|, thus
8 u

+oo 1" “+oo
_1 28" 1z _ 72 _ /O _g _1
(2.158) / e TV S| | duy < e VOvIZ Z‘/ e 3" duy
u

u

8 Lvu—~C"v|Z-Z'|

= —e 8
v
By (2.132), (2.156) and (2.158), we get (2.157). O
For k large enough, set
. (1) (k= 1) —uX k 1k
Fr,u - 27 rluk—1 A ¢ Z Ay A" ()\’ O)d)\’
(k,r)elkm
—1)F 1k —1)!
(2.159) A Gl Gl / e S AR 0)d,
’ 2 rluk—1 SUA
(k,r)elkm
10" 10" ¢
U :__Fu gt _Frua Jru = - 7ug2_<]ru~
wt = e )~ Fre T = e ’
Certainly, as ¢ — 0, the limit of || ||, exists, and we denote it by || ||o,m-

Theorems 2.19, 2.20 are the analogues of [17, Theorems 4.14, 4.15], we include the
proofs for the sake of completeness.
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Theorem 2.19. — For any r > 0, k > 0, there exist C > 0, N € N such that for
t e [O to],/\E(SUA,

(2.160)
8T$t aryt N
H otr 3tr2 t:o)s . S ¢t Z 1z
Y la|<r+3
87’
|G-z S kb 0)s| <o Y S 120
(k,r) €Ty, ’ || <4r+3

Proof. — Note that by (2.105), (2.114), for ¢ € [0,1], k > 1
(2.161) < Clsllo.0; <C > |lze

|| <k

An application of Taylor expansion for (2.109) leads to the following inequality, if s, s’
have compact support,

(2.162) ‘ <<ar.$§ 7

! < Ctlls zZ< .
t_0)8,8>070‘\ ||5Ht1 Z [ 5”0,1

otr otr
|| <r+3
Thus we get the first inequality of (2.160).
Note that

(2.163) A=) - =0 - ) (L -G - )
Now from (2.119), (2.162) and (2.163),

(2.164) (A =2 = (A=) slly o <CHA+ DY D 112%50,0-

|| <3

After taking the limit, we know that Theorems 2.14-2.16 still hold for ¢t = 0.
Note that Vo, = Ve, + $RL? (R, e;) by (2.105).
If we denote by 2 = XA — %4, then

oLy oL
ot ot

(2.165) A%\ t) — AX(),0) = Ziﬁ (

—k; —kj
t_g) N

—k k. 8“"’137‘ —k;
+;$)\,tko'” (iﬂxtk _iﬁ,\o ) < et |y 0) RS

Now from the first inequality of (2.160), (2.119), (2.151), (2.164) and (2.165), we
get (2.160). O

Theorem 2.20. — There exist C > 0, N € N such that for t €]0,to], u > ug, q € N,
2,7 € Ty,B, |Z],|2'| < q

(2.166) Frut(Z, 2')| SOt (14 g)Ne v,

Jrut(Z,2Z") SC’t%*;o+1 (1+ q)Ne%l’“.
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Proof. — Let Jgo,q be the vector space of square integrable sections of Ep ,, over
(Z €T,,B,|Z| < q+1}.

If s € JY ,, put ||s||%q) = f\z|<q+1 |S|iEB.m0 dvrp(Z). Let ||Al|(4) be the operator
norm of A € Z(JY ,) with respect to || [|(g)-

By (2.149), (2.159) and (2.160), we get: there exist C > 0, N € N such that for
t G]O,to],u = up,

(2167) HFT‘71L,t| (@) < Ct(l + q)Neféyu,
[l (q) < CH(L + @)Y et

Let ¢ : R?"="0 — [0,1] be a smooth function with compact support, equal 1 near
0, such that meoB o(Z)dvr, B(Z) = 1.

Take ¢ €]0, 1].

By the proof of Theorem 2.17, F;, verifies the similar inequality as in (2.157).
Thus by (2.157), there exists C' > 0 such that if |Z|,|Z'| < ¢, U,U’ € Ep 4,
(2.168) ‘ (Frui(2, 20U, U") — / (Frui(Z — W, 2/ — WU, U')

TuoBXTuo B
1
X g $(W/)$(W' [)dvr, 5(W)dvr, (W) < Cs(1+g)Ne™ s |U|U).

g4n—2n0

On the other hand, by (2.167),
1
2169) | [ (B2 = W, 2 = W)UU') bl W/S)o (W' /<)
Ty BXTyo B S

dor,, 5(W)dvr,, s(W")| < Ct 1+ q)Ne = |U||U"].

<2n7n0
By taking ¢ = t'/(2n=m0+1) e get (2.166).
In the same way, we get (2.166) for J, . O
Theorem 2.21. — There exists C” > 0 such that for any k,m,m',m"” € N, there

evist N € N, C > 0 such that if t €]0,to),u > wo, Z,Z' € TEU, a,a0 € Z*"7™0,
laf + o/ < m,

glal+la’|
VAT VA

"

(L4124 + 12| (P2 - f:Fut) (2,2')

r=0

’ ].
<O (420 + |20 2rthem D0 exp (= cou = V|2 - ),

€m’ (Xe)

(2.170) )
(124 4 2 | (et 2, ) 2.2)
+ + m 7 (e—u 2 — T T) y
YA YA e &' (Xa)
k+1 0 10 2(n+k+m’+2)+m 1 20” 2
<Ot (14|20 + 1 27°)) exp(gyu— - |Z—Z|).
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Proof. — By (2.159) and (2.166),

1 87’ 1 8T —u.ffzt

2.171 ——F,(LN=0 = Fr, —
(2.171) o L eli=o = Fru, - e

|t:0 = Jr,u-

Now by Theorem 2.17 and (2.159), J; 4, Fr ., have the same estimates as 6T.e*“$2t,

ot"
SLF. (%) in (2.132), (2.157).

Again from (2.132), (2.157), (2.159), (2.166), and the Taylor expansion

k t k+1
10 1 oFtl@
2.172 — — [ (t—to)F —(to)dt
(2172) Z) 7l atr A (t = to)" Gy (fo)dto,
we get (2.170). O
2.8. Evaluation of J,
For u > 0, we will write uA; for the rescaled simplex {(u1,--- ,u;)| 0 < u; < ug <

- < uy < ulb
Let e="%2 (Z, Z') be the smooth kernel of e~*%2 with respect to dvr, B(Z").
Recall that the O,’s have been defined in (2.101).

Theorem 2.22. — Forr > 0, we have

D DI L e e
uA

J _ J
Sy = i1

. -(’)Tleful“%odul - dug,
where the product in the integrand is the convolution product. Moreover,

(2.174) Tra2,2") = (1) (— 2, — 2.

Proof. — We introduce an even extra-variable o such that o"+! = 0.
Set [ ]I the coefficient of 0", £, = £ +3_, Oj0
From (2.159), (2.171), we know
10"

A —u Ll ’ — [p—uZLs][r] ’
(2.175) hal2,2) = o 22| = (e H )2, 7).

Now from (2.175) and the Volterra expansion of e~%%= (cf. [1, §2.4]), we get
(2.173).
We prove (2.174) by iteration.
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By (1.18), for @9 € X@, U, Uz € Ty B, RE? (U1, Uz) = RE*(UE,USY). From (2.6),
(2.101), we get

(2.176)
2n—mng

L= Z (vej)z _ 7T2<((PTHUJPTHU)2 + 4PTHUJPTYJPTHU)mOR’ R)
j=1

+ 271y _1VPTHUJPTHUR — 2wd7m0 — Tag-

Here the matrix ((PTHUJPTHU)2 + 4PTHUJPTYJPTHU)gc0 need not commute with
PTUIPT"U_ Thus [3, (6.37), (6.38)] does not apply directly here, and we could not
get a precise formula for e=%%2 as in [17, (4.106)].

By the uniqueness of the solution of heat equations and (2.176), we know

(2.177) e L (2,7 = e (—7,—- 7).
By (2.173),
(2.178) Jou(Z,2) = e % (7, 7)).

Thus we get (2.174) for r = 0.
If (2.174) holds for r < k, then by (2.173), (2.178),

k+1

(2179) JkJrl u = _Z/ (u=w) 20 Jk+1 ]ul

By the iteration, Theorem 2.11 and (2.178), and note that V., in O; will change
the parity of the polynomials we obtained, we get (2.174) for r = k + 1. O

2.9. Proof of Theorem 0.2

By (2.156) and (2.170), for any u > 0 fixed, there exists C, > 0 such that for
t= \/_,ZZ’ETIOB zo € Xg, a,a’ € Z*""™ | |a| + |o/| < m, we have
(2.180)

Hlol+la’|
P — Ot Ztr ru ru) (ZaZ/)

< CtM (1 + (20 + | 270 2nthtm D 4m o (—CV| Z - Z)).

(L+ |24+ [z )™

Set
(2.181) P = — Fr.

Then P(") does not depend on u > 0 by (2.180), as Py, does not depend on u.



2.9. PROOF OF THEOREM 0.2 55

Moreover, by taking the limit of (2.157) as t — 0,

(2.182) (14 |2+ + |z

F.u(Z,2")

¢ (Xa)
/ 1
< C(1+ |2 + | 202 t2r+2m+2 exp (—gyu —VC'"v|Z — Z’|) .
Thus
(2.183) Jou(2,2') = PUNZ, 2" + Fro(2,2') = PY(Z,2') + O(e™5%),

uniformly on any compact set of T, B x Ty, B.
Especially, from (2.174), (2.183), we get

(2.184) P27 = (=1 P (~Z,-7").
By (2.100), for Z,Z’ € T, B,
(2.185) Poyp(2,2') = p"~ k™ 2(2)Poy(Z/t, Z' )3 (Z').

We note in passing that, as a consequence of (2.180) and (2.185), we obtain the
following estimate.

Theorem 2.23. — For any k,m,m’,m” € N, there exists C > 0 such that for
Z,7' € T, B, |Z,12'| <&, v0 € Xa,

’
\

| flel+la

2.186 sup 1+p|Z + plZ2"* mt |
(2.186) \a|+\o/|<m( VPIZT I+ VplZ™)) 572977

k
<p"+’2°Pm,p<z, Z') = POpZ\pZ )2 (Z)k2 (Z'>pr/2>
r=0

¢ (Xe)
< Op~WH=mI2 (1 |20 + /p| 2702 TR DM exp (0 fp| Z — Z7)).

From (2.83), (2.84), (2.108) and (2.186), we get Theorem 0.2 without knowing the
properties (0.12), (0.13) for P(").

To prove the uniformity part of Theorem 0.2, we notice that in the proof of Theorem
2.17, we only use the derivatives of the coefficients of £} with order < 2n+m+m’+
r + 2. Thus the constants in Theorems 2.17 and 2.20, (resp. Theorem 2.21) are
uniformly bounded, if with respect to a fixed metric g7 X, the @2n+m+m'+r+4 (regp,
@2tmtm’+k+5) _porms on X of the data (g7, h%, VE, hF, VF, J) are bounded
(as by (2.109), the coefficients of £ are functions of g7X (resp. V£, VF) and their
derivatives with order < 2 (resp. 1)), and g7% is bounded below.

Moreover, taking derivatives with respect to the parameters we obtain a similar
equation as (2.154), where zg € X plays now a role of a parameter. Thus the ™ —
norm in (2.186) can also include the parameters if the €™ —norms (with respect to
the parameter xg € X¢) of the derivatives of above data with order < 2n+k+m+5
are bounded.
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Thus we can take Cj, ; in (0.10) independent of g7 under our condition.
This achieves the proof of Theorem 0.2 except (0.12) and (0.13) which will be
proved in Theorem 3.2 under the condition in Theorem 0.2.



CHAPTER 3

EVALUATION OF P®

In this Chapter, inspired by the method in [28, §1.4, 1.5], we develop a direct and
effective method to compute P("). In particular, we get (0.12) and (0.13) under the
condition in Theorem 0.2.

This section is organized as follows. In Section 3.1, we study the spectrum of the
limiting operator .%5. In Section 3.2, we get a direct method to evaluate P in
(0.12), especially, we prove (0.12) and (0.13). In Section 3.3, we compute explicitly
O; in (2.102), and get a general formula for P(®) by using the operators 01, O3. In
Section 3.4, we compute explicitly an interesting example: the line bundle O(2) on
(CP',2wpg). We verify that Theorem 0.2 coincides with our computation here if 0
is a regular value of the moment map p, but it does not hold if 0 is a singular value.

We use the notations in Section 2.6, and we suppose that (3.2) is verified.

3.1. Spectrum of %)

Recall that TH P is the orthogonal complement of TY in (T'P,g”"). Note that
by (2.6) and (2.17), we have the following orthogonal splitting of vector bundles on
P = pu=10),

(3.1) TP=THP&TY, TX =THPoTY ©JTY.
In the rest of this Chapter, we suppose that on P
(3.2) J2TY =TY.

(2.8) and (3.2) imply that —JJ preserves TY and JTY. Especially if J = .J on P,
then (3.2) holds.
By (2.8) , (2.17) and (3.1) , the condition (3.2) implies

(3.3) JTYy =JTY, JTHP=THP =JTHP.
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Thus (JTY)p|x, is the orthogonal complement of T X in T'B, and J induces natu-
rally J¢ € End(TX¢). We will identify (JTY)p|x, to the normal bundle of X¢ in
B.
For U,V € Ty, B, xo € Xg, by (3.2), we have
(3.4) WU VH) = wo(PTXeU, PTXev).
0\ n—"no {6 no

From the above discussion, for o € X, we can choose {wj =1
thonormal basis of ngg’o)Xg, (JTY)B,z, C TB such that

2, or-

V=1 _
J|T§é‘0)XG = on diag(a, -+ ,an_n,) € End(ng;’O)Xg),

(3.5) A B
a1y, = wdiag(al’ s ap®) € End((JTY ) B oy ),

with a;, aj- > 0, and let {w®7 Fisis {eti }72, be their dual basis, then

0 1 0 | - 0 v—1

_ 0 _
er_l—E(wj—i—wj) and ey = —=(wj —W,;),

j=1,...,n—ng, form an orthonormal basis of T, X¢.
From now on, we use the coordinate in Section 2.6 induced by the above basis.

Denote by Z0 = (29, , Z9, _on,), Z+ = (Z1,--+ , Z;,), then Z = (Z2°,Z1).

In what follows we will use the complex coordinates 20 = (29, - ,zg_no), thus

70 =29 42 and w? = V2%, W0 = V2%

62? ’ 8z? ’ and

(3.6) €9 = ai + 64 9 = \/—1(325) - 629).

We will also identify z° to izga—‘zg and z¥ to iE?a%; when we consider 2z and 2"

as vector fields. Remark that

0 2 l|ZO|2
2

029

i

2]

(37) = 8_2?

1
=g, 80 that |2°2 = [2°)? =

It is very useful to rewrite £y by using the creation and annihilation operators.
Set

1 1

bi = — 0+ ~a;7Y, b:r:2%+—aiz?, b= (b1, ,bu_ny);
(3.8) 1 P 2L L J_ 2 1 L 1 1 1

b = azL"_a Z bJr aZL""a Z b :(bl,u-,bno).
Then for any polynomial g(Z°, Z+) on Z° and Z+,

[bl, bj—] = b b+ bj—bl = —2ai5ij, [bl, b ] [b;i—, bj—] = 0
(3.9) l9.b5] = 2509, 9,671 = ~25%9,

b, b7 ] = —2a; 65 5, b, ] = b5+ bt =0,

9651 = ~g.b 7] = 3779
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Set

n—no 1
(3.10) & = Z b;bl, Zblb“, Vo.=V. + §R§f(7z,-).
From (0.1), (1.18) and (3.4), for U,V € T,,B, we get
(3.11) RLP(U,V) = —2ny/—1(IPTXey, PTXeV).
y (2.50), (3.5), (3.8), (3.10) and (3.11), we have

b= -2V, 2 bf =2V, o, Voo =V,

8z?
3.12
(3.12) Z o + Z o
From (2.101), (3.10) and (3.12), we get
2n—2ng 70
(3.13) L ==Y (Vo)=Y ((vejq2 |aiZl|2) — 2Wd,zg — Tao
j=1 j=1

=Y —I—fJ‘ — 2wd,m0.
By [42, §8.6], [28, Theorem 1.15] (cf. [31, Theorems 4.1.20, E.1.1]), we know

Theorem 3.1. — The spectrum of the restriction of £ on L*(R?"~270) is given by

n—no

(314) Spec ($|L2(R2n 2n0) { Z Oé a; = (O[(l)’ ce ’Oé?zfno) c Nn—no}’

0

and an orthogonal basis of the eigenspace of 2y . "* ada; is given by

af 0\G3 1 1,012 : n—mn,
(3.15) b ((z )7 exp (—ZZal|zi| )), with B € N*"~"0 |
The spectrum of the restriction of £+ on L*(R™) is given by

(3.16) Spec (f |L2(]R“0) { Za : = (af’ . ’O‘io) c Nno}’

1

= 1s one dimensional and an orthonormal basis is

and the eigenspace of 231, aita;
given by

T T2 et 1 Lisl2
(3.17) - (2a} ' ()" exp (—i;ai 1Z2] )



60 CHAPTER 3. EVALUATION OF P

Especially, the orthonormal basis of Ker(.Z|p2gan—2n0)); Ker(L+ | 2rn0)) are

(2|m5' nﬁo ) ( eXp(—%nioaﬂzgp)), 3 € Nv—mo,
(3.18) o '
GL(ZL):(H%)Aﬂexp(_%;aﬂzﬂﬂ.

Let Py (Z°,2°), Py, (Z+,2'Y), P(Z,Z') be the kernels of the orthogonal projec-
tions Py, Py, P from L2(R?"=2n0) [2(R"), L%(R2"~") onto Ker(.%), Ker(£1),
Ker(Z + £71) respectively.

From (3.18), we get

n—no n—no

Pe2'. 2" =( 11 %) exp (5 3 (=0 + PP - 22070) ),

=1

1 &
Py (24,74 = H\/ exp 52 L(ZEP2 + |z ))

P(z,7) :PJ(ZO, 2Py, (Z4, 2.

(3.19)

Let PN be the orthogonal projection from L?(R?*~"0 (A(T*OVX) ® E),,) onto
N = Ker(%£). Let PN(Z,Z') be the associated kernel.

Recall that the projection Icgg, from (A(T**VX)® E)p onto C® Ep is defined
in Introduction.

By (2.8), (2.10), (2.50) and (3.5),

(3.20) —Wdz, = Vo O A>O(T*(0’1)X)7
thus
(3.21) PN(Z,2") = P(Z, Z)Icor, -

If J=J on P, then by (3.19) and (3.21),

n—no

PN(Z,2") = exp ( Z (|97 + 12012 22?220))
(3.22) —
X 27 exp ( — 7T(|ZJ‘|2 + |Z/J_|2))I(C®EB,

N((0,2%),(0,24) = 2% exp (= 27|27 ) Lo

3.2. Evaluation of P("): a proof of (0.12) and (0.13)

Recall that ¢ is the counterclockwise oriented circle in C of center 0 and radius
v/4.
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By (2.120),
_ 1 t\—1
(3.23) Poy =5 /5 (A — ZH)~ldA,

Let f(\,t) be a formal power series with values in End(L?(R**~"0 (A(T*ODX) @
E)B.y))

(3.24)f Ztr £V, fr(N) € End(L2(R* " (A(T* OV X) @ E) 5 4y)).
By (2.102), consider the equation of formal power series for A € 4,
(325) )\ ZQ Z tr IdL2(]R2" no (A(T*(O 1)X)®E)B TO)

Let N+ be the orthogonal space of N in L#(R?>"~"0 (A(T*®VX)® E)p ,,), and
PN be the orthogonal projection from L2(R?=0 (AT*OVX)® F)p 4,) onto Nt

We decompose f(\,t) according to the splitting L2(R?*"~"0 (A(T*OVX) @
E)pa,) =N @& N*,

(3.26) g:(\) = PYf(N), () =P (V).
Using Theorem 3.1, (3.13), (3.20), (3.26) and identifying the powers of ¢ in (3.25),
we find that
1 _ 1
G0N = TP ) = () P

(3.27) fr)=0-2)" ; PN O, fr (V)

9 = 1 3" PYO, i,
j=1

Recall that P(") (r € N) is defined in (2.181) and (2.186).

Theorem 3.2. — There exist J.(Z,Z") polynomials in Z,Z' with the same parity as
r, and deg J.(Z,Z') < 3r, whose coefficients are polynomials in RTB, RCfs  RFs
X, Tr[RT(l"O)X], RE (resp. A, p?, u; resp. h, R*, RFB; resp. p) and their
derivatives at xg up to order r — 2 (resp. r — 1; resp. r; resp. r+ 1), and in the
inverses of the linear combination of the eigenvalues of J at xq , such that

(3.28) PYNZ,2") = J.(Z,2"\P(Z,Z").

Moreover,

(3.29) POz, 7"y =PN(Z,2") = P(Z,Z)Icsn,-
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Proof. — By (3.23), for ¢ > 0, by combining Theorems 2.13-2.16 and the argument
as in [28, §1.3], we get another proof of the existence of the asymptotic expansion of
Py (Z,2Z") for |Z|,|Z'] < o when t — 0.

By (2.83), (2.84) and (2.185), this gives another proof of Theorems 0.2, 2.23 for
|Z|,12'| < o/\/p. Moreover, by (2.149), (2. 159) and (3.26),

1

From (3.27), (3.30), we get (3.29).

Generally, from Theorems 2.11, 3.1, (3.9), (3.27), (3.30) and the residue formula,
we conclude Theorem 3.2. O

Proof of (0.12) and (0.13). — As J = J on p~(0), the condition (3.2) is verified.
From Theorem 3.2, (3.22), we get (0.12) and (0.13). O

From Theorem 3.1, (3.27), (3.30), and the residue formula, we can get P(") by
using the operators (£)~ 1, PV, PN" O, (k<r).

This gives us a direct method to compute P(") in view of Theorem 3.1. In partic-
ular,

(3.31) PO = pNO PN (01PNt — PN (9 PN o, PN,
and
(3.32)
1 1 1
pr =5 [()\ — L) PNT(O1f1 4 O2fo) () + XPN(Olfl + 02f0)()\)} dA
o
1

- {()\ _ g0)1pNT [01 ((A — PN, 4 %PNOl) n 02}

+ XPN [01 (()\ "IN, ¢ %PNOl) + 02] }()\ — 20" ldA
=(Z) PN Oy () PN 0PN - PN (2920 PY O, PY
+(L)IPN O PN O (L0 TP — (20PN 0, PN
+ PO PN 0 (L) PN — PN Oy (£0)2PN T 0, PN
—PNOPNO(L0) 2PN — PNOy(£0)~ PN

In the next Section we will prove PV O; PN = 0, thus the second and seventh terms
n (3.32) are zero.

3.3. A formula for O,

We will use the notation in Chapter 1. All tensors in this Section will be evaluated
at the base point zg € X¢.

For v a tensor on X, we denote by VX1 its covariant derivative induced by V7.



3.3. A FORMULA FOR 0O 63

If 41 is a G-equivariant tensor, then we can consider it as a tensor on B = U/G
with the covariant derivative V21, we will denote by

(VEVEU1) (0pe;nchen) = €k (Ve VE 1)y,
etc.
We denote by {e,} an orthonormal basis of (T X, 7).
To simplify the notation, we often denote by U the lift U € THX of U € TB.
Recall that 1z € TY is defined by (1.14) and the moment map p (2.16), and that
A is the second fundamental form of X defined by (0.10).

Lemma 3.3. — The following identities hold,
(VR H)ay = —IR™,
(3.33) (VIYVIY i) (rR) (ng vTHY )z Z; Zi
-pTY ((VRDJ)(RO +2RY) + (Vo J)RY)

—~JAR"R® — %T(RO, IR + T(RE,IRY).

Proof. — Recall that PTY,PTHX are the orthogonal projections from 7X onto
TY,T" X defined in Section 1.1. Note that on P, by (3.3),
(3.34) JerMery, J0M = (Jge) e THP.
By (1.14) and (2.17), for K € g,
(3.35) — (I KXY = V(K = <v Y, K > + <ﬁ, VZ“;KX>.
From (1.4), (1.5), (1.6) and (3.35),
(3.36) VTY~ —PTYJel — %gT,}V f=—-PTYJe —T(el ).

From (3.36) and the fact that = 0 on P, one gets the first equation in (3.33).
Now for W (resp. Y) a smooth section of TX (resp. TY), by (1.8),

(3.37) <V6TJI}/PTYW, Y> — (W) — <PTYW, VZJP}VY>

1
_ <V6TJ§W, Y> +3 <T(ejf,PTHXW),Y> :
By (3.37),
(3.38) VINPTYW = PTYVIEW + 2T( ,PTXT.

By (3.36) and (3.38),
(339) vTYvTY"’ _PTY(vi(H ) H PTYJVTX H
1
—§T( ,PTIX gl (VT}/gT;}/)u

1, ~
3 (VD)
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By (1.3) and (1.7), for Uy, Us sections of TB on B,
1
(3.40) ViUl = (VEPUD" - 5Tws U,

By the definition of our basis {e?,e+} in Section 2.6,

i) ]
(Ve D)y = Ale])e},

(3.41) (VTB Do (VTB 0)ao = A()eF, (VTB D)ao = 0.

Thus by (1.6), (3.2), (3.36), (3.39), (3.40), (3.41) and the facts that A exchanges N¢g
and T Xg on X¢g, and that g =0 on P, we get

(3.42)
1
(VIYVTY ) Ry = =PV (VIR — JARR® — 5T(R, JR®) + T(R,IRY).

We use the closeness of w to complete the proof of (3.33).
From (0.2), for U,V,W € TX,

(3.43) (VEDV, W) = (VFw) (V. W),
thus
(3.44) (VEDHV, W) + (VEIW,U) + (Viy U, V) = dw(U,V,IW) =0

By (1.3), (1.7), (3.34) and (3.44) for Y a smooth section of TY, at xo,
@Vi¥el,ei) = —(Vi¥e] Jeir) = —(T(ef, Jei).Y)

and
(T(e;,3e9),Y) = —2(Vy ™ (Jeh), ef)
(3.45) = —2((Vy d)ef, i) + 2(T (e}, Je;), Y)
<(ve9 )ei ) > - 2<(veLJ)€?a Y> + 2<T(€?7 Jeil)a Y>
From (3.42), (3.45), we get the second equation of (3.33). O

The following formula extends [29, Theorem 2.2] to the group action case.
Theorem 38.4. — The following identity holds,
2 1
(3.46) O;=-— —(&RLB)IO (R, €:1)Z;Vo,e, — —(8iRLB)IO (R, ei)

—2(A (e) ,RT) VY, 0 Vo,e0 —7r\/_<(V Jea,ep) cleq) clep)
+ 412 (Vod)(R® 4+ 2R*) + (Vo HRT — T(RH,IRY), IRH)

+ 4n? <JA (RORY + = T(RO JRY), JRL>

+ 4my/=1 (T + 5P IR .
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Proof — For ¢ € (T*X ® End(A(T*"VX)))p ~ (T"X @ (C(TX) ®r C)), where
C(TX) is the Clifford algebra bundle of TX, we denote by VX1 the covariant deriva-
tive of ¢ induced by VX,

From [V$EE c(e,)] = ¢(VEX eq), (cf. also [31, Prop. 1.3.1]), we observe that for
W e TB,

(347)  Vip(¥(ea)elea)) = (Vivt)(ea)e(ea) + (Vigh ea)elea) +v(ea)e(Vigh ea)
= (Viv¥)(ea)c(ea)-
Thus by (2.50) and (3.47), for k > 2

(348) — (2wqa+7)(tZ2) = ( Llea,ep) cleq) c(eb)) (tZ)
k
Z

r=

T

Hew ) clea) clen) (02)] | 5+ O

N)I»—A

= (Rgo + t(V%RL)xo) (ea, e5) clea) clen) + O(2).
By Lemma 3.3 and (2.110), we have
2/~ B, ~12 k—2
(3.49) £ (i i Z o (|u|gw t2))| ¢

+ 471'\/— t (RN P IRY) +O1).

The following two formulas are clear,

L i tz)| =1 (VYR (2) ~ VR P
2 929" ie0 2 ” (RR)| 70

(3.50) 18 e ol _1 AP (2
3 gl t2) =g (VVVIEy (2)) ),

= {(VI'VTY i)(r,R), VR H)-

From Lemma 3.3, (3.49) and (3.50), we see that the contribution from —#2(i%», i) (t2)
forms the last three terms of (3.46).

By (2.103), (2.105) and (3.10), we have
t t, 1
@R (R, e0) — ST em)1Z) + 0P,

By gi;(2) = 05(Z )9 (Z) and (2.94)-(2.96), we know

8ij — 2<A( ) 0 Rl> +0(1Z)?) for1<1i,7 < 2(n—ng),
9ij(Z) =
(3.52) 8 +0(121?) 0therw1se
R(Z) =det(g:5(2))"* = 1= (A(e])ed, RY) + O(|1ZP).

From (3.41), (3.51) and (3.52), the first three terms of the right hand side of (3.46)

is the coefficient ¢! of the Taylor expansion of —g"/ (tZ)(Vy.e, Vi,e, =tV vrBe;(12))-

(3.51) Vie, = Voe +
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By (2.109), (3.43), (3.48) and the above argument, the proof of Theorem 3.4 is
complete. 0

Theorem 3.5. — We have the relation

(3.53) PNOPN =0.

Proof. — By (3.8) and (3.19),

biPY =otPN =0, (bFPN)Z,Z') =24} 2PN (2,7,
(b:PNY(Z,2") = a;(3) —Z\PN (2, 7").

(2

(3.54)

We learn from (3.54) that for any polynomial g(Z1) in Zt, we can write
g(ZH)PN(Z,7') as sums of gﬁL(bJ—)ﬁLPN(Z, Z') with constants gg.. By Theorem
3.1,

(3.55) Py (05 g(ZzH)PN =0, for |at] > 0.

Let {w,} be an orthonormal basis of (T X, g7X).
Note that if f, g are two C-linear forms, then

flea)g(ea) = f(wa)g(Wa) + f(Wa)g(wa)-
Thus by Theorem 3.1, (2.9), (3.21) and (3.54),
(3.56) PN ((VRT)ea, ) c(eq) cley) PN = —2PY (VI wa, Wa ) PV
= 2PN (Vxod)we, W, ) PV = vV/=1PY Tr |px[J (Vo )| PV
By (3.8), (3.12), (3.21), (3.46), (3.54)-(3.56), we get

) ( 0 R"%),0 (R, €])
1
3
4 T px [T(VET)] + 872 (VEJ)RE, IRL) }PN

By (3.9), (3.54) and (3.55),

(3.57) PNolPN=PN{E(8RRLB) o(R,

(OR R )ay (R, e} b = 5 (0 RM)ay (RO, )
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1 1
(3.58) PNZ;Zi PN = M—LPNZJ.LZ)#PN = ?@kPN.
k k
For 1 a tensor on X¢, let VX&) be the covariant derivative of 1 induced by the
Levi-Civita connection V7X¢c,

For U, V,W € T, Xq, by (3.2), (3.3) and (3.11), we have
(3.59) (BuREP)uy (V, W) = —21y/— <(vXGJG)V W> — 2L {(VETV, W) .
From (2.8), (3.2), (3.5), we know that

1Ly
(3.60) Jej = 2;Je
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By Theorem 3.1, (1.18), (2.8), (3.9), (3.44) and (3.54)-(3.60), we get

(3.61) PNOPN = PN{ - 4“;__1 {2 <(V7§OJ)8—§?, a%> + <(v§_86.1)730, 8—?G>

(V% DR, 2 )] + 7 T (Vo) + 27 (Vo d)ef, Jet ) }PY

J
0z9

=PV~ V=T (VD) 52, 5% )

+Tr o [T(VEed)] = 2 (J(VRed)er, e } PN =0,

The proof of Theorem 3.5 is complete. O

From (3.32) and Theorem 3.5, we get the following general formula which will be
used in Chapter 5,

P® =(£9) " PN 0y(L9) PN 0PN — (£9) T PN 0, PN
(3.62) + PNOL(L) T PN 00(2) T PN — PN Oy (#9) T PN
H(LO)TIPYN O, PN O (L0 PN — PN Oy (£0) 2PN 0, PN

3.4. Example (CP!,2wrg)

Let wpg be the Kéahler form associated to the Fubini-Study metric g}Trgp " on CP.

We will use the metric g7¢P" = 2g£gP1 on CP! in this Section.

Let L be the holomorphic line bundle O(2) on CP!. Recall that O(—1) is the
tautological line bundle of CP?.

We will use the homogeneous coordinate (2, z1) € C? for CP! ~ (C?\ {0})/C*.

Denote by U; = {[20,21] € CP';2; # 0}, (i = 0,1), the open subsets of CP!, and
the two coordinate charts are defined by ¢; : U; ~ C, ¢;([z0, 21]) = z—i, j #i.

For any ig, i1 € N, 280 zil is naturally identified to a holomorphic section of O(—ip—
i1)* on CP!. For any k € N, we have

(3.63) H°(CP, O(k)) = C{sp,i, := 2021, ig +1i1 = k, and 4q,7; € N}.

On Uj, the trivialization of the line bundle L is defined by L 3 s — s/z2, here 22
is considered as a holomorphic section of O(2).
In the following, we will work on C by using ¢¢ : Uy — C. Then for z € C,

vV—1= v—1 dzNdz
3.64 = ——001 1 Hh = -~
B0 wes(z) = G Tolos((1+ ) ) = Y
Let h” be the smooth Hermitian metric on L on CP! defined by for z € C,
(3.65) [s2,00he(2) = (14 [2*) 7%

Let VL be the holomorphic Hermitian connection of (L, h%¥) with its curvature RL.
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By (3.64) and (3.65), under our trivialization on C

(3.66) vk :5+8+810g(|52 ol2),
271'

Let K be the canonical basis of Lie S* = R, i.e. for t € R,exp(tK) = ¢>™V~1t ¢ §1,

We define an S*-action on CP! by g [20,21] = [20, g21] for g € SL.

On our local coordinate Uy, g - z = gz, and the vector field KCP" on CP? induced
by K is
(3.67) KCP'(2) = 2 exp(—tK) - 2s—o = —2m/_( 2 _ i_)

Set

8810g|52 0|hL =2WFs =: W.

2| 20|
K)(|z0, 2 —_— —
/1‘( )([ 0 1]) |ZO|2+|Z1|2
Then, on C,
(3.68) w(K) =222 (14 |2|*)~! - 1.

By (3.64), (3.67) and (3.68), we verify easily that u is a moment map associated
to the S*-action on (CP!,w) in the sense of (2.17).

The Lie S'-action on the sections of L defined by (2.16) induces a holomorphical
St action on L. In particular, from (3.66)-(3.68),

(369) % exp(tK) . 52,j|t:0 =: LKSQJ' = 27‘(\/ —1(1 — j) 52,5+
By (3.69), the S'-invariant sub-space of HY(CP!, LP) and p~1(0) are
(3.70) HO(CP', LP)S" = Csypp,  p7H(0) = {z € C, |2 = 1},

and St acts freely on p=1(0), thus (CP')s1 = {pt}.
Under our trivialization of L, s9p,; € H°(CP', L) is the function 27, and from
(3.65),

2j 2t dt 25! (2p — 5)!
71 12 = 7|Z| 2 :/ = .
(3.71) l[s2p, 1|72 /(:(1+|Z|2)2p WFS o (1 +1t)2w2 (2p + 1)!

Thus (%)1/%2][,@ is an orthonormal basis of HY(CP!, LT")S1

Let 3" * be the formal adjoint of the Dolbeault operator 3" For p = 1, the spin®
Dirac operator D,, in (2.14) and its kernel are given by

(3.72) D,=v2(53" +3""), KerD, = H(CP!, 7).
Finally, by Def. 2.3, for p > 1, we get
(2p+1)! .
PpG(Z7 Z/) = WSQ;D’;D(Z) & 52p7p(z') R
(3.73) 2
P (20 = S50 e 2(p)2 (1+z)2)%
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Note that our trivialization by sg ¢ is not unitary, thus we do not see directly the
off-diagonal decay (0.14) from (3.73).

Here we will only verify that (3.73) is compatible with (0.13), (0.15) and (0.16).

Recall that Stirling’s formula [42, Chap. 3, (A.40)] tells us that as p — +oo0,

(3.74) p! = (27p)Y/?pP P (1 +0 (%)) .
By (3.74),
6 GuE = (1 g) (o) = B o)

Now, C* is an open neighborhood of ;~*(0) and B = C*/S* ~ R* by mapping
z€C*tor =|z| e RT.

By (3.64), the metrics on {|z| = r} = {re*V=1:0 ¢ R/Z}, B ~ R* induced by
W = 2wFS is

2
(3.76) 8rr?(1+r)"2dd®ds,  ¢T8==(1+r*)2drdr
i
From (3.76), the fiberwise volume function h%(r) in (0.10) on R is
(3.77) h2(r) = V8mr (14 r?)~h
From (3.73), (3.75) and (3.77), we get for |z| =r,
(3.78)
9 a o —=2p+1) roo\PTL — 2r 2l 1
h(T)Pp (2,2) = V&r 2 (p!)2 <1+r2) o 2p<1—|—r2) <1+ﬁ(p))'
When |z| = 1, from (3.78), we re-find (0.15) and (0.16).

From (3.76), V22 is an orthonormal basis of (B, g7?) at r = 1, thus the normal

coordinate Z* has the form r — 1 = V27(Z+ + 0(|Z+|?). Thus

(3.79)  (2r (1 +12) 12+l = P log(1=m(Z22)?+0(1 25 %) = —2mp(27)* | .

This means that (3.78), (3.79) are compatible with (0.13) and (3.22).

If we consider the sub-space H°(CP?!, LP), of H°(CP!, L?) with the weight p of
Sl-action, then by (2.16) as in (3.69), and (3.71), /p + %82,770 is an orthonormal
basis of HO(CP?!, LP),.

Thus the smooth kernel PP(z, 2’) of the orthogonal projection from € (CP!, LP)
onto HY(CP!, LP), is

1
PP(z,2') = (p+ 3)5200(2) @ s2p.0(2")",
(3.80) ;
Pp.2) = (o )1+ =),

Note that u=!(—1) = {0}, i.e. —1 is a singular value of p.
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Let p1 be the moment map defined by p1(K) = p(K) + 1, then H°(CP!, LP),
is the corresponding S'-invariant holomorphic sections of LP with respect to the
corresponding S'-action.

Thus 0 is a singular value of 7 and this explains why we have a factor p in (3.80)
instead of p'/2 in (3.78).



CHAPTER 4

APPLICATIONS

This Chapter is organized as follows. In Section 4.1, we explain Theorem 4.1, the
version of Theorem 0.2 when we only assume that p is regular at 0. In Section 4.2, we
explain how to handle the ¥-weight Bergman kernel. In Section 4.3, we deduce (0.15),
and (0.16) from [17, Theorem 4.18']. In Section 4.4, we review the characterization
of the Toeplitz operators established in [30], and only Lemma 4.6 is new. In Section
4.5, we explain Theorem 0.2 implies Toeplitz operator type properties on Xg. In
Section 4.6, we extend our results for non-compact manifolds and for covering spaces.
In Section 4.7, we explain that the relation on the G-invariant Bergman kernel on X
and the Bergman kernel on Xg.

We use the notation in Introduction.

4.1. Orbifold case

We will use the notation for the orbifold as in [26, §1], [17, §4.2], [31, §5.4] and
we recall briefly here.

Let M be an orbifold, by definition, there exist a connected open covering {U}
of M and a ramified covering 1y : U — U which is Hy-equivariant and induces
a homeomorphism U ~ U /Hy, here Hy is a finite group acting effectively on the
connected smooth manifold U , moreover, these ramified coverings are compatible.
Especially, for any € M, there exist a small neighborhood U, C M, a finite group
H, acting linearly and effectively on R™ and U, C R™ an H,-open set such that

Any additional structure on M is induced by a corresponding H-invariant struc-
ture on (795 In this way, we can define an oriented, Riemannian, almost-complex or
complex structure on M.

An orbifold vector bundle € over M is an orbifold defined by an HE-equivariant
(Here HE is a finite group) vector bundle &y, on U, such that H, = HE/KE, here
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K& = {g € HE g acts on U, as Id}, and (HE,Ey,) — &y, /HE defines the orbifold
structure on €. If K¢ = {e} for any * € X, then we call £ a proper orbifold

vector bundle. Let £ be the maximal K £_invariant sub-bundle of &y, on U,, then

(GUwggi ) defines a proper orbifold vector bundle on X, denote it by EP*.

Now we go back to the hypotheses in the Introduction. In this Section, we only
suppose that 0 € g* is a regular value of u, then G acts only infinitesimal freely on
P = u~1(0), thus X¢ = P/G is a compact symplectic orbifold.

Let G = {g € G,g-x = z for anyxz € P}, then G is a finite normal sub-group of
G and the group G/Gy acts effectively on P.

Let U be a G-neighborhood of P = 1 ~1(0) in X such that G acts infinitesimal freely
on U, the closure of U. From the construction in Section 1.2, any G-equivariant vector
bundle F on U induces an orbifold vector bundle Fi on the orbifold B = U/G.

The function A in (0.10) is only € on the regular part of the orbifold B, and we
extend continuously h to U/G from its regular part, which is €°° and we denote it
by B, then 7 is also €> on U.

As we work on P in Section 2.4, 2.5, we need not to modify this part. Especially,
Theorem 0.1 still holds.

We need to modify Section 2.6 as follows.

Observe first that the construction in Section 1.1 works well if we only assume that
G acts locally freely on X therein.

We identify the normal bundle NV of P in U, to the orthogonal complement of T'P.
Denote by VT"U the connection on THU as in Section 1.1, and on P, let V¥, vree
be the connections on N,TH P as in (0.9), and let OVTHU = V¥ & VTP be the
connection on THU = N @ THP.

For yo € P W € THU (resp. THP), we define R > ¢t — xt = epoOHU(tW) eU
(resp. expyO P(tW) € P) the curve such that z;|i—o = yo, %|i—o = W, % € THU,
VTHU(” =0 (resp. &£ e THP, VT Pdz — ).

By proceeding as in Section 2. 6 we identify BTHU(yO, g) to a subset of U as
following, for Z € BTHU(yO, €), Z=2+2+ 2% ¢ ﬂﬁP Z+ € Ny, we identify Z
Tz0 ZJ‘)

with exp THP(ZO)(

Set Gy, = {9 € G,9y0 = Yo}, then G - BTHU(yO,e) G Xa,, BT" Y(yo,e) is a
G-neighborhood of Gyo, and (Gy,, BT"U (4. £)) is a local coordinate of B.

As the construction in Section 2.6 is Gy,-equivariant, we extend the geometric
objects on G x g, BTHU(yo, ) to G X Gy R?7— 0 = X.

Thus we get the corresponding geometric objects on G x R?"~"0 by using the
covering G x R~ — @ X Gy, R27~"0 especially, Eg(o (where we use the ™ notation
to indicate the modification) is defined similarly on G x R?*"~"0 and Theorem 2.5

holds for E;fo .
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Let 7g : G x R?"~"0 — R27~"0 be the natural projection and as in (1.20), (2.82),
we define

EI\) — E%G . (gOO(G X ]RQW,—TLO7 EO,p)G . (goo (RQn—no’ (EO,p)]RQW—WO)a

then the operator C/I;EI)?(O(/I\)*1 is well-defined on T;)IU ~ R27~ "0,

Let gTHXO be the metric on R?®~ "0 induced by ¢7*°, and let dvpr x, be the
Riemannian volume form on (R*?~"0, gTHXO).

Let Py, p be the orthogonal projection from L2(R*"~"0 (AM(T*OVX) @ LP® E),,)
onto Ker(® Lifo(f)_l) on R?"="0 . Let Py, ,(Z,2") (Z,Z' € R?*"~™) be the smooth
kernel of P, , with respect to dvrux, (Z).

Let P(fp be the orthogonal projection from Q%*(X,, Lh ® Ey) on (Ker D;fo)G, and
let P(fp(x,x’ ) be the smooth kernel of P(fp with respect to the Riemannian volume
form dvx, (z').

Let PXO/ (y,y") (y y € XO/G) be the smooth kernel associated to the operator
on Xo/G induced by <I>£X0<I> Las Py, in (2.83).

Note that our trivialization of the restriction of L on BTHU(yO, €) as in Section 2.6
is not G, -invariant, except that G, acts trivially on L.

For z,z' € X, with their representatives 7,7 € R2"~™ we have

(4.1) R(2)h(z")PC,(x,2") = PXo/%(n(x),n(a")) = ﬁ > (9:1) Pyl '3, 7).
9E€Gy,

Here |G| is the cardinal of G°. The second equation of (4.1) is from direct compu-
tation (cf. [17, (5.19)], [31, (5.4.17)]).

As we work on G x R?"~"0_ for the operator 621)7(0(/1;_1, Prop. 2.9 and Sections
2.7-2.9 still hold.

From Theorem 2.23 for Py, , and (4.1), we get

Theorem 4.1. — Theorem 0.1 still holds.
Under the same notation in Theorems 0.2, 2.23, for a,a’ € N>~ |a|+|o/| < m,
we have

(4.2)

1 oL | A1 ng o~
(1+ VBIZ* + VB2 ) (»

nt+— % 7 % G
32007 (ht2)(Z)(hk2)(Z") Py o ¥(Z,2")

A3 T o) R 2

r=0g€Gy,
gCp—(k+1—m)/2(1_|_\/l—)|ZO|_|_\/Z—)|Z/O|)2(n+k+m'+2)+m

X exp(—\/C”l/pgércl;f lg™'Z = Z'|) + O(p—™).

%m.’(P)
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If Z=2"=Z° then for g € Gy,, such that gZ° = Z° we use Theorem 2.23 for
Z = 7' = 0 with the base point Z°, and for the rest element in G,,, we use Theorem
2.23 for Z = Z' = Z° with the base point 7o, then we get

(4.3)  [p"FE (02k)(2°)PC 0 W(2°, 2°)

O|Z > ) PE0.0p

r=0g€Gy,,92°=2"

W SIS SRR TN

r=0g€Gy,,9Z°#2°

< Cp~ @D/ (14 (14 pIZ°)2 2+ exp(—\/TTp| 2°)) ).

Note that if g € Gy, acts as the multiplication by € on L,,, then (g,1) - szg’),
(g,1)- Pgo) in (4.3) have a factor €?? which depends on p.

Of course, after replacing L by some power of L, we can assume that G, acts as
identity on L for any yg € P, in this case, (g,1) - P;g)(g_lZO,ZO), (g,1) - Pgo)(0,0)
do not depend on p.

From Theorem 3.2 and (4.3), if the singular set of X¢ is not empty, analogous
to the usual orbifold case [17, (5.27)], p~ "+ 2 P& (yo,0), (yo € P) does not have a
uniform asymptotic expansion in the form > i ¢ (yo)p™".

4.2. J-weight Bergman kernel on X

In this section, we assume that G acts on P = p~1(0) freely.

Let V be a finite dimensional irreducible representation of G, we denote it by
pY 1 G — End(V). Let 9 be the highest weight of the representation V. Let V* be
the trivial vector bundle on X with G-action p¥~ induced by pY.

Let PY be the orthogonal projection from Q%*(X, LP ® E) on Homg(V,Ker D)) ®
V C Ker Dy. Let PY(x,2'), (z,2" € X), be the smooth kernel of PY with respect to
dvx (x').

We call PY(x,2') the ¥-weight Bergman kernel of D,

We explain now the asymptotic expansion of Pr}} (z,2') as p — oo.

We will consider the corresponding objects in Chapters 1-3 by replacing £ by E®
V*. Especially, we denote by D;f " the corresponding spin® Dirac operator associated
to the bundle LP @ F ® V*.

Certainly, all results in Chapters 1-3 still hold for the bundle E ® V*.

Let Pf be the orthogonal projection from ¢*° (X, E, ® V*) onto (Ker DX*)G, and
P?(x,2’), (z,2" € X) the smooth kernel of PY with respect to dvx (z').
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As V is an irreducible representation of G, we get
(4.4) KerDY" = (KerD,) ® V*, (Ker DY )¢ = Homg (V, Ker D,).

Let {v;} be an orthonormal basis of V with respect to a G-invariant metric on V
and {v;} the corresponding dual basis.
Let dg be a Haar measure on G. By Schur Lemma,

1
(4.5) [ a0y 0 0y = s, 10w,

Thus if W is a finite dimensional representation of G with the highest weight ¥, then
for any s € W, we have

(4.6) s = Z(dimc V) (/

g-(s@vf)dg)®vi€Homg(V,W)®V:W
p el

From (4.6) and the G x G-invariance of the kernel P (z,z'), we get

Py (z,2') = (dimg V) Y (B (x,2')v} ,vy),

(4.7 i
PY(z,z) = (dim¢ V) Try- PY(z,2) € End(A(T* "V X) @ E),.

In fact, let {¢;} be an orthonormal basis of (Ker DX*)G, then PY(z,2') = > bi(r)®
¥;(x’)*, and for any j fixed, in view of the second equality in (4.4), one sees that

(4.8) Pi; € Endg(V) and  Try[yie] = [[¢]|7. = 1.

Thus by Schur Lemma,

L1
(49) Vit = gy 1

and {(dimc V)2 4;v;} is an orthonormal basis of Homg(V, Ker D,)) ® V C Ker D,,.

Let U be a G-neighborhood of P = p~1(0) as in Theorem 0.2, Pg is viewed as a
smooth section of pri(E, ® V*)p @ pr3(E, ® V*)5; on B x B, or as a G x G-invariant
smooth section of pri(E, @ V*) @ prs(E, @ V)* on U x U.

Moreover, v;, vf are smooth (not G-invariant) sections of U x V, U x V* on U.
Thus from (4.7), PY is not a G x G-invariant section of pr}(E,) ® pr3(Er) on U x U.

Now (2.83), (2.84), (2.108) and (2.186) (cf. also Theorem 0.2) apply well to the
bundle E ® V*, thus we get the asymptotic expansion of PI? (z,2') as p — +oo, and
the leading term in the expansion of

ot (hﬁ%)(x)(hn%)(x’)Pg(x, a') is P(\/pZ,\/PZ")Icg(Eov),-
By (4.7), the leading term of the asymptotic expansion of

(4.10)  p7F (he?)(@)(hi?) (@) PY (w,2) is (dimc V)? P(VBZ,v/pZ ) Icon,-
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Let © be the curvature of P — X as in Section 1.1. Let pY~ denote the differential
of p¥". By (1.18),

(4.11) RE®V)e — REe 1 )V (@),

In the same way, we can define fpv a section of End(A(T*®VX) ® E)p on Xg
by (0.17) for PY. From (0.25) (which will be proved in Chapter 5), (4.7), (4.10) and
(4.11), we get

Theorem 4.2. — Under the condition of Theorem 0.6, the first coefficients of the
asymptotic expansion of #Y € End(Eg) in (0.20) is

(4.12) Dy = (dime V)?,
1

i)
Y7 8r

(dimg V)? (ri{f’ +6Ax, logh + 4R (w], E(;))

+ %(dim@ V) Try- [Pl}*(G)(wQ EQ)] .

7770

4.3. Averaging the Bergman kernel: a direct proof of (0.15) and (0.16)

We use the same assumption and notation as in Theorem 0.2.

Let P,(z,z') be the smooth kernel of the orthogonal projection P, from
Q%(X,LP ® E) onto KerD, with respect to dvx(2’). Then P,(z,2') is the
usual Bergman kernel associated to D,,.

Let dg be a Haar measure on G. By Schur Lemma,

(4.13) PS(x,a') = /

((9:1) P)a')dg = [ (9.1): Polg ™.}y,
G G

One possible way to get Theorem 0.2 is to apply the full off-diagonal expansion
[17, Theorem 4.18'] to (4.13).

Unfortunately, we do not know how to get the full off-diagonal expansion, especially
the fast decay along N¢ in (0.14) in this way.

However, it is easy to get (0.15) and (0.16) as direct consequences of [17, Theorem
4.18') and (4.13).

As in Section 2.5, we denote by TY the sub-bundle of TX on a neighborhood of
P = ;71(0) generated by the G-action and by T P the orthogonal complement of
TY|p in (TP, g™").

Take yg € P. Let {ei}fﬁf”o}, {fi}12, be orthonormal basis of T)' P, T,,Y. Then
{ei}?gfno) U{f1, Jyo fi}2, is an orthonormal basis of Ty, X. We use this orthonormal
basis to get a local coordinate of X by using the exponential map expéf) .

We identify BT»X(0,¢) to BX(yo,¢) by the exponential map Z — expffo (uZ).

Let VC®F he the connection on A(T**1)X) @ E induced by VCH and V.
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For Z € BTwX(0,¢), we identify Lz, (A(T*OYVX) ® E)z, (Ep)z to Ly,
(MT*OVX) @ E),,, (Ep)y, by parallel transport with respect to the connections
vl VORE 7 Es along the curve vz : [0,1] 3> u — uZ.

Under this identification, for Z, Z’ € BT#»X(0,¢), one has

P,(Z,27") € End(AM(T* "V X) @ E),,.

Let x1(Z) be the function on BTwX(0,¢) defined by
(4.14) dvx(Z) = Kl(Z)d’UTmOX-

By [17, Theorem 4.18'] (i.e. Theorem 0.2 for G = {1}), there exist J.(Z') €
End(A(T**VX) ®F),,, polynomials in Z’ with the same parity as r, such that for
any k,m’ € N, there exist C, M > 0 such that for Z' € Ty, X, |Z'| < ¢,

k

1 x r
(415) |2 Pp(Z',0) = 3 (P2 )i (Z)e PP Ty
p r=0 (g,m/ (P)

< Cp~ IR (14 /pl Z/ )M exp(—/C"uo/pIZ')) + O (p™),
and
(4.16) Jo(Z) = Icge.
For K € g, | K| small, e maps (A(T*OVX)® E),-xyy, Le-xy, to (A(T*OVX)®
E)y,, Ly,, and under our identification, we denote these maps by
(4.17) fE(K) € End(AMT* OV X)® E)y,, fY(K) € End(Ly,) ~C.

As the G-action preserves hl and VI, we know |fF(K)| = 1 and fF(K) is also an
isometry.

For K € g, let ad K be the adjoint representation defined by (ad K)K' = [K, K']
for K’ € g. By [1, Prop. 5.1], if we denote by

1— efadK
4.18 jo(K) = dety(———
(118) JalK) = detg(———)
for K € g, then in exponential coordinates of G,
(4.19) d(e®) = jy(K)dK.

As the G-action preserves all metrics and connections, thus for any smooth kernel
U, = O(p~>), we have (g,1) - U,,(¢g7z,2") = O(p~°) for any g € G.

By [17, Prop. 4.1] (i.e. Theorem 0.1 for G = {1}), (4.13), as G acts freely on P,
we know

(4.20) By (y0, o) =/ FEE)(FH(K)P Py(e™ o, yo) i (K)dEK + O(p™>).
Keg,|K|<e

Let ST be the section of L on BT#X (0, ) obtained by parallel transport of a unit
vector of Ly, with respect to the connection V¥ along the curve vz. Let I'l be the
connection form of L with respect to this trivialization.
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Recall that for K € g, the corresponding vector field KX on X is defined in Section
1.1. Recall that {K;} is a basis of g.
By (2.104), for K € g,
(e - S5)(0) = e - SF (e Fyo) = fH(K)SH(0), with f5(0) =1,
(4.21) L(1-X L, X 2
PZ(K7) = 3Ry, (2, K7) + 6(12]).

By (2.16), (2.17), (4.21) and = 0 on P, we get

(4.22) (L, (Lie,S™))(0) = (Vigx (Vi S* = 2my/=1u(K:)S"))(0)
1

= §R50 (KX, K5)S™(0) = mv/—1{du(K;), K;X)S™(0) = 0.
By (2.16), (4.21), (4.22), u =0 on P and KX € TY on P, we get
o L
O (0)52(0) = (L, S)(0) = (Vix §9)(0) = 0,
(4.23) o Ly~ O KK, oL
8K18KJ (O)S (O) 87518752 (e S )(O)|t1:t2:0

= (LKj (LKViSL) + LK'i (LKJSL))(O) =0.
Thus from (4.23),
(4.24) (fHE))P = (1+ O(|K[*))P.
Moreover, from (2.95), (2.106), (2.108) (for G = {1}),

FP(K) =Tdar-on x)em),, + O(K)),

(4.25) )
k1(Z) =1+ 0(1Z]%).

Let dvy be the Riemannian volume form on (TY, g?Y). Observe also that if we

denote by iy, : G — Gyo the map defined by i,,(g) = gyo, then
1 c—1\*

(4.26) hQ—(y)dUY(y) = (i, )"dg,
which gives us a factor m when we take the integral on g instead on the normal
coordinates on X.

By (4.13), (4.15), (4.20), (4.24)-(4.26) and the Taylor expansion for k1, f€, f£, as
in [1, Theorems 5.8, 5.9], we know that there exist J..(Z) polynomials in Z with same
parity on r, and J) = Icgg, such that

1 . P
(4.27) PG(yo,yo)Np"—/ e BHKIN "I (VpK)p 2K,
P h2(3/0) Keg,|K|<e ;) \/_
Recall that
(4.28) / e TIKI R — 9%y
Keg

After taking the integral on g, from (4.27) and (4.28), we get (0.15) and (0.16).
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By (4.7), (4.27) and (4.28), we get also the asymptotic expansion for PY (yo, yo),
Yo € P.

4.4. Berezin-Toeplitz quantization

Let (X,w) be a compact symplectic manifold of real dimension 2n. Let (L, h") be
a Hermitian line bundle over X endowed with a Hermitian connection V' such that
(0.1) holds.

Let (E,h”) be a Hermitian vector bundle on X with Hermitian connection V¥,

Let ¢7¥ be a Riemannian metric on X and let J be an almost complex structure
such that (0.3) holds and that w(-, J-) defines a metric on T'X.

Let P,(z,z') be the smooth kernel of the orthogonal projection P, from
Q%*(X, LP ® F) onto Ker D,, with respect to the Riemannian volume form dvx (z').
Then P,(x,z’) is the usual Bergman kernel associated to D,,.

Definition 4.3. — A family of operators T}, : Ker D, — Ker D,, is a Toeplitz op-
erator if there exists a sequence of smooth sections g; € €°°(X,End(E)) with an
asymptotic expansion g(-,p) of the form > ;2  p~'g;(z) such that for any k > 0, there
exists C' > 0 such that for any p € N,

k
(4.29) 1T, — Py Zpilgl(x)PH 0O opT
=0
Here | || is the operator norm with respect to the norm || ||z2. We call go(z) the

principal symbol of T,. If T}, is self-adjoint, then we call T}, is a self-adjoint Toeplitz
operator.

We express (4.29) symbolically by
k
(4.30) T, =B ( Y la) B+ O,
1=0
If (4.29) holds for any k € N, then we write
(431) T, =By (Y ) B+ O0™).
1=0

The map which associates to a section f € ¥ (X, End(F)) the bounded operator
(4.32) Ty, = P,fP,: L*(X,E,) — L*(X, E,), withE, := A(T**VX)® [? ® E,

is called the Berezin-Toeplitz quantization.
Recall that a¥ is the injectivity radius of (X, ¢7¥). In what follows, we fix ¢ €
10,aX /4[. For x € X, we identify BT=X (0, 4¢) with BX (z,4¢) by using the exponential
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map. Let dvprx be the Riemannian volume form on (7,X, ngoX ) for zp € X. Let
Kz, be a smooth positive function on Ty, X with #,,(0) = 1 defined by

(4.33) dvx (Z) = kg (Z)dvrx (Z).

We denote by detc for the determinant function on the complex bundle 7(M9) X Set
J € €°(X,End(TX)) as in (0.2), and |J,| = (=J2 )2 Set 2(2,2'), (2,Z' €
T.,X) be the analogue of Py in (3.19),

(4.34)

P(Z,2") = dete(|Ta,|) exp ( - g (T (Z — Z),(Z — Z')) — /=1 (3, Z, Z') )

We trivialize L, E and E, over BT=X(0,4¢) by using the parallel transport with
respect to V¥, V¥ and VFr along the curves vz (u) = uZ.

Let m: TX xx TX — X be the natural projection from the fiberwise product of
TX on X.

Let {Z,},en be a sequence of linear operators =, : L*(X, E,) — L*(X, E,) with
smooth kernel Z,(x,y) with respect to dvx (y). Then under the above trivialization,
Z,(x,y) induces a smooth section =, ,,(Z,Z’) of m*(End(A(T**VX) ® E)) over
TX xx TX with Z,Z' € T,,, X, |Z|,|Z’| < 4e which depends smoothly on .

We will denote

k r k+1
(435) 0 Zpa(%2) 2 S (Quan P B2 B E + O,
r=0
if
{Qr,mo € End(A(T*(O’l)X) ® E)ﬁ?o [Zv Z,]}Oéf’ék,ﬁ?oéx
is a smooth family of polynomials on Z, Z’ with respect to the parameter zg € X,
such that there exist constants ¢’ €]0,4¢] and Cy > 0 with the following property:
for every | € N, there exist Cy,; > 0, M > 0 such that for zg € X, Z,72’ € T, X,
|Z],|Z'| < €' and p € N the following estimate holds : (!
k

e x Z,7' 1/22 1/2 zN — T,T e@r A4 VA _r
(436) p P7.,o( s )/Qa:o ( )Ha:o ( ) ;(Q 0 ,‘0)(\/5 ,\/ﬁ )p p] 0

<Crup™ T (1 + B Z| + B IZ')M exp(—/Cop | Z — Z'|) + O (p~).

(DBy Theorems 0.1, 0.2 for G = {1} (or [31, Theorem 4.2.1]) , if =, = Pp=,Pp, then (4.36) is
equivalent to: for any I,m € N, there exist C > 0, M > 0 such that for zg € X, |Z],|Z'| < €/,
la| 4+ |&'| < m and p € N, the following estimate holds :

k

(P77 20 (2, 2832 ()R (Z') = 3 (@riro P (VPZAPZ 7 F )

‘ glal+la’]
82297'* o €lL(X)

k+1—m

SCp~ 7 (L+VpIZI+ VoI Z' )Y exp(—/Cop|Z — Z'|) + 6(p™) .
Even (4.36) holds for any [ € N, in the proof of Theorem 4.4 (i.e. [30, Theorem 4.9]), we only use
l=0.
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In [30, Theorem 4.9] (cf. also [31, Theorem 7.3.1]), Ma and Marinescu established
a useful criterion which ensures that a given family is a Toeplitz operator.

Theorem 4.4. — Let {T, : L*(X,E,) — L*(X, E,)} be a family of bounded linear
operators which satisfies the following three conditions:
(i) ForanypeN, P,T,P, =T,.
(ii) For any eg > 0 and any l € N, there exists C; > 0 such that for all p > 1 and
all (z,2') € X x X with d(z,x") > e,

(4.37) ITy(z,2")| < Cup~™.

(iii) There exists a family of polynomials {Q;. », € End(A(T* OV X)RFE) 4, [Z, Z']} wpex
such that: (a) each Q, 4, has the same parity as r,
(b) the family is smooth in xy € X and
(c) there exists 0 < &' < e such that for any xy € X and Z,Z" € T, X,
|Z],1Z'| < €, in the sense of (4.35) and (4.36), we have
k k+1

(4.38) p " Tpao(Z2,2') = Z(Qr,wopmo)(\/ﬁZ’ \/ﬁZl)p_% +O0p™ 7).

r=0

Then {T,} is a Toeplitz operator.

By the asymptotic expansion of P, as p — oo (Theorems 0.1, 0.2 for G = {1}), for
any f € €°°(X,End(FE)), the Toeplitz operator T, verifies the conditions in Theorem
4.4.

Moreover, from the proof of Theorem 4.4, in fact

(4.39) Q0,20(Z,Z") = Q0,4,(0,0), for z € X,
and we set

(4.40) 90(20) = Q0,20(0,0)[car € End(Ey,),
then

(4.41) p " (T — Tyo,p)a0(Z, Z") = o™,

which implies
(4.42) T,=P,g0 P, +O(p ).
And by recurrence as in (4.40), we find g; € €°°(X, End(E)) such that (4.29) holds.

The Poisson bracket {, } on (X, 27w) is defined by: for g1, g2 € €°(X), if &,, is
the Hamiltonian vector field generated by g» which is defined by 2mig,, w = dgs, then

(4.43) {91, 92} = =&y, (dgn).

As a corollary of Theorem 4.4, we get the following result [30, Theorem 1.1] (cf.
also [31, Theorems 7.4.1 and 8.1.10]),
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Theorem 4.5. — Let f,g € €°°(X,End(FE)). Then the product of the Toeplitz op-
erators T, and Ty , is a Toeplitz operator, more precisely, it admits an asymptotic
expansion in the sense of (4.31):

(4.44) Ty pTyp = ZPiTTCT(ﬁg)?P +O0(™™),
r=0
where C, are bidifferential operators such that C.(f,g) € €*°(X,End(E)) and
Co(f,9) = f9g-
If f,g € €°(X), we have
(4.45) Ci(f,9) = Cilg, f) = v-1{f, 9} 1dg,

and therefore

V1 .
(4.46) [Tf,p ) Tgw] = TT{ﬁg}m +O(p 2)-

In conclusion, the set of Toeplitz operators forms an algebra. In particular, when
(X,J,w) is a compact Kéhler manifold and £ = C, g% = w(-,J-), Theorem 4.5
recovers the result in [9] (cf. also [39, 23], [20]) where the theory of Toeplitz structures
by Boutet de Monvel and Guillemin [11] is used. Some related results were also
announced in [10].

Lemma 4.6. — Let

[ee]
T, = ZPpglp*le +0(p~°) :Ker D, — Ker D,
1=0
be a Toeplitz operator with principal symbol gy € €°°(X,End(E)). Then
i) If go is invertible, then Tp’1 s a Toeplitz operator with principal symbol gy L
it) If go = gldg with g € €°(X), g > 0, and T, is self-adjoint, then for any
q € N7, Tpl/q is a self-adjoint Toeplitz operator with principal symbol g*/41dg.

Proof. — We only prove ii), the proof of i) is similar and simpler.
As g > 0, there exist Cpy, C; > 0 such that Cy < g < C;. Thus for any s € Ker D,

110 (@) = lausis) 40 (3 ) I3 = (Co+ 0 () Dsle

Thus for p large enough, Tpl/q : Ker D, — Ker D), is well defined. (In the case i), we
get T;l : Ker D, — Ker D, is well defined for p large enough.)

Let §; be a smooth bounded closed counterclockwise oriented contour on {\ €
C,Re()) > 0} such that [$Co,2C] is in the interior domain got by ;.

As in the proof of Theorem 4.4, by recurrence, we will find f; € €*°(X,End(E))

such that
k

(4.48) p (T — (Tup))) =O(p~ ") with Ty, =) Pfip'P,.
=0
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Then for p large enough,

1
(449) Tp/1=Top= o= [ N[ =T)7" = (A= (T1,)) 7 A
T Jaes,

1
o [ N0 B) G B0 (T
T Jxes,

If (4.48) holds, then by (4.49) we know that in the sense of the operator norm,
(4.50) T~ Ty, = O(p~"1).

To complete the proof of Lemma 4.6, it remains to establish (4.48).
As explained after Theorem 4.4, there exist Qo € End(A(T**VX) ® E),, such
that in the sense of (4.35),

o0

(4.51) P T2, 2") 2 (QorP) (VD2 D2 )P+ O(p™).

r=0
We will prove by recurrence that there exist f; € € (X, End(F)) self-adjoint such
that for any k € N,

(452) |p~" (T, — (L)) (VP2 V/DZ)
<p PP pIZ| + VB2 )M exp(—/CTro/BlZ — Z')) + 0 (07).
Set f() = gl/q IdE Then

o0

(4.53) P Ty = (Top)) (2, 2') =y ((Qor — Q8,)2)VPZ, /B2 ™"/,

r=0

Now as Qo0 = @8’0 = glIdg, by (4.41), we know

(4.54) Qo1 — Q) =0.

Thus (4.48) is verified for k = 0.
Assume that for k& < m, we have found f; such that (4.48) holds. If we denote the
expansion of (T}, )7 in the sense of (4.35),

oo

(4.55) P (T )2, 2)) 2 3 (QF, P) (P2, B2 2+ O™ 7).
r=0
By (4.48),
(4.56)  p (T — (Tmp))(2,2) = Y (Qor — Q) P) (P2, /PZ )",
r=2m-+2

By (4.39), (4.40), we set

(4.57) Sm1(zo) = ég_%(Qozmw - @gfgmu)(oa 0).
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Then by (4.56) and (4.57),

(4.58) p"(Tp — (Tms1,)NZ,Z2) = > (Qor — QT P)(VBZ, /P2 )™,
r=2m+43
By (4.40), (4.41) and (4.58), we know
(4.59) (Qo2m+3 — @szerg)(O, 0) =0.
Thus (4.48) holds for k = m + 1.
By the above argument, we have established (4.48), thus Lemma 4.6. O

Assume now that (X,w) is a compact symplectic orbifold and L, E are proper
orbifold vector bundles verifying the conditions of the beginning of this section. Oth-
erwise, as explained in [31, Remark 5.4.5], we are working on the proper orbifold
sub-bundle EP* of E.

We can still define the spin® Dirac operator D, : Q¥*(X, LP @ E) — Q%*(X, P ®
E). The orthogonal projection P, : L?(X, E,) — Ker D, with E, := A(T*®VX) ®
LP ® E is called the Bergman projection. A Toeplitz operator is a family of linear
operator T}, : Ker D, — Ker D,, verifying (4.29).

We need to introduce the correct analogue of (4.35) in the orbifold case, in order
to take into account the group action associated to an orbifold chart. Let {Z,},en
be a sequence of linear operators =, : L2(X, E,) — L*(X, E,) with smooth kernel
Ep(z,y) with respect to dvx (y).

Let k € N, we write

k
(4.60) P Ep 0o (2, 2) 23 (Qrg Pay) (VDL PZDTE + O ),
r=0
if for every open set U € U and every orbifold chart (Hy,U) —% U, there exists a
sequence of kernels {Z, ¢/(%, %) }pen and a family

{Qr, o }OQTSI% zoex € End(A(T*(Oyl)X) ® E)Io [Z’ ZI]

smooth with respect to the parameter xop € X such that for every fixed ¢’ > 0 and
every 7,z € U the following hold

(9. 1)Zp0(97'%,3") = (1,g )Z,u(7,93") forany g€ Hy
S0F 1) =0p=>) ford(z,z') > ¢,

Ep(xvxl) = Z (9, l)gp,U(g_lg’ EI) + (™),
geEHU

(4.61)

and moreover, for every relatively compact open subset VcU , the relation
(4.62)
k
-— = SN ~ = St k41 -~
P " Epus(Z,2) 2 (@3, Pr,) (VDL /DZ P2 + O(p~ > ) for T €V,
r=0
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holds in the sense of (4.35).

Note that although the notation (4.60) and (4.35) are formally similar, they have
different meaning.

Then in [30, §6], we find the following analogue of Theorem 4.4.

Theorem 4.7. — Let {T, : L*(X,E,) — L*(X,E,)} be a family of bounded linear
operators which satisfies i), i) of Theorem 4.4 and (4.60). Then {T},} is a Toeplitz
operator.

From Theorem 4.7, we extend also Theorem 4.5 to the orbifold case, for more
details, see [30, §6].

4.5. Toeplitz operators on Xg

In this Section, we suppose that (X, w) is a Kéhler manifold, J = J, and L, FE are
holomorphic vector bundles with holomorphic Hermitian connections V*, VZ. Let G
be a compact connected Lie group acting holomorphically on X, L, E which preserves
h' and hF.

We suppose that G acts freely on P = p=(0). Then (Xg,wq) is Kihler and
Lq, Eg are holomorphic on Xg.

In this case, there exists a natural isomorphism from (Ker D,)¢ onto Ker D¢ .

At the end of this Section, we will explain the corresponding result in the symplectic
case, especially, for p > 1, we construct a natural isomorphism from (Ker Dp)G onto
Ker D¢ .

In the current situation, the spin® Dirac operator D, was given by (0.21) and Dg
preserves the Z-grading of Q%*(X, LP ® E). Similar properties hold for D¢ .

As in Section 2.3, let Pg , be the orthogonal projection from Q%*(Xg, L?. ® Eq)
onto Ker D¢ ,, and let Pg ,(x,2’) be the corresponding smooth kernel.

By the Kodaira vanishing theorem, for p large enough,

(4.63) (Ker D) = H(X,L? ® E)®, KerDg, = H’(Xq, LY, ® Eg).

As Df,,Dé’p preserve the Z-gradings of Q**(X,L? ® E), Q"*(X¢, LY, ® E¢) re-
spectively, we only need to take care of their restrictions on €°(X,L? ® E) and
¢ (Xq, LY, ® E¢). In this way,

PS(x,2') € €°(X x X,pri(L? ® E) ® pr(LP ® E)*),

(4.64) i * * *
Pe p(z0,2() € €°(Xa x Xa,pri (LY, @ Eq) @ pry(LY, @ Eg)*).

Recall that the morphism o, : H(X, L ® E)Y — H%(X¢, LY, ® E¢) was defined
in (0.27). Set
(4.65) 0 =0,0 P ¢>(X,l?® E) —» H(X¢, LY, ® Eg).

p
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Let 0’1?* be the adjoint of UE with respect to the natural inner products (cf. (1.19))
on ¢=(X, L? ® E), €°(Xa, L, @ Eg). Set
(4.66) ’P;(G = p_nTDJS o af*.

Let {sw}?il be an orthonormal basis of H*(X, LP® E)“. Forys € Xg, z, 2’ € X,
one verifies

(4.67) Zsp, ) ® sp,i(2')",

g(y()v ) Pp (y()vx)v U;? (xvy()) = PpG(xvy())v
x)

(resp. Pp (z,90)) we mean PpG(y,a:) (resp. PpG(a:,y)) for any
Yy ETg (yo) which is well-defined by the G-invariance of Pf .
From (0.27), we know that P;‘¢ commutes with the operator Pg,, and

(4.68) PX¢ = PgpPyX¢ Pap.
Let PpG|p be the restriction of the smooth kernel PpG (z,2') on P x P. Then
PSp(x,2") € €°°(P x P,pri(L” ® E) ® prj(LP ® E)*)

where by (yo ,

is G x G-invariant. By composing with 7,
(nc o PY|p)(wo, 7)) € €°(Xa x Xa,pri(LE ® Eg) ® pri(LY. ® Eg)*).
We denote by ﬂ'GoPpG | p the operator defined by the smooth kernel (ﬂ'GoPpG |p) (o, ()
and the Riemannian volume form dvx, (x(). Then from (4.67), we verify that
(4.69) ’P;(G (w0, xy) = p_nTDPf(xo, Ty) = p T g o PpG|p(x0,x6).

Recall that h is the fiberwise volume function defined by (0.10).
Let dg be a Haar measure on G.
The main result of this Section is the following result.

Theorem 4.8. — Let [ be a smooth section of End(E) on X Let f¢ € %OO(X(;,
End(Eg)) be the G-invariant part of f on P defined by fC(x ng flg™tz)dg

(9~
Then Ty, =p~ 2 JGfaG* 18 a Toeplitz operator with prmczpal symbol 272 f—g( ). In
particular PZ‘,XG is a Toeplitz operator with principal symbol 2% /h%(z).

Proof. — We need to find a family of sections g; € €°(X¢, End(E¢q)) such that for
any m > 1,

(4.70) Trp=> Popgip Pap+ O™ ").
=0

By Theorem 0.1, (4.65), (4.67), we know for € > 0, and any [ € N, there exists
C) > 0 such that for all p > 1 and all (z,2’') € Xg x Xg with d(z,z’) > o,

(4.71) |Tp.p(z,2")] < Cip™".
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We still need to verify the condition iii) of Theorem 4.4.

Let U be a G-neighborhood of P = y~1(0) as in Theorem 0.2.

Let ¢ be a G-invariant function on X such that ¢y = 1 on an open neighborhood
of P and supp(¢)) C {y € X,d(y, P) < e0/2} NU.

Write

(4.72) O'EfO'E* zagwfog*—i—ag(l—zﬁ)fog*.
For xg,z( € Xg, let x,2’ € P such that 7(x) = o, w(2’) = z{. By (4.67),
(4.73) (o5 (1 =) flog™) (w0, wp) = /X By (2, 9) (1= ) /) () Py (y, 2" )dvx (y).

From Theorem 0.1, (4.73) and supp((1 — ¢)f) N P = @, we know that for any
I,m € N, there exists C, > 0 such that for any p € N, z¢, 2, € X¢,

(4.74) (o (1 = ) f)og ™) (@o, 20) lwm (x6 x xa) < Crmp ™"

We define fp € €°(B,End(Eg)) by
(4.75) fotan) = [ a-@hia oy

for zp € B,x € U such that 7(x) = xg. Clearly, if o € P, as ¢¥|p = 1, one gets

(4.76) fa(w0) = £ (x0).

From (4.75), for xg, x, € B, x, 2’ € U such that n(x) = xg, w(a’) = x{,, one gets

(477) 0CyfoC* (o, xh) = /U PG (2,4) (1)) PS (y, 2')dvx (1)
- /B PS (20,90) £ (90) PS (o, )2 (5o v (30).

For zy € X¢g, we will work on the normal coordinates of X with center x( as in
Theorem 0.2.

Recall that Py (Z°, Z'0) was defined by (3.19) with a; = aj- = 27 therein.

By (4.72), (4.74) and (4.77), for |Z°|,|Z2"°| < /2,

(4.78)  Tp,(2°,2) —p~ o/ /\W\geo, B(Z0, W) (fsh®) (W) Py (W, Z")dup (W)
WeT,, B

=0(p~™).

By Theorem 0.2, (4.78) and the Taylor expansion of fp, there exist Qo, €
End(FE¢ ,) polynomials on Z% Z"% with same parity on r such that the following
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formula, obtained through compositions, holds,

(4.79)

k
p—n-i-nor]'ﬁp(z()’Z/O)H%(xo’zo) % ZIO Z QO ij \/_ZO ﬁZ/O)p—g

r=0 ¢ (Xa)
< Cp~ IR 4 /Bl Z° + Bl Z° DM exp(—VCv/p| 20 = Z7)) + 6 (p™).

Moreover, by (0.13), (4.75) and (4.78),

fG

(4.80) (Qo.oPx)(Z2°,2°) = Py (Z°,2"°)— v

()2 [ exp(-2nlW )t
R™0
fG
2
By Theorem 4.4, (4.71) and (4.79), there exist g; € €°°(Xg, End(Eq)) such that
(4.70) holds, and by (4.40) and (4.42),

( )2n0/2pj(20 Z/O)

s

(4.81) Tip =
The proof of Theorem 4.8 is complete. O

Corollary 4.9. — For f1, fo € €°°(X), we have

ono, /] G G

Here {, } is the Poisson bracket on (Xg,2nwe).

(4'82) [7}1 P> 7}2#)] =

Proof. — By Theorems 4.5, 4.8, we get immediately (4.82). O
Since the isomorphism o, : H°(X, LP®E)¢ — H°(Xg, L},® Eg) is not an isometry,

we define the associated unitary operator,

(4.83) Sy =057 (05 005) 72 HO(Xg, LY, ® Eg) — H(X,LP ® E)°.

Theorem 4.10. — Let f be a € section of End(E) on X. Then

(4.84) Tf, =%5f%, : H(Xg, LY, ® Eq) — H*(Xq, LY, ® Eq)

is a Toeplitz operator on X¢. Its principal symbol is f& € € (Xq, End(Eg)).

Proof. — By (4.68) and (4.83),

(4.85) TE, = (PX6) 2T}, (PXe) s,

By Theorem 4.8, (4.66), Plf(c = p’%og o O'g*, T;,p are Toeplitz operators on X
G
with principal symbols 270/2 /h?(z), 2"0/2’;—2@) respectively.
By Lemma 4.6, we know that (’P;(G )~ % is a Toeplitz operator on X¢ with principal

symbol 2770/4h(z).
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By Theorem 4.5, we then know that Tﬁp is a Toeplitz operator and its principal
symbol is f%(x). O

Remark 4.11. — i) When E = C, and f = 1, from Theorem 4.8, 73;(0 is an elliptic
(i.e. its principal symbol is invertible) Toeplitz operator. This is the analytic core
result claimed in [37, §8].

ii) When E = C and G is the torus T, Theorem 4.10 is one of the main results
of Charles [15, Theorem 1.2], and in [15, §5.6], he knew also that P,‘¢ is an elliptic
Toeplitz operator. Moreover, he established the corresponding version when Xg is
an orbifold.

If X is only symplectic and J = J, then as the argument in [44, §3e)], J induces
an almost complex structure Jg on (I'X)g, and Jg preserves Ng ; = Ng @ JoNa
and T Xg. Thus one can construct canonically the Hermitian vector bundles Ngi?)
etc, which further give the canonical identification of Hermitian vector bundles

(4.86) AT ODX) 5| = ANGGHBAT OV Xg).
Let ¢ be the canonical orthogonal projection
(4.87)  q: A(Ngf(}”)@A(T*@J)XG) ® LY ® Eg — AT "VXs) ® LY, @ Eg
which acts as identity on A(T**YXs) ® LY, ® Eg and maps each
Ai(Ngf(}l))@A(T*(O’l)Xg) ®@ L% ®Eq, i>1, to zero.
We define
(4.88) op = Pg7pq7rgi*PpG : (Ker D)€ — Ker D .

Certainly in the Ké&hler case, o, coincides with (0.27).
By using Theorems 0.1, 0.2 as in the proof of Theorem 4.8, we get

Theorem 4.12. — Let f be a smooth section of End(E) on X, then Ty, =
p’”o/zapfa; : KerDgp, — KerDg ), is a Toeplitz operator with principal symbol

2m0/2L2 () € End(Eg).

Corollary 4.13. — Forp large enough, o, in (4.88) is an isomorphism. Thus o, de-
fines a natural identification for ‘quantization commutes with reduction’ in the (asymp-
totic) symplectic case.

Proof. — From Theorem 4.12 for f =1, we get
1
(4.89) p7"0/20p<7; = 2m0/2pg Jh 2 Pg, + O(=).
p

Thus for p large enough, 0,0, is an isomorphism. Thus oy, is surjective.

In view of (0.6), o} in (4.88) is an isomorphism. O
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Remark 4.14. — If we replace the condition J = J by (3.2), then the canonical
map o, in (4.88) is still well defined. From the argument here, we still know that oy,
is an isomorphism for p large enough.

Now, we relax further our condition. As in Section 4.1, we only suppose that 0 € g*
is a regular value of p, then the symplectic reduction X¢ is a compact symplectic
orbifold. Then (4.86)-(4.88) are still well defined.

As explained in Theorem 4.1, Theorem 0.1 still holds. From Theorem 4.7, (4.1)
and the proof of Theorem 4.8, we get

Theorem 4.15. — If f € €°(X,End(F)), then Tf, = p_"O/Qpra; :Ker D¢, —
Ker Dg ), is a Toeplitz operator with principal symbol 2”0/22—2(;3) € End(Eq).
For p large enough, o, in (4.88) is an isomorphism.

4.6. Generalization to non-compact manifolds

In this Section, let (X,w) be a symplectic manifold, and (L, V¥) (resp. (E, VF)) be
Hermitian line (vector) bundle, with Hermitian connections, on X, and the compact
connected Lie group G acts on X as in Introduction, especially, w = %RL . But we
only suppose that (X, g7%) is a complete Riemannian manifold.

If G = 1, these kind results were studied in [28, §3.5].

By the argument in Section 2.3, if the square of the spin® Dirac operator Dg has
a spectral gap as in (2.15), then we can localize our problem and get a version of
Theorems 0.1, 0.2 from Section 2.6. In particular, if the geometric data on X verify
the bounded geometry, then Df) verify the spectral gap (2.15).

We explain in more details now.

We suppose

i) The tensors RT rX, Tr[RT(l’O)X ] are uniformly bounded with respect on
(X,g"%).

ii) There exists ¢ > 0 such that
(4.90) VEIRE( T = eg™X ().
Remark 4.16. — For the operator D, = \/5(5Lp®E +0
case, the above condition i) can be replaced by [28, (3.39)]:

(4.91) V=1(R¥* + RF) > —CO1dp, |00|,rx <C.

LPQE ., :
® “) in the holomorphic

Here Rt is the curvature of the holomorphic Hermitian connection on det(T™9 X),
O = gTX(J-,-). For two (1,1)-forms  and Q' we write Q > Q' if (Q —Q')(-,J-) > 0.

Then by the argument in [27, p. 656] (cf. [28, §3.5]), we know that Theorem 2.2
still holds. Thus Theorem 2.5 still holds.
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Let P be the orthogonal projection from L?(X, E,) onto (Ker D)%, and BS (z, z')
(z,2" € X) be its kernel as in Def. 2.3.

Note that Ker D, and (Ker D) need not be finite dimensional.

By the proof of Prop. 2.6, we know that for any compact subset K C X, [, m € N,
there exists Cp , (K) > 0 such that for p > Cr /v,

(4.92) |F(Lp)(x,2") = Py (@, ) m(rcx ) < Cran (K )p ™"

By the proof of Theorem 0.1, we get

Theorem 4.17. — For any compact subset K C X, 0 < gg < &g, I,m € N, there
exists Cpm > 0 (depending on K, €) such that for p > 1, x,2' € K,dX(Gx,2') > g
orz,x’ € (X \ Xogy) N K,

(4.93) [P (2,2 )gm < Crmp ™.

From Section 2.6, we get Theorem 0.2, but now the norm %" (Xg) in (0.14)
should be replaced by €™ (K) for the compact subset K C X¢.

One interesting case of the above discussion is when P = p~1(0) is compact, by
the same argument as in Theorems 4.8, 4.12, we can prove a version of Section 4.5.
Especially, the map o, : (Ker D,,)¢ — Ker D¢, in (0.27), (4.88) is still well defined.
Thus we get the following extension of Theorems 4.8, 4.12, 4.15:

Theorem 4.18. — Under the assumption i), ii), if P = p=1(0) is compact and
0 € g* is a reqular value of p, then for f € 652, (X,End(E)), the algebra of smooth
sections of X which are a constant map (i.e. CIdg) outside a compact set, then
Trp = p*"O/Qopfa; : Ker D¢, — KerDg, is a Toeplitz operator with principal

symbol 2"0/22—3@) € End(Eg).

In fact, when X = C",G = T"°, the torus, L is the trivial line bundle with the
metric |1|,2(Z) = e_|z|2, the Toeplitz operator type properties was studied by Charles
[15].

Another interesting case is a version of Theorem 0.2 for covering manifolds.

Let X be a para-compact smooth manifold, such that there is a discrete group I
acting freely on X with a compact quotient X = X /T

Let 7p : X — X be the projection. Assume that all the above geometric data
on X can be lift on X. We denote by J gTX, w, J L E the pull-back of the
corresponding objects in Introduction by the projection 7 : X — X, moreover, we
assume that the G-action and the I'-action on them commute.

By the above arguments (cf. [27, Theorems 4.4 and 4.6]), there exists a spectral
gap for the square of the spin® Dirac operator 51, on X.

By the finite propagation speed of solutions of hyperbolic equations (2.66), we get
an extension of [28, Theorem 3.14] where G = 1.
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Theorem 4.19. — We fiz 0 < g < inf,ex {injectivity radius of x}. For any k,l €
N, there exists Ci 1 > 0 such that for z,2' € X, p € N,

PY(x,2") — P8 (rr(z), mr(2’)) S Crap * 1, if d¥(z,2') < eo,

(4.94) R )
’Pf(x,x')’(gl <Crp *t, if d¥(z,2) > eo.

Especially, }55 (x,x) has the same asymptotic expansion as PpG (rr(x), mr(x)) in Corol-
lary 0.4 on X.

4.7. Relation on the Bergman kernel on X¢

From (2.62), if the operator ®£,®~! has the form Dép + AN +4m|pl?p? — 27nop
under the splitting (4.86), then we will find the full asymptotic expansion of the
Bergman kernel on X¢ from Pf(z,a/).

In this Section, we suppose that X is compact and G is a torus T™0 = R"™0 /Z"0,

Let 6 : TP — g be a connection form for the G-principal bundle 7 : P = p~1(0) —
X with curvature ©. Let THP = Kerf c TP.

Set M = P x g*, q: M — g* be the natural projection and

(4.95) wM = 1*we + d{q, ) = T*we + (g, 0) + (dq, ).

By the normal crossing formula [22, Prop. 40.1], we know there exists a symplectic
diffeomorphism such that on a neighborhood U of P,

(4.96) Uoym : (X, w) =~ (M,w™),

and under this identification, the moment map p (cf. (2.16)) is defined by —q.

From now on, we use this neighborhood of P and we will choose metrics and
connections.

Let ¢g? be the metric on g induced by the canonical flat metric on R™, and {K;}
be the canonical unitary basis of R™°.

Now we choose J an almost -complex structure on 7T'X compatible with w such
that on TH# P on U, J is induced by an almost-complex structure on 7' X which is
compatible with wg, and on g ® g*, for K € g, JK € g* is defined by (JK,K') =
(K,K')q for K' € g.

We also suppose O is J-invariant.

Let ¢7X be a J-invariant metric on 7X such that

(4.97) gTX =gt @ g8 @ g% on U.

As g9 is a constant metric on TY = g, VTV is the trivial connection on TY. By (1.3),
on U,

(4.98) Vin = vglifG +Vin +SU).
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Let VA7) be the trivial connection on the trivial bundle A(Né,(;l)) (cf. (4.86))
on U, and Vifx6 he the Clifford connection on A(T*(*D X ).
By (1.7), (4.98), under the identification (4.86), on U, we have
; i AN 1
(499)  VHT=vLTC @I+ 1@V, 42
A(N*(o,l)

: , (S(eiej!, Ki)e(ej )e(k)
iffx 1
=V @I+ 1@ Vo T 4 (0 e), Kielel)e().

However, the last term does not preserve A(T*%Y X5) and A(N(*;,g’l)).

From (2.62) and (4.99), in general, ®£,®~! will not preserve A(T*%YXs) and
A(Ngg?j”) if © is not null.

Now, we suppose that © = 0 on Xg.

In this situation, on B = U/G C X¢ % g*, by (2.62), we have

- AWNEGY)
(4.100) oL, =Dg , — Z(sz &7 N2 4 4n?|q*p? — 2nemp.
1
By Theorem 0.2, Section 3.2 and (3.19), we know that the asymptotic expansion of

the Bergman kernel has the following relation for (z, Z1) € Ng ., (2/,Z') € Ng o,
(4.101)  P((z,24), (2", Z')) = Payla,a)p" 2Py (VPZH,\/PZ™) + O(p™).






CHAPTER 5

COMPUTING THE COEFFICIENT &,

In this Chapter, (X,w,J) is a compact Kihler manifold, ¢g7* is a G-invariant
Riemannian metric on 7X which is compatible with J. (E,h¥), (L,h) are holo-
morphic Hermitian vector bundles on X, and V¥, V! are the holomorphic Hermitian
connections on (E,h¥), (L, h*). Moreover,

E RL —
2w

The action of G is holomorphic and G acts freely on P = p~%(0). Thus
(Xa,wa, Jg) is a compact Kahler manifold.

In Sections 5.1-5.4, we suppose that in (0.2), J = J on a G-neighborhood U of
P =pu1(0).

The main purpose here is to compute the coefficient ®; in (0.20).

By (0.19) (cf. also Theorem 2.23),

(5.1) B (20) = /Z N PP(Z, Z)dvng (2).

We will first compute explicitly the terms ©O; and O, involved in P(?) in (3.32),
(3.62), and then compute the integration of P(®) along the normal spaces to X.

Sometimes the computations seem to be long and tedious, involving many subtle
relations between metrics, connections and curvatures near X, but fortunately the
final result on @, is still of a simple form, as expected.

Throughout the computations below, a key idea is to rewrite all operators by using
the creation and annihilation operators b;, bj', bjl, ij', then under the help of (3.9)
and Theorem 3.1, we can do the operations and obtain the crucial Lemmas 5.9, 5.11.

To get the final simple formula (0.25), we still need to prove a highly non-trivial
identity (5.131).

In the usual case, i.e. G = {1}, Ma-Marinescu have used the similar formula (3.62)
to compute the coefficients in varies generalities. In the Kéhler case (cf. [31, §4.1.8]),
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the computation is quite easy as @1 = 0. In the symplectic case [28, §2], O; # 0, but
the contribution from O; is zero at (0,0) and in the spin® Dirac operator case [29,
§2], O1 # 0, and the contribution from O; is non zero at (0, 0).

This Chapter is organized as follows. In Section 5.1, we explain various relations
of the curvature of the fibration P — Xg and the second fundamental form of P. In
Section 5.2, we obtain the explicit formulas for the operators Oy, Os. In Section 5.3,
we apply the formulas in Section 5.2 and (5.1) to (3.62), and we get a formula for the
coefficient ®;. In Section 5.4, we compute finally ®1, thus proving Theorem 0.6. In
Section 5.5, we explain how to reduce the general case to the case J = J which has
been worked out in Sections 5.1-5.4.

In the whole Chapter, if there is no other specific notification, when we meet the
2

operation | , we will first do this operation, then take the sum of the indices.

5.1. The second fundamental form of P

We use the notations in Sections 2.2, 2.3. Then the normal bundle Ng of X¢g in
U/Gis (JTY)¢.

Let ¢ : X — U/G be the natural embedding.

We will apply the notation in Section 1.1 to B = U/G.

Let VT¥Xe¢ VN6 be connections on TXg, Ng induced by projections of the
Levi-Civita connection VT2 on TB. Then VTX¢ is the Levi-Civita connection on
(TXq,9"*).

Let

(5.2) 0yTP = yTXe g yhe

be the connection on T'B on X induced by VT¥X¢ VN6 with curvature "RTB.
Set
(5.3) A=VTB|y, — oy
Then A is a 1-form on X taking values in the skew-adjoint endomorphisms of
(T'B)|x., which exchange T X and N¢.
We recall the following properties of RTZ, the curvature of VI B: for U, V, W, W, €
TB,

(RTP(U. V)W, W) = (BT (W W)U, V)

5.4
oY RTP(U V)W + R"P(V,W)U + R"™P(W,U)V = 0.

On Xg, let {ef} be an orthonormal frame of T X, let {e; } be an orthonormal
frame of Ng, then {e;} = {e?,e; } is an orthonormal frame of T'B.
The following result gives detail informations on the torsion 7" of the fibration, as

well as the second fundamental form A.
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Theorem 5.1. — On P, the restriction of the tensor (JT(-,J-),-) on (Ng)®?3 is
symmetric, and

1

G50 (AT = LT I,
(55b) T(@?’H’ 62 H) ((JG@?)H, (JGe(J:")H);
(5.5¢) T(e) ", e M) = 20 ((Jge)) ", Jep ™),
(-5 (e g6 ) = (T e ), I ),
(5.5¢) Z<T(éHa€jH)7JéH>=O

k
Proof. — Observe first that we have
(5.6a) VX J =0
(5.6b) (Jae)T = 7P on P

Let Z be a smooth section of 7Y, then by (3.1), JZ € JTY Cc TH# X on P, by
(1.3), (1.7), (3.1) and (5.6a), on P, we have

J
= (VIS ()™, Z) = (S(e0™)Ief M, 7) = —% (T(M, 5657, 2)

Thus we get (5.5a), as A(e )e € Ng = (JTY )¢ on Xg.
Note that [Z,ef] € TY, by (1.3), (1.7) and (5.6a),

). Z) = 2(VIXZ, el ) =2 (VEXell ell) =2 (V5 (Jelh), Jelf).

(5.7) (AN, Z) = (VEESM J2) =~ (Vi)™ 17)

(5.8) (T(ef' el € e

From (5.6b) and (5.8), we get (5.5b).
From (1.3), (1.7), (5.8) and Jejl’H, Jekl’H € TY on P, we get

(5.9) <T(erH e H), Z> —2 <S(Z)(Je?’H), Je.L’H> —2 <T(Je?’H, JebH), Z> .

7 ] J J
Thus we get (5.5¢). By (1.6), (5.9), we get
(5.10)
<T(eQ’H ey, Jeé"H> =2 <T(Je?’H, Je ™), Jei’H> = <T(eq H 62‘ oy, Jejl"H>.

K3 ? ] J K3

Thus we get (5.5d). By (1.3), (1.7), (5.6a) and Jej"H €TY on P,

(5.11) <T(ef"H,J6j’H),J6tH> <VTJ_H6J- HjJ@j‘»H>

<VJ (S ™) G'L’H> <VT < wer Je*’H> = <T(ej’H, Je ™), Je$7H> :

’J J z

By (1.7) and (5.11), (JT(-,J-),-) is symmetric on the horizontal lift of N& .
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Note that {Jep ™} is a G-invariant orthonormal frame of T'Y on P, by (5.8),

(5.12) <T(ell H el e le> -2 <vT 2 (Je ™), Jej’H>.
By (1.9) and (5.12), we get (5.5¢). The proof of Theorem 5.1 is complete. O

Remark 5.2. — From (1.6) and (5.5b), O|x,, is a (1,1)-form on X¢. Especially, for
any complex representation F' of G, P X F' is a holomorphic vector bundle on X¢.
Moreover, by (5.5a), for U € TXg,V € Ng, we have at xo,

J

(5.13) AUV = (AU)V,eY) e) = —(V,A(U)e)) ) = % (T(U,JeY), JV) el

For zg € Xq, if {ej‘} is a fixed orthonormal basis of Ng 4, as above, then for U €
Ty, Xa, we will denote by

Tigw = (JT(ei ex ) Tin = (JT(ef e ). eic)

5.14
(5:14) @k(U):<JT(U76j)’6k>'

By Theorem 5.1, 7;j% is symmetric on i, j, k and Tj, € T, X is symmetric on j, k,
751 is anti-symmetric on 4, j. Moreover, as functions along the fiber Gzo, Tiji, ik,
Tiji are constant.

Remark 5.3. — From Remark 1.2 and (5.12), we know that (JT'(-,-), ) is anti-
symmetric on (Ng)®? if 7Y is induced by a family of Ad-invariant metric on g. If
G is abelian, then by (1.12), (5.12), T'(,-) = 0 on (Ng)®?2, thus 7;;; = 0.

5.2. The operators O;, O in (2.102)

We use the notations in Sections 2.6, 3.1, and all tensors will be evaluated at
o € Xg-

Recall that (X,w) is Kéhler and J = J on a G-neighborhood U of P = u=1(0),
then in (3.5)

(5.15) a; = a; =2m.

Clearly, on U, the Levi-Civita connection VX preserves 79X and 7OV X
and VI"X = pTOYXgTX pThYX i¢ the holomorphic Hermitian connection on
T X while the Clifford connection VEIf on A(T*©DX) is VAT VX)) the nat-

(1,0
ural connection induced by V7 X,

SLPQE LPQE

Let 0 be the canonical formal adjoint of the Dolbeault operator d on
Q0*(U, L? ® E). Then the operator D,, in (2.14) is
(5.16) D, =2 (5LP®E +5LP®E,*) .

Note that D2 preserves the Z-grading of Q**(U, L? @ E).
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Set
5.17 D2 . = D20 1)
(5.17) pi p|9°“(U7LP®E)'

Let AL"®F be the Laplacian on LP? @ E associated to VX"®F. Then by (2.51) (cf.
also [31, (1.4.31)]) , as J = J on U, we have

(5.18) D;O = AY®E _RE _omnp on U.

Since VO preserves the Z-grading of A(T*(VX), the operator .Z¢ in (2.100)
also preserves the Z-grading on A(T*(O’l)XO). Moreover, %} is invertible on
&r_19%(Xo, L ® Ep) for t small enough (cf. Theorem 2.2 or [31, Theorem 1.5.5]).

From Section 3.2, for P(") in (0.12),

(5.19) P = Iegrp. PM Icg k.-

Thus we only need to do the computation for wa.
In what follows, we compute everything on > (U, L? ® E).
Take zg € Xg.
fZeT,B,Z=2+2*2°€ T,, Xc, Z+ € NG uo, |Z°|,|Z4| < &, as in Section

2.6, we identify Z with exp® T470(Z*). This identification is a diffeomorphism

Pl (2°)
from BI:X¢(0,¢) x B4 (0,¢) irfto an open neighborhood % (zo) of o in B, we denote
it by W. Then % (x0) N X¢ = BLX¢(0,¢) x {0}.

In what follows, we use indifferently the notation BLX¢(0,) x BY¢(0,¢) or % (z0),
xgor0, - --.

From now on, we replace U/G by R2"—710 ~ T,,B as in Section 2.6, and we use
the notation therein. Especially,

(5.20) V, = tS; k1 /2v (L OB)E g -1/2g,

and O, in (2.102) takes value in End(Ep).
Let {ef}, {ej } be orthonormal basis of Ty, Xa, Ng.z, respectively. We will also
denote W, (e?), \I/*(ejl) by €9, ejL.
Let {e;} denote the basis {ef, ej }. Thus in our coordinates,
(5.21) a—gg =é, % =e;.
We denote by (¢ (Z)) the inverse of the matrix (g;;(Z)) = (g?jB(Z)) (cf. (2.106)).
Recall that Péj is the connection form of VI8 with respect to the frame {e;},
defined in (2.106). Also recall that R, R® and R+ are defined in (2.72).
As in (1.14), the moment map p induces a G-invariant € section 11 of TY on U.
Note also that by (2.50), RF € End(E) defines a section of End(Eg) on B = U/G.
Recall that h(z) = \/vol(Gz) is defined in (0.10).
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Set

(5.22) LUZ) = =" (t2) (Vie: Vi, — T (t2) V1)

1 ..
+ 2 (E G9(Ve, Ve, h — rfjvekh)) (tZ) — *RE(tZ) — 2mn.

By (2.62), (2.100) and (5.22), we can reformulate (2.101), (2.109), in using the
notations in (3.10), as follows,

1
Vo. = V.4 3RIP(R) = V.= mV/=1 (1 2%, ),

(5.23) Z bibl + Zz#bjL+ == (Vor,)* + 472 2> — 2mn,
J
LUZ) = LUZ) + 4n }t ] ) — (4nv/=1fi + 2P ) oy (12).

If there is no other specification, we will evaluate our tensors at xg, and most of
time, we will omit the subscript xg.
Set hg = hy, = h(zo), and for U € T, B, set

1 ) ze
B(ZaU)__ Z(a RLB)TO_'(RvU)a
|a|=2
1
I = —B(Z,¢)Vo,e, §VeL(B(Z, €i)),

1
B~ <§RTXG (R?, Q)R + Vi (A(el)R*). €] >

(o)

(5.24) 5 (A
+ (RTB(RY, & >)v0 V0.0

(e)R)

<RNG (RO, e?)Rlv ezl> <RTB RL ’)Rlv ezl> )VO,eﬁ vO,e?

CADI»&

ool»—tf"\

<RTB (RL L RL L> v()?e# v()@j .

Recall that the operator . has been defined in (3.10).
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Set also
2
Lii(R) =5 Ry (RY, )i + Vs (A(e)el) + BT (R, ef)e]
+ A AR + VI (A()RY) — AR A(eD)ef,
1
(525) K2 (R) :g <RTXG (Rov e?)ROa €?> + <RTB (Rlv e?)tR’La €?>
1 2
5 (RTP (R e )R- ey +2( D (Ale)el RY) )
— AR +2 (VR (AR, e )
Lemma 5.4. — There exist second order differential operators O as in Theorem

2.11 such that for |t| <1,

(5.26) L =L+ 10+ o™,
r=1

with

(5.27)

no
L) =L = (Vou)? —2mng = & — 4n®| 2,
j:l J

2 1
O =— g(ajRLB)wo (R,€i)ZjVo,e; — g(az‘RLB)wo (R, ei)

-2 <A(e?)e§), Rl> vO,e? vO,e?a
3

04 =1+ 1o+ [Ha(R) — 2 (S aded =) ), 4]
l

2 1

—2(A(e))e}, R") (g(akRLB)mo (R, €] ZkVo.e0 + 5 (0] R™ ) (R, e?))

1
3 (A(e)el, RT) Voaenyen +2 (A(e))e], RY) V()

(RTB(R*,ei)ei e5) Vo, — REP (R, €;)Vo,e, — RS

T, %0

> [Z@-RLB)%(R, ez’)Zj} g hiO(Vej Ve, h — VA(e?)e?h>

i J

+

—~

F“ (R)v €j> VO,Ej
+

O = Wl

o
Proof. — By (2.103) and (5.20),

1/2 Lo, 0 L
(5.28) Vi, =k (tZ)(Vei n (iRIO + S (R0 2

i 3 (9°R"») 7 ﬁREB)(R e;) + ﬁ(ﬁ))ﬁ—m(w)
4 x 2 o b2 .

° al
|a]=2
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To get (5.27), we could use (2.92)-(2.96), while here we will get it directly from the
local computation.
By [1, Prop. 1.28] (cf. [28, (1.31)]) and (2.103),

1
(5.29) (b €5 =i + 3 3

(vgfvgﬁej) —RNG( ep,e)er.

(R (R, )R el), +O(12°F),

Moreover, for W,V € Ng 4, 7s(t) = (Z°,t(W + sV)) is a family of geodesics from
4

)
(2°,0) in B. Set Y = L.(t), X (7s(t)) = mvs( ) =1tV.
Since VIPY =0, VIEX — VEBY = [V, X] = 1.[2, 2] = 0, we get

(5.30) 0=ViPVIPY = VvIBVIBX — RTB(Y, X)Y.
Take V = e}, we get at s =t = 0,

(5.31) (VEPVEBe) 7o = %v%ngBv?ﬁX = %RTB(W, e )W.

Under our coordinates, we have

v L) = (Ver O eias = (Vo ei)ao =0, (Ve €))ao = Aug(€])e],
) - (V el)ﬂﬂo - Awo( O)ejlv

(5.32) %ff&)z =0,

VIPer) 70 = (VRiel)z0 = 0.

(Ve
(Ve
vV
(Ve

Moreover, by (5.4), (5.29), (5.31) and (5.32) (comparing with [28, (1.31)]), as [e;, €;] =
0 by (5.21), we have at z¢ that
1
VTBVTB = RTB( ejl)eiL + gRTB(ekl, eil)ejl,
vTBvTB J_ 0
VTBVTB 0 VTBVTB jL RTB(e}, e?)ej,
TBOTE &0 TByTB L
Ve Vole) =V Ve e)
(5.33) = Vi\écveo ej + A(ek)A(e?)ej‘ + VET%XG (A(e?)ej‘)
1
= —RNG (e?, e?)e»l + A(eg)A(eQ)e.L + VTOXG (A(e?)ejl),
vTBvTB 0 RTB( ek)e + vTBvTB 0

VTBVTB D= ViXeviXe °+VTB(A(e°)e°)

J K3

= SR (e, el + SR, D)) + VEP(AWDED)
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In the following, for a tensor 1 and the covariant derivative V2 acting on 1 induced
by VTB | we denote by

(VBVBd})(C €j,cher) — Cjck(vB VB w)

From (5.33), we get at x¢ the following formula which will be used in (5.38), (5.39),
(5.56), (5.57) and (6.26),

(5.34)
(VIBVTEED) (o goy = —RTXG (RY,e])R® + VL& (A(e))ed) Z?,

VIEVTEel) (ro rty = —RNG (R, eJR* + ARV A(])R* + Vo @ (A(e])RY),
vTBvTB O)(RL ’RL) RTB (RJ_, eQ)RJ—,
VIEVTBel ) (ro oy = A(RY)A(R®)e) + Vi ¢ (A(eR)ej ) Zy.,

VTBvTB J_)(RO RLy = O

(
(
(
(
(
(

Note that by (5.32), VEZ (A4, (e?)e?) = A(R?)A,,(e9)e?. From (5.32), (5.33), we
get

(VIPet)z = SRTP(RY, eyt + 0(2P),
(Ve O)ZZA o(ed)e} + VRE (Vi el — Axy (D)) + 0(12)7)

= Aq,(€))e) — VEP (Ag, (e))e]) + 5R”G (RO, €D)ed
+ VRO (A(ed)e)) + A(e]) A(e) )R
+ Vi S (A()RT) + RTP(RE, ed)ed + 0(12)7)

= Ay (e)e] + Tu(R) + 0(|ZP),

(5.35)

Thus by (5.32), (5.33) and (5.34), at zo,

(5.36) VroVge (€5, €]) = VREe) + (e, V

RO 6 Vrie

(RNe (RO, e )R, e

RJ-6>

(Vx
1
2
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On the other hand, we have the following expansion for (e;, e;) ,,,

(5.37)
(ei,€5) 7 = (€ir€5) 5o + (Ve (€ir€5)) 20 + 5 (VV (eirei)) R RY)m0 + O(Z])
= (€i, €j) zo + (VR (€5, €5))zo + (szf)VRL (eirej))ao + (VT er VRies),
+ % (VTPVTBe) (e piy,€5) + %
Thus by (5.4), (5.29), (5.32), (5.34) and (5.36)-(5.37),

(ei, (VIPVTPe)) me ruy) + O(Z]).

(5.38) (el €}), = 0ij —2(Auy(e])e], RY) + 3 <RTXG(R°,e?)Ro,e§?>
+ (VRS (AR, ) + (e, VRIS (A()RY))
+ (A(e] )R A(ERT) + (RTP (R, e)) R, €) + 0(|1 ),

and

2
(5.39) (elrej), = <RNG R, RS e5) + 5 (RTP (R, e)RE o) + 0(12]%),
(ei ), =0ij+ = <RTB(Rl e )RY e )+ O(1Z).

(]

Note that det(éij + (Lij) =1+ Zz Qi + Zi<j (a“‘ajj — aijaji) + ---. From (525),
(5.38) and (5.39), we get

(5.40)
det g;;(Z) = 1 — 2(Aqgy(ed)e] , RT) + Ko(R) + O(|Z),
K3 (tZ) = (det gij) /4 (t2)

3t2

=1 5 (Al RY) - (Z (A(eD)ed, RY) )2 + ng(R) +O(t),

KTE(tZ) =1+ % (A(ed)e], RT) + %(Z (A(ed)ed, RT) )2 - %KQ(R) +O(t%).

Moreover, as a 2(n — ng) X 2(n — ng)-matrix, we have
(5.41) (6 = 2 (Auy (eD)e] Rﬂ)) = (81 + 2 (Auy (D)%, RTY)
+ 4 (Au (D)RE, Ay (R ) + 0(1ZP%),

Note that from (3.9), (5.23),

(542) [<A( 61 ’ RJ_> XQ =2 <A( 67 ) €k > v0 e
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Thus from (5.25), (5.28), (5. 35) (5.38)-(5.40), the coefficients of ¢, t? in the expansion
of g (A Z)LS;(tZ) Ve, = tg" (tZ)V,, (VTBe)(12) ATe

(5.43) <A(e?)e?,e,ﬁ>vo7ek¢;
2<A(€?)€?,RL>VA(6?)62 + <F“‘('R),€j> Vo}ej <RTB(RL, ZL) e; ,e >V0 e;
1 1
- [5 (Al RY)  Vagsre | + gkaLB)mZk(R, A(eD)el).

By (5.22), (5.28) and (5.38)-(5.43), the coefficient of ¢ in the expansion of .Z% is
O} in (5.27).

We denote by [A, Bl = AB + BA.

By (5.22), (5.28), (5.35) and (5.38)-(5.41), the coefficient of ¢? in the expansion of
g?f - (gijtrfj)(tz)vt,ek is

(5.44) Ir —2(A(e])ed, R*) { Vo,00 (06 R"P)ay (R, €7) Z
+ %(akRLB)mO (R, €7)ZkVo,e0 — %[(A(e?k?ﬁl) Vo Vo
FI o [S (A RY) [ (OB )1y (R 21, o s
+ EKQ(m = S(XI: (A(e])e], RY) )2,-%?]

[<A(€?)6?, RL> ’320] <A(eg)eg, Rl> - REOB (R’ ei)V07ei

| =

©|’—‘

2
~ i L | @R)a (R Z,] - RE,, hio(vefvefh‘VA(e?)e?h)mo-
i j

Here I is from the coefficient of ¢? in the expansion of ¢, the second term is the
product of the coefficients of ¢* in the expansion of ¢" and Vi, Vi ; I1 is from the
coefficient of ¢2 in the expansion of R¥2, the fourth term is from the product of the
coefficients of ¢ in k'/2 k712 and in k= V/2V, ., Vi, kY2 (cf. (5.28)), the fifth and
sixth terms are from the coefficients of ¢2 in the expansions of k'/2,k~/2 and the
product of the coefficients of t! in the expansions of /2 and x~1/2; the seventh term
is from RF2, and the eighth term is from the product of the coefficients of ¢! in the
expansion of RVB.

Certainly,

[ <A(6?)6?, ,R’L> ) [(akRLB)Io (Rv ei)Zk’ VO;e'i]+:|

=2

(5.45) X
B ——(3kRLB)xo (R, A(e])e]) Zi.

By (5.42)-(5.45) and by the fact that A(ef)e} is symmetric on i, j, we see that the
coefficient of #2 in the expansion of £} is O} in (5.27). O
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To simplify the notation, we will often denote by e; the lift e of e;.

Lemma 5.5. — The following identities hold,
(5.46a) (;R"?),y(R,e1)Z; = —3V/—1m (JT(R,e;) — JT(R", PTX¢¢;), RY),
V-1 1

)
(546b) ~—B(Z,€]) = < (R0 (R*, JRORY, ef) — £ (JRE, VR (T(ei, e)) Zi)
1
(2VEX (A(eD)e)) 2 + RTP(RE, e )RE + RTE (R RO)ef, JR")

VRS (A())e}) 202 + 2RTP (R RORE, Jef)

2
1
2
1
2
1 1

+5 <JRL,T(R0 - 7R e?)> (IR, T(Y, Jep))
1 1
g T(RO,RL),T(Q?, JR0)> + g <T(Roa JRO)vT(Rlv 6?)>
1
8
1
8

(
(T(RT,JR"), T(R,e)) + % (T(R,JR*),T(R,€)))
(JT (e}, JRO), e5 ) (JRE, T(R*,e7)) .

Proof. — By (1.6), (1.14), (1.18) and (2.16),

(5.47) ERLB(ek,el) = (Jei! ef") + u(©)(ex, &1)

21
= <JekH,ef{> +{n, T(ex,er)) -

Thus by (3.33), (5.5a), (5.6a) and J = .J, we get at o the following formulas which
will be used in (5.62),

(543 Fioy =0, (VB ey = —JRE, (VYT ) = T(RY, JRY).
By (3.36) and = 0 on P, we have at xo,
(549) (Ve (B Tlew )y = (VI B Teroen)) + (B VEY (Tex,e0)))
= (JT (e, e1), €i) -
By (3.40), (5.6a) and (5.32), we have

(5:50) (Ve (Jefl el Yy = (TVIX el efT) o+ (Tl VIXelT)

1 1
= _5 <JT(€77 ek); el> - 5 <J€k, T(€i7 €l)>
+ (JA(PTXC ¢;)PNoey 4 JA(PTXG e PG e;, PTXG )
+ (JPTXC e, A(PTXC ;) PNOey + A(PTXCe) PNe;)
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By (5.5a), (5.47), (5.49) and (5.50), for U € T, B,

-1
\/27T_(aURLB)IO(U7 el) = g <JT(U, el), U> -9 <A(PTXGU)PNGU, JPTXGel>
(5.51) + <JPTXGU,A(PTXGU)PNG€Z 4 A(PTXcel)PNGU>
3

=3 (JT(U,e)) — JT(PTXoU, PT¥%¢)),U).
Note that (JTY)s = Ng on X¢, by (5.51), we get (5.46a).
By (5.24) and (5.47), one gets at xo,

(5.52) QB(Z, e)) = % (VV (Jek,er) + VV (i, T(ex, er)) ) (R.R)Zk.

From (5.6a) we have

(653 (VYT ell)) 2= TR (Ve )

s

+ (J(VIVTX e rry, el Zi + 2(IVE el , Vi el!) Zy..
From (1.2), (5.32), one finds at zp that
JRY €TY, JR°eTXq,
(5.54) VEB) = A(e)R, VEPeit = A(R)ei,
(veTJH Yei'\Z:2; = (ViPe)" 2:2; = 2A(R°)RT + A(RO)R".
Now by (3.40),
(5.55)
(VIR el oy = VI XV X eff — (el VI Xeff) = ST (el of).
By (5.34), we get
(5.56) (VTPVTPer)(r,r)Zk = VRo (A(e))e) Z) Z) + BA(RY)A(R)R*
+ 3V (AR Z) + 2RTB (R, R°)R* + RTB (R, R%)R".
From (5.34), (5.54), (5.55), (5.56), the anti-symmetric property of the torsion tensor
T and the fact that A exchanges T Xg and Ng, we get

(5.57)
(JR, (VIXVTX M) o =) = <%RTXG (R, e))R® + VL5 (A(eD)e) 27, JR0>
<2vTXG (A(eD)e;)Z; + RTP (R, e))RT + RTP (R, RO)e}, JR0>
— - <JRL,T(R,A(6?)R)> — % (IR, VX (T(ei,e0)Zi)
(J (VTXVTX H)(R R),eO’H>Zk _ <2JRTB(RL,RO)RL + JRTB(RL,RO)RO,6?>
+ <JVR0 (A(e9)e9) 2020 + 3JVEXe (A(eg)e;)zgzj,e?)
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Note that from (1.8), (5.3), (5.5a), (5.54) and A exchanges T X and Ng,

(5.58) (IR, VRS (T(es, €))) Zs)

(IR, VR (T(es, €))) Zs)
+ % (T(R,JR"), T(R,€})),
(IVES(A(eD)eN 2020, e)) = — (A(R")A(R®)RO, JeP')
= —% (T(R°,JR®), T(R°, €})),
(VEE(A(D)ef), JR) = — (A(e9)el, A(R®)JR") = 0.

By (3.40), (5.6a), (5.13), (5.54) and the fact that A exchanges T X¢ and Ng, at
o,

(5:59)  (IVE el ,\VEX M) 21 = (IVRP e, Alel)R ~ %T(R, ) 2
- <JA(R0)R0, —%T(R, e?)> + 2 (JARORE, A(ed)R*)

(T(R°,JR"), (R,e?)>+%<JRL,T(R0,e§)><JRL,T(6?,Je§?)>.

NH

By (5.53), (5.57)-(5.59), at o,
1

H 0H _ 1 TXe 50 _0\p0 0
(5.60) (vv <Jek e >)(R7R)Zk = 3 (BT (R, f)R", JR")
+ (2VEXC(A(d)e) 2 + RTP(R*, e )RE + RTP(R*, RO)ef, TR
<2RTB(RL RORE + RTB(R ROYRO + 3VEXS (A(e A)ejl)Z?Zjl,Je?>

1

(JRET(R, A(e])R) + V&' (T(eir e])) Zi) + 7 (T(R®, JR), T(R*, €))

- i (T(R*,JR), T(R,e})) + (JRT, T (R’ €))) (JR,T(ef, JeY)) .

N)Ir—\

Observe that A(e?)R? € Ng, A(ed)Rt € TXg. By (5.5a), (5.5b), (5.5d) and
(5.13),

(5.61) <JRL T(R, A(e})R)) = (JRT, T(R, A(e))R?)) + (JRT, T(R, A(e])R™))
~3 S (JT(, TR, ef) (TRM T(R, ) + (JRE T(R, A(ef)R))
= —% (T(e},JR®), T(R, R*)) + % (JT (e}, JR®),e5) (JRT, T(R*, ;)

1
+ 5 (JRET(R,€)) (TR, T(ef, Jef))
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From (5.48), at xo,
(5.62) (VV <,L~L, T(ek, el)>)(R,R)
= ((VI"VI 0 (rr) Ter, ) + 2 (VR 1, VR (T (ex, 1))
= (T(R*,JR), T(ex,e1)) — 2({VR (T (ex, 1)), JR).

Finally, by (5.4), (5.52), (5.60), (5.61) and (5.62), we get (5.46D). O

We now examine the coefficients in the expansion of terms involving the moment
map fi.

Set

1 1
(5:63) OF = == (VI3 )y IR JRT) + (VRN (T(ej, Juye?), JRY) 2,2

1
+3 <v;§g (A(e2)e9) 2920 + RTB(R*, RO)RY, RL>

- izz (R, er), JRE) i(JRL,T(Ri,e?» (JRT,T(R",€)))
l

+ E|T(Rl, JRY? + % (T(R°, JR*),T(R*, JR)).
Lemma 5.6. — For |t| < 1, we have
(5.64) |¥ﬁ|§Ty(tZ) =|Z? —t(T(R*+,JRY), JRY) + 205 + O(),
(1 B7) oy (82) = =t (JRE 1L,
(5 (TR TR, — (JRE VR D), ) + o).

Proof. — By (3.36), (3.38), (3.39), (5.6a), (5.54), J = J and g = 0 on P, we get, at

Zo,
1
(5.65) (vfg VI VI ), PTYJVTXVTX " _ 3 T(ef! ,PTHXJVTX )
1 H _
- §VZ§(T(6§’, PT X Jelh)) - (V%TJ)(VZ@)

1 TY (VTY VTY ~)

L oy .1y TY ~
- §(V6£3 gef{ )(Ve]g ) — ) e

From (3.40), (5.48), (5.54), (5.55), (5.56) and (5.65), we have
(5.66) (VIYVIYVTYE) rroR) = (veTg vfg VT,.}“ ENAYAYS
= —JVRS (A(eD)e) 20 Z) — BTA(R®)A(RY) R — 2PTY JRTP(RH, RO)R*
— PTY JRTB(RY ROR® — T(R, JA(R®)R:)

1 o .
— VR (T(ef, PT X Jef)) 22, + (VI ™) (rr) IR —

. 9% (T(RY, JRY)).
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Now by (3.50), (5.48), and 1z = 0 on P, we have

(667 |5l (12) Z L (v (12) )i 2 + 08
_ e 2 H VYV ) ), VRV T,
t2 ~
+ 3 (ST ) s VRV R, + 61V VY D)) 2, ) + O ().
By (5.5¢),
1
(5.68) T(R®,JR*) = 5T(Ri, JRY).

From (1.6), (5.13), (5.48), (5.66), (5.67) and (5.68), we get the coefficients of 7, ¢!
in the expansion of |%ﬁ|§ﬂ, (tZ) in (5.64), and the coefficient of t2 is

(5.69) % <JV%’§’ (A(e9)ed) 2920 + BTA(RY)A(R®) R + JRTB (R, RO)R, JRL>
+ % (2JRTB(RE, ROR* + T(R, JAROR), JR)
- % (VY g7 ) mmy IR, JRE) + é <v£Y(T(e§f, PTX jel Yy 7, 7, JRL>
+ % (T(R, JRY), T(RY, JRL)) + ﬂT(Rl, JRL)}2
- _% (VTY 7)oy JRE, JRE) + é (VR (T(ef!, P Jel)) 2,2, JR*)
! <VN§ (A(Ne)) 292 + R™P(R+,R°)RY, Rl>

- = Z o), JRMY + é (T(R,€9), JRT)Y (T (R, €9), JR*)

2
+ 1—72‘T(Rl, JRL)‘ n % (T(R°, JRY), T(RY, JRL)) .

To get (5.64) from (5.69), we need to compute VTY( (eff , P X Jelly).
For W a section of TX, U a section of T'B, we have by (1 7,

(5.70) <v§§’XPTHXW, UH> = el (WUt - <PTHXW, veTgUH>
= (PTXVIXW,UT) 4 (PTYW VI U,
k k
From (1.7), (5.70), we get at xo,
1 VTHXPTHXW_PTHXVTXW_ l PTY
(5.71) eH = eH 2< (ex'vel),s >

Remark that Je; ™ € TY, JeY € TH X only hold on P.
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From (3.40), (5.5b), (5.6a), (5.13), (5.32) and (5.71),
(5.72)
1

1
(VZ:;XPTHX']%L?H)HCO = JA(PTXGek)ej_ B §JT(ek,ef') - 5

1 1
= —§JT(ek,ef‘) ~3 <T(ek,el) - T(PTXGek,PTXGel), Jej‘> er,

(T (ex,er), Jef‘> e

(VI X PTI X Jel),, = PTIX VTN e = JA(ed) PNoey, - %JT(ek, ¢?)
= —%JT(ek,e?) + % (JPNGey T(e),e)))ep,
(VI Jre€))wy = A(Jzed)er = —%JT(PTXGek, ed) + % (JPNGey, T (e}, el))ef.
From (5.72), we get at o that
(5.73) <VTY(T(eH,PTHXJeH))ZZi,JRL> — (VR (T(e}, Juye?)) Z; 20, JRE)
- < (e, VL X pT"X joH _ GTX (j pTXco)\Hyz 7. JRL>

1
— <T (R —§JT(R, RY) — 3 (T(R,e;) — T(R°, PTX¢¢;), JRT) el> ,JRL>

1
- <T (ej,—EJT(ek, e+ = JT(PTXGek, J) VAYAV A JRL>

<T (R.{T(R,e)) — T(R°, PTX¢¢;), JR ) &) , JRT)

l\JI»—A

S Z (R, er), JRE) + % (T(R,e)), JRY) (T(RY, D), JR').

From (5.69) and (5.73), O is the coefficient of 2 in the expansion of |%ﬁ|§ﬂ, (tZ).
By (5.48), we get also the second equation of (5.64).
The proof of Lemma 5.6 is complete. O

The following is the main result of this Section.
Theorem 5.7. — The following identities hold,
O =2mv/=1(JT(R*,€?),R") Vo 0 + 27V =1 (JT(R, €} ), R") Vg .«
+7V=1(JT(R® e7),ei) — (JT(ef, J€]), R™) Vo 0 Vg e
(5.74) + 47 (JT(R*, JRY),RY) + 4nv/ =1 (JR*, il ),
0y =0} + 4720} 47r\/_( (T(R*, JRY), L) — (JRE, VR iP) )
— (finy i) o
Proof. — By (5.5e), at xg
(5.75) (JT(R,€;),e;) = (JT(R",ei"), e; ).
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By (5.46a), (5.51) and (5.75),

2
- g(anRLB)wo (R,ei)Vo.e

(5.76) - 2m/—1(<JT(Rl, &), RY) Vo oo + (JT(R, e} ), R*) Vo,eﬁ),
— %(@RLB)%(R, ei) =mV/—1(JT(R" ej),ei).

From (5.5a), (5.23), (5.27), (5.64) and (5.76), we get (5.74). O

5.3. Computation of the coefficient ¢,

Recall that the operator .2 is defined in (5.23), Py is the orthogonal projection
from L2(R™) onto Ker.#+ and Pg is the orthogonal projection from L2?(R2?"~2m0)
onto Ker.Z as in (3.19).

For Z+ € R™, set

U124 = ((£9) 7 PV 0u () PV 0PN ((0,24),(0,21)),

U1(Z4) = = (L)' PV 0uPY) ((0,25),0,24))

w1a(24) = ((£) 7 PV 0PN 0L () PN ) ((0,24),(0,21)),
(5.77) Wa(2h) = (PYOUL) 2PN 01PN ) ((0,24).(0,24)

U1(74) = (&) PV Por0n(#9) PV 0PY ) ((0.24),(0,24),

U1a(24) = = ((Z8) 7 PV Pyi0:PY) ((0.24),(0,2Y),

<I>1,7;:/ Uy (Z )dong (Z1), for i=1,2,3,4.
R7l0
Proposition 5.8. — The following two identities hold for i =1,2,
(5.78) / Uy (2 done (Z1) = @4 4.
R™0

Proof. — In fact, in our case, by (3.21), PY = Py @ Py ® Idg.
By (3.18) and (3.19),

(5.79) ((320)*1PNL02PN) (Z,(0,2'%))

- ((fg)_lel(')sz('vo)Gl) (2)GH(2').
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From Theorem 3.1 and (5.79),

(5.80) By = <(—($20)*1PNL(’)2P3(',0)GL) (0, zl),GL(ZL>>L2(RW)

- <(_($§)*1PNLP.$L02P$(-,O)Gl) ©, Zl)’GL(ZL)>L2(]R"0)

- / Uy o(Z25 ) dow, (Z271).
R™0

In the same way, we get (5.78) for i = 1. O

Note that the restriction of || - ||, in (2.114) on €*°(R*"~", E¢ ,,) does not de-
pend on t and we denote it by || - [|o.

Since Z§ in (5.23) is a self-adjoint elliptic operator with respect to ||-||o as we
conjugated the operator with x'/2, £9 and O, are also formally self-adjoint with
respect to || - |Jo. Thus in the right hand side of (3.62), the third and fourth terms are
the adjoints of the first two terms.

From (3.62), (5.1) and (5.77), we get

(5.81) Q=011+ P12+ (P11 +Pi2)" + P13 — P

From (5.77), (5.78), (5.81), we learn that in order to compute ®;, we only need to

3

evaluate {Iv/171, \1’172, (1)173 and @174.
Lemma 5.9. — The following identity holds,

~ 1 2
(5.82) Uy (245 = —g‘T(a—gg,eé‘)’ Py (2, ZY).

J

Proof. — Recall that the operators b;, b}, bjL and bj‘Jr have been defined in (3.8). In

particular, by (5.15), one has for f € T Xg,

AnZi =by +0;7, Ve =55 =501~ by),
F(€)Vo.e0 = = F(520)bi + [ (52 )b

By (3.8), (3.9) and (5.83), set

(5.83)

By, = (4m)*Z;Zpr = by bt 4 biby T + bbb by o+ dmde,

Bijp, = bbby + 3bby byt 43005 b+ b b Tt

(5.84)

If a;j1 is symmetric on ¢, j, k, then by (3.8), (3.9), (5.83) and (5.84), one verifies

(5.85) aii(Am)* Z 23 ZiF = aije B + 12mag; (b + b ).
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By (3.9), (5.5¢), (5.14), (5.83), (5.84) and the fact that T'(, ) is anti-symmetric, we
get

1 ~
(5.86) 27 (JT(R*,e;),R") Vy 1 = KzikBﬁ(bf+ —b)
1
= Tor —— T [(bF 0 + bbbt — (b0 + b + bbb ]
1 ~
- _gzjk(bjbﬁ + bbb

By Theorem 5.1, Remark 5.2, (3.9), (3.12), (5.14), (5.74), (5.84)-(5.86), we can
reformulate O; as follows by using the creation and annihilation operators introduced
n (3.8),

v
(5.87T) O1=—¥— <JT(ai eb),e > Lot 4, Y= <JT kl>Bj,€
V=1 \/
+ (JT(R®,e;), e; ) (b by — biby) — Tw,ﬂ(blbL+ + b b )bt

— = (TG 5 e ) (b + b)(2bybF + 4mdy) + V=T (Jef i) (b + b))

1
+ 16 (JT(ef", Jey), ex ) [Bisy + 1276 (b + + b))

s
V=1 V-1 V-1
= —5 Tin(52)B; b++872k< o)biBii + ~ =T (R0 b5 ™ = biby)
+ V=L (Jef if,) (b +bF) = S <JT( i) e ) (b + bE)(2b;b7 + 4mdiy)
vV=1z
S T (b0 + b )b+ + ij[BUk + 1278 (b7 + by )]

From Theorem 3.1, (3.54), (5.84), (5.87) and a; = a; = 2, we get

b b
(5:88) (L)' OPN)(2,2') = V=T{g=Tin(Gy) + (Jet fif,) 2
bbbt
(Gl ek o - e+
V= bk bk bi-
— Tklm{ ok + 36k 0| } PN (2, 7))
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By Theorem 3.1, (3.55), (5.84) and (5.87),

(5.89) PN P, 0 = PNLPgL{—

+ (Jek, FE Vit - <JT( , 520) e%>b+,+(2bjbj+47r5ij)

J e/ g Am

1 b:r b;
+ 1 (T (R = Ty ()5 + Ty () = oo™

V-1 Lty il
= Ty b b+ 12m6,000 )

In the following equation, by (3.9), (3.54), (3.55), we only need to pair the terms
in (5.88) and (5 89) which have the same length on bj‘Jr and bj-, and the total degree
on b;, b, 2, 2% should not be zero. Thus by (3.9), (3.54), (5.88) and (5.89),

(5.90)

(P Por0f( )7 0PN ) (2,0, 7)) = § PN [ - 16% (> o (6%)))2

1 0 bi 2] 1471+ gLzl 0 N /L
3= (T (RY) + 5550 () )by 03 b T ()| PN} (2,0, 24).

From (3.9), (3.54), (5.5d), (5.14), (5.90) and a; = a; = 27, one gets
(5.91)

(P¥ PO/ ) 0PY) (2,0,249) = § PV [ = s (0T ()

1
+ 3 <27TJT(R0,ef‘) + 0T (3, ei), JT (2, )>]PN} (Z,(0,2"1)).
Set Pj?? = IdL2(R2n—2n0) — Pf/

Let h;(Z°) (vesp. F(Z°)) be polynomials in Z° with degree 1 (resp. 2) and a;; € C.
By Theorem 3.1, (3.9) and (3.54),

(5.92) (F(Z2°)Pg)(Z°,0)
(1 0*F 0,0 O*F oﬁ 1 0*F bb;
2 920920 2 “ 020079 s 282’083' a;a;

)Pg(ZO,O).
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By Theorem 3.1, (3.8), (3.9), (3.19), (3.54), (5.92) and a; = 27, we have
1 0*F
T 0290z)

(£~ 'Pgaijbib;Py) (0,0) = (£ 'P4hiPy) (0,0) = 0,

(PgFPy)(0,0) = —

. - 1 Oh;
(92” 1P§hibipfi) (070) = (92” 1P§bihipfi) (0,0) = _%3—29’
1 0?F
L Py FPy)(0,0) = ——5 w5725
(5.9 ( 'z FPy) (0,0) 4m? 92907
1 03F

—1plg. . Pe = — -1 f— -0 19 = -
(L7 PEEYPe) (0.0) = = (£ Pty FP2) 0.0) = ~5 o5,

3 0°F
21 02002’

(g_lpé(Zbihi)QPff) (0,0) = —%(%g—gg) o (Z g—Z))?)

L7 PLFbib; Py) (0,0) =
J

Finally by (5.78), (5.91), (5.93) and .y = .Z + £+ , we get (5.82). O
Lemma 5.10. — The following identity holds,
(5.94) Q13 =Py 4.

Proof. — Let Fa € T,y X with values in real polynomials on Z + with even degree,
F1 € N§ o © End(EG ), F3(Z*) a polynomial on Z+ with odd degree, be defined
by

_ 3
Filer) = V=1 (Jer, GE) — V=1 <JT(637?, 6%,),@@ + T

(5.95) Fal, 29PN (2,2) = (T, ()MPN)(Z 7
. 2% 3 - kl 397 ) )
1 bbbt
1 N AN mYl Yk N /
Fo(2H)PY(2,2) = 7 (Tun 22 PV ) (2,2).

Then from (3.54), (5.88) and (5.95),

T(Z° —7°) —V-1FR(° +7°, 24

(5.96) ((£2)'OPY)(2,2") = ( ) ;1
+ (7 + ) (29) PV (2, 7).
Observe that F;(Z1)* = F;(Z+) for i = 1,3, thus from (5.96),

(5.97)  (PNOWZ) ) (2, 2) = (£)'0:PN) (2,2)))

= ( - \/fm(zo — )+ VIREN 2020 + (}'1 + f3) (Zi))PN(Z', 7).
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, by Theorem 3.1, (3.9) and (3.54)

2%), ha(2") two linear functions on 29, z°
- oy Oha b; 10h 8h2
0 0 _
(5:98)  (Pzhi(z")ha(2*)P)(0,0) = (Peha (2" 550 25 =P )(0,0) = = PR
From (3.19), (5.77) and (5.96)-(5.98)
0 TR TRy
)+ Fao, 24| |6H (24,

ZTkk (520

w1o(74) = [((F+ F)(2) +
By Theorem 3.1, (3.18), (5.95), F;G* (j = 1,3), Fa(3 7, )G+ are eigenfunctions

of £+ with eigenvalues 475, 87, thus they are orthogonal to each other

From (5.77), (5.96)-(5.98), we have
(5.100) Wia(Z4) = GH(Z4)? / A(mehizh) + (FmehEh)
GLIQ(Z'L) + % ]fz(a?o,-)aif (Z”‘)}vaG(Z'L).

L
167 k
From (3.18), (5.77), (5.99), (5.100) and the above discussion, we get (5.94)

O

Now we need to compute the contribution from —(£2)~1 PN T 0,PN
) the C-bilinear form on T'B ®g C induced by g

Recall that we denote by (
Lemma 5.11. — The following identity holds
1

- < RTXa (0, =

8)>+_

o 1y
(5.101) Wy 5(Z )—{m
2 -1
V-1 <T(eﬁ, Jekl)aT(az? 192w

Proof. — By (3.9), (3.12), (3.54), (5.24

(5.102)
1

LPYN = {5@43(2, 50x) + b B(Z, 5

By (3.55) and (5.102)
) - o (B2 ) P

(5:103) Py LiPY = Py {0,B(7, 52) + 2% (B2,
By (5.46b), and observe that from Theorem 3.1, only the monomials which have

even degree on Z+ and V_., and which have also strictly positive degree on Z° and

J
Vo.c0, have contributions in PN~ Py, I} PV
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By Remark 5.2, (3.55) and (5.46b),

(5.104) PN' Py (8%(3(2,%)) 2 (B(Z, a%)))PN:—m/—_lPNLPgL

J

1
6{% <RTXG(RO,JRO)RO, agf?> 8z <RTXG(R0 JRO) >}PN
s € — z
—§PN <2RTXG(ZO,ZO)8LZ;) +RTXG(aZOaRO)Z +RTXG( O)R()’ 82 >PN

By (5.23), (5.93) and (5.104),

(5.105)
— ()P Py (5 (B2, 55) — 3 (B(2. 3
_|_

1

:—6_71' <RTXG(82£)’629)6LZ.? RTXG(aiZg)v ) 2076—0>P$L(Zl Zl)
Observe that if ) is an odd degree monomial on by, bJ , J, (J), then
(5.106) (QP™) ((0,2%),(0,2"*)) =o0.

By using this observation, (5.4) and (5.46b), we get
(5.107) = (L)~ PN b B(Z )PV ) ((0,24).(0,2))
S {( 0)=1pN*y j[ <RTXG(R0 JRO)R, aé>

5
-3 <v£¥<T<eé, a%g))zkl + VRL(T (R, 520) 24, JRL}

1
8

8<JT 52 JR), e > (JRY T(RE, L)>}PN}((o,Zi),(o,Z’l)).

From (3.6), (3.54), (5.5b) and (5.84), we have

(5.1084) (T(52. ), T (el 3%)) =

Sk
. L 1 = — €.
(5.108b) Py Z- 7Py ng
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By (3.54), (5.5¢), (5.93), (5.107), (5.108a) and (5.108b),

(5.109) - ((fg)_leLPbejB( ) 52 0) )((0 Z14).,(0,24))
— {(320)71]31\@% {g <RTXG(ZO,§O)RO,1>
5{6_ (VX (T(et 20) + VT (T(&D, 220, T

+3 < (VIIRTB (e JRO)ef — 2R (e} ROt o )

s

= (TR D), el ) — Yo (T(ed, JRO). T(eit, 52)

+—< (e Jei), (RO,%)HPN}((O,Zl)a(QZL))

5?\)/2?<VT%Y 8%)) + VI (T( %)) Jeit)
%<RTB ekvao ekl,a‘z >+32i7TT(£?’6%9)2
- |tk )| - Y (et g TR ) Y P (2, 2

For G1(Z) (resp. G2(Z)) polynomials on Z with degree 1 (resp. 2) and F' €
Ty Xag®Ty Xg, by Theorem 3.1, (3.9), (3.12), (3.19), (3.54) and (3.55), for any &, 1,
kU,

Voo PV = =212} P",
PN Py (GL(Z)bE + Go(Z)bib + Zikby ) PN =0,
1
(5110) g <RTB(RL, ef)RL €L> VO eLVO eJ_PN
TB 1 L 1 L N
= 3 T (RTB(RY, eF)R*,ek) P,
F(el, ) Vo0 Vo, PV = [y, 2 )bibs — 4nF (2, 50)] P.
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By (5.24) and (5.110), we get
(5.111)
1
(e

(
- 3(AGER" A<%)RL> (& VEX(AGZIRY)) )b

)RO + RTP(R, 2 o= IR + VIS (A

i Zg

1
—an(RTY6 (R, 2)R” + RTB (R, 52)R* VTXG(A(%RH,&}

w

2
120 (G R (2, ViK© (A(E)RY) )= (RTP (R e )R ef ) PV,

~0
97} 3

Observe that as A(e?)e? € Ng, we have at zo,

(5.112) (VR (Ale 0)60),6?> (A(R%)Ale )e?,e%
Thus by (3.12), (3.54), (3.55), (5.25), (5.108b), (5.110)-(5.112), a; = a+ = 2, and

the arguments above (5.104),

?

(5.113a) PN Py (Tii(R), 1) Voo PV = —%PN‘ <RTXG (R?, e0)e? i_> b PN,

(5.113b) PN Py, PN :PNL{(<%RTXG(RO 0 RO 4>

? 979 ’8z?
1 3
(R ek et o) — o= (Al e, Al)et ) )by

AT aTXG (00 0 \pO 0 N
3 <R G(R’W?)R’G_E?HP '
By (3.6), (5.4), (5.93), (5.113a), (5.113b) and the fact that RTX¢ () is a (1,1)-

form, we get

G114) (L) PN Py (I + (Ta(R), e1) Voo )PV ) (0,24, (0, 24))

:i{3<RTXG(i%)%+RTXG(@7a)a %>

67 020 9zY 82? 020/ 0207 9z
2<RTXG(3207 )6 +RTXG(aZQa%)aiQa% }P.,‘KL(ZJ_;ZL)
37 0277 027/ 02]0 027 | © 4
Now by (5.25), (5.46a), (5.84), (5.108b) and (5.110),
_ PNLngl Z [Z(a'RLB)x (R ei)Z}QPN _ EPNL T('R,O el)‘ pN
9 - - J 0 ’ J 4 , €5 ,

(5.115) i(gé))flPNLPjL[KQ(R) gO]PN = iPNLPD(iJ_KQ(R)PN

= EPNL (RTX& (R, 2R, e0) PV
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By (5.13), (5.47), (5.49) and (5.50), as T'(-,-) € TY, we get

(5.116) %(a;’RLB)wO(R,e?) <J72L T(e},e?)) + (JA())R", ef) = 0.

Thus by (3.9), (5.27), (5.46a), (5.115) and (5.116), we get

(5117) = PN PpiOyPY = PN Pyu{ — I = (I + (Ta(R), 1) Vo,e,)

1 T 2
— K2 (R), Z5] = B2 (R, 20, — T |T(RC,e)| | PV

Note that RTXc(.,.) is a (1,1)-form, by (3.54), (5.4), (5.93), (5.103), (5.105),
(5.109), (5.114) and (5.117),

(5.118) — ((XO)APNLPgLO' PN) ((0,24), (0, Z4))
=~ ()7 P Py (I + I + (Ta(R), 1) Voo )PV ) (0,24, (0,24))

1 2
+_{RE3(%7%)+_<RTXG(aiZ?ae?)e?73? > 4‘T 8z0’ l)’ }Pgi(zlazl)

2T 9 3
1 3
= {5 (B (. i) %0 ) + 1o (R75 (e, s2)eits 520 )
3 e e 2 V_l 1 1 o 0 7 1 9 2
+32—7TT(5Z973—39) _16—71_<T(ek7']€k)aT(a_Z?76_3?)>+M—W’T(ekaa_gg)
5v—1
S @k g + V.t
827 J g J J

1
+ 5 R (G, 8—;)}1{%(2% Z4).

J J
By (3.54), (5.63), (5.84), (5.108b), (5.110) and the arguments above (5.104),

1
(5.119) 47PN P, 0PN = 42PN Pfﬂ{ - <(V.TY9.TY)(R0,R0)JRL, JRL)

+6<V£X(T( Jaoo€)) 220 + VR (T(€Y, JooeN)) 29 20, JRY)
1 TB/pL 50\p0 oL _i 0 1 N

+ 3 (RTP (R RORYRY) 12El:<T(7z,el),J7z ) }p

™

1
= PV S (VRY (T(e, Juge)) 20 + VI (T, Joyel)) 2920, Tei)
— (VT 4T ) o oy Jeit, Jei ) + (RTB (e, RORO, e ) — Z|T(RO, e} PY.

Let {f1} be an orthonormal frame of TY on X.
As VTY preserves the metric g7, by (1.4), (1.24),

(5:120)  ((VEGR) i fi) = Veo (05 fi i) = AV Vp loghh
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Now {Jej;} is an orthonormal basis of TY along the fiber Y;, and {e;} = {e?} U
{ex }-
By (3.54), (5.93), (5.108a), (5.119) and (5.120),

(5.121) — 4n? ((.,2”20)*1PNL Py ogpN) ((0,24),(0,24))

1 —1
L <—ng (Tt 220) + V7Y (Tt £20) — 297 (T, ). Jei>

4 6 550 ﬁ €k
o 2] 2 1 1 9 2
——V 8 V 6 10gh——’T 877’8_76) —EIT(ek,aﬁEj)
Z Z K3 J J
2

= (R™B(et, et o) J P (24,20,

By (5.74), (5.77), (5.118) and (5.121), we get (5.101). The proof of Lemma 5.11 is
complete. O

w

5.4. Final computations: the proof of Theorem 0.6

By (3.40), (5.3), (5.5a), (5.6a) and (5.32), as Je{ € TY on P, we get at zo,
Vi Jep = PTYVIN Jei = PTY IVt ej =0,

(5.122)
TB 1,0 _ vTXc 7,0 0y 7,0 TB
Ve Je; —Ve? “Jej + Ale;)Je; = ——JT(e”ej) Vo (Jmoej)
By (1.6), (1.24), (5.5¢) and (5.122), as in (5.120), at zo,
(5123) (VI (T(ef,e0), Jet) = —2(VE (T(Je), Jei)), Jei )

_ <(VT0Yg§eY )Jet, Je¢> = —AV,Y,, o logh.
By (1.21) and (5.123), we get
\/—1<VT§ (T(eﬁ,%)),J@ﬁ> =4V 5 V 5 logh=Ax, logh,

z

920 J 029 929
(5.124) ’ Y
\/—1<VTLY (T(er, 20)), Jek> = Ay, logh.
az) I
Note that T'(e;,e;) = —[eff,el’], as [es,e;] = 0. By (1.4) and (1.6) and the Jacobi
identity,

J 3 7 »©j

’ 1 )) +T(ek 7T(e?’Hae(}H))

(5125) VIXu(T(e" e} ) = ~[e", [eQ’H,eQ’Hl] (e T D)
k

= Lo (T(ei", e}) = Lo (T(e3"

(
1,H 0H 1,H o0, 0,H 1,H 0H
= VZ?YH( (Cra ) —VZé,YH(T(ek L)) = T(ed ™ T (e el ™))

K3 ’ ]

0,H L.H 0.H 1,H 0,H 0,H
+T(e; " Tey " e, 7)) +T(ey ", T(e; " e)).
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Thus by Theorem 5.1, (5.124) and (5.125),

(5.126) V=1(VIY (T(Zr, 520)). Jet )

= V=I{2(VTY (e, 52, Tet ) = (T(Er, Jeb), T(el, 52) )
82]0 J j
+ (T Jeb). Tiek ) + (Tlet. Jei). T(ay ) }

E
By T(ei,ej) = —[e, ell], (3.40), (5.6a) and (5.55), we have

z’g

(5.127) BT (efl el )ell = VIFVIXell - VIFVIX el - VI

Jj /e el Vel el lef ! H1€;
= R"B(ey, ej)ei — %T(ek,vszei) + %T(ej,VEkBei)
- —vj,if(T(ej, ei)) + %vfjg(:r(ek, €)) + Viger emei
<RTX(ekL’H ’ )(JTOej) .]ToekL H> = <RTX(ekL’H,eg’H)e?’H,ei’H>.

By (5.5a), (5.6a), (5.13), (5.32), (5.122) and T'(ej,€?) € TY, at zq, (Jye)" = Jel!
on P, we get

1
2 <T(6?7 6?)) J€é> e?v

<V§A(X;L e?)(Jxoeg) 7J$06k> <VT(6L 0)60H eé>

We apply now the first equation of (5.127) into the second equation of (5.127), by
using (1.8) and (5.128) and T'(, ) is a (1, 1)-form, we get at xo,

VTB(J e =0, VTB(J e¥) =

woj woj

(5.128)

1 1 1
(5:120) TP + (~5VE (S Jh) + 5V (T(ek Tnoe). e )

= (RTP (e, el o) + 5 (VEX (T(et, ), e

= (RTP (et el b ) — SIT (et D)
Finally, from (3.6), (5.124), (5.126) and (5.129) and T'(, ) is a (1, 1)-form, we get
(5.130) 4<RTB(e§, 52) 3 > —92y/"1 <VTY( (327 520): Jek>

— /(YT (T(et, 50)), Jei ) + T (eh, ) + 2| T (. 520)
6_2:? J J K J

2

2

= 20 logh+3|T(et, 321 +2{T (2. 5)

+2V=T(T(ef Jed). T (. 5)) -
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From (5.124)-(5.130),

(5.131)
v—1
VY (Tler, 5%) +4V"Y (Tler, 52) + TV (T3, 5%)), Jei
9671' 62 7 82 J k J J
1 v—1
+ 48—7'(' <RTB(eIJ<,_a aizg))eé_v aig?> - ].6—7'(' <T(€i:_a JelJc_)aT(aizgv aig?)>
— Ax.logh + —— 11 ’T(el‘ 0 )2—i (2 6)2
= 2an X0 BN T Qo |1 R0 5| T g6 | V0T 2]
By (3.19), (5.77), (5.82), (5.101) and (5.131),
1
(5.132) (131’1 + (1)1’2 = 27‘( <RTXG(88 82?)82? ) aig?>
3
o b £ )
1 1
= Tom XG + —AXG log h + —Rff(w?,@?).

From Lemma 5.10, (5.81) and (5.132), we get (0.25).

Recall that we compute everything on °(X, LP ® E).

From (5.18), (5.19), (5.22), (5.23), comparing to (2.109), we know that in (0.20),
®,.(x9) € End(Eg)z,, and the term 7%, R4t will not appear here, and 7 = 27n, thus
we get the remainder part of Theorem 0.6 from Corollary 0.4.

The proof of Theorem 0.6 is complete.

5.5. Coefficient ®;: general case

We use the general assumption at the beginning of this Chapter, but we do not
suppose that J = J in (0.2).
=LPQE,x .. ~LPQE
be the formal adjoint of the Dolbeault operator 9 on the Dol-
beault complex Q2%*(X, LP ® E) with the scalar product ( ) induced by g7X, hX, hF
as in Section 2.2. Set

(5.133) Dp _ \/5 <5LP®E +5Lp®E7*)
Then
(5134) Dg -9 (5LP@E5LP®E,* n 5Lp®E7*5LP®E)

preserves the Z-grading of Q¥*(X, L ® E).
For p large enough,

(5.135) Ker D, = Ker D2 = H*(X, L ® E).

Here D, need not be a spin® Dirac operator on Q%*(X, LP ® E).
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Let PY(x,2') (z,2' € X) be the smooth kernel of the orthogonal projection P
from (¢>(X,LP ® E),( )) onto (Ker D2) with respect to the Riemannian volume
form dvx («') for p large enough.

We explain now how to reduce the study of the asymptotic expansion of PpG (x,2")
to the J = J case.

Let g% (-,-) := w(-,J-) be the metric on TX induced by w,J. We will use a
subscript w to indicate the objects corresponding to gZX, especially 7X is the scalar
curvature of (T'X,gZX), and Ax, . is the Bochner-Laplace operator on X¢ as in
(1.21) associated to gl Xe¢.

Let detc denote the determinant function on the complex bundle 719 X, and
3] = (~32)-12,

Let hE := (detc|J|) A define a metric on E. Let RE be the curvature associated
to the holomorphic Hermitian connection on (E,hE).

Let ( ), be the Hermitian product on (X, L? ® E) induced by g2, hl, hE as
in (1.19), then

(5.136) (¢=(X,LP @ E),( ),) = (XX, L@ E),{ )), dvox. = (detc|J])dvx.

Observe that H°(X, L? ® E) does not depend on g7 h¥ hE.

Let PS (z,2") (#,2’ € X) be the smooth kernel of the orthogonal projection PS5,
from (¢>(X,LP ® E),( ),) onto H*(X,LP ® E) with respect to dvx,.(z).

By (5.136),
(5.137) PS(z,2') = (detc|I|) (") PS (2, 2').

We will use the trivialization in Introduction corresponding to gZX.

Since gZX(-,+) = w(-,J-) is a Kihler metric on TX, D,,, is a Dirac operator (cf.
Def. 2.1). Thus Theorems 0.1, 0.2 hold for Pf’:p(x,x’).

Let dvg be the volume form on B induced by ¢g7¥ as in Introduction.
Asin (0.11), let K € (T B|x.,R) be defined by for Z € T, B, x¢ € Xg,

(5.138) dvp (w0, Z) = K(w0, Z)dvx g w(To)dvNng ,, ., -
As in (0.17), we introduce #,(zo) a section of End(E¢g) on X,
(5.139)

Syfao) = [ B (w0, 2)PE 0 Wo((w0, Z), (30, 2))F(w0, Z)dvn.. .,
ZENG’M7|Z‘<EO
Then the analogue of (0.18) is

dim(Ker D,,)G = /X Tr[.7, (z0)]dvxg. (o) + O(p~ ).

Summarizes, we have the following result,

Theorem 5.12. — The smooth kernel Pf(x,x’) has a full off-diagonal asymptotic
expansion analogous to (0.14) with Qo = (detc |J|)Idg, as p — oo. There exist
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®,.(x9) € End(Eg)z, polynomials in A,, RIB, REz P RE (resp. h,, REE; resp.
1) and their derivatives at xo to order 2r — 1 (resp. 2r, resp. 2r+1), and ®¢ = Idg,
such that (0.25) holds for .%,. Moreover

(5.140)
1
@1(z0) = o= [rX® + 686,108 (hulxo) = 28, ( log(dete|T) ) +4R7 (wl ;.7 ).
Here {w, ;} is an orthogonal basis of (T X¢, g7 X¢).
Proof. — By (5.136), detc |J| h2dvp = dvp ,h2. Thus by (5.136)-(5.139),
(5.141)
Syfan) = [ (20, 2)PS, 0 W (w0, 2), (50, 2) (0, Z) i ()
ZENG,W?‘Z|<EO

From the above discussion, only (5.140) reminds to be proved. But

(5.142) REe = RFe — 9dlog(detc|T|),
Thus
(5.143) 2RES (wy, ;, w0, ;) = 2RP9 (wg, ;, WY, ;) — Ax w log(dete|J]),

and (5.140) is from (0.7) and (5.141). O



CHAPTER 6

THE COEFFICIENT P?(0,0)

The main purpose in this Chapter is to compute P(?)(0,0) in (0.16). The formula
for P(?) (0,0) in Theorem 0.7 is quite complicate, it involves h, the volume function
of the orbit and the curvature for the principal bundle P — X¢.

This Chapter is organized as follows. In Section 6.1, we compute the contribution
of Wy 1,¥; 3, ¥y 4in (5.77) for P(Q)(O, 0). In Section 6.2, we compute the contribution
of ¥y 5 in (5.77) for P)(0,0). In Section 6.3, we prove Theorem 0.7.

In this Chapter, we use the same notations and assumption as in Sections 5.1 and
5.2.

6.1. The terms ¥y 1,V 3,V 4
As in (5.81), we have

(6.1) P®(0,0) = (T11 + U1 2)(0) + (U171 + T12)"(0) + (T 3 — Uy 4)(0).
For k € N, let Hy(x) be the Hermite polynomial,

Lk/2] jk‘! (Qx)k—Qj
(62) file) = 2, (V=g

Here |k/2] is the integer part of k/2.
By [42, §8.6] (cf. [31, Append. E]), (3.8) and a;j- = 2, we have

(6.3) (b )ke ™21 = (2m)F2 Hy (Var Zi)e 4
Especially, for [ fixed, i € N,
((b)2 e 20 ) 0) = 0,
(6.4) ((b)2e ™20 ) (0) = —am,  ((b7) e ™4 ) (0) = 3+ (4m)?,
((b)0e™ ™) (0) = 15 - (—4nm)®.
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Recall that when we meet the operation | |2, we will first do this operation, then
take the sum of the indices. Thus |7;;x|*> means Zijk |T:|%, ete

By (3.22), (5.95) and (6.4),

1
(6.5) Fa(0) = =2 Thu; PN(0,0) = 270/,
By (5.99), (6.4) and (6.5), we know
2770/2 2 277,0/2
. 7 } 0| = [ T
(66) Wi : (0] = g | STy

From (3.17), (3.18), (3.54), (5.100) and ai- = 2,

1 6 - (4m)3
(67) W1400) = GHOP{ 3= SR + s T
k
1 2 2. ( )2 2
1o T ?0 %
+167r’zk: w5z + s ’ () }
2n0/2 o 2 1 PENE
S st S )
Lemma 6.1. — The following identity holds,
19 I S 1
(6.8) W1,1(0)= { - mmj’(a_—?” ~ 57 g am ﬁﬂkm%lm
) 1
~ =T () T (2 ——Zﬂ et)? = o= Fi(ed) T PV (0,0).

Proof. — Recall that 71 € N& , ® End(Eg z,) was defined in (5.95). Set

(6.9)

1

Lyl oyl V=l P
—V=1( T3 ( b b + 4m350) + 1 Tig ()] bj,) — b Ti(3y)

Bl 1 —v=1
T =+~ (Tﬂ,(%) U ST () b = bhbh) ) =T ()b bt

Z 87 4 27
vV—1= 11 bit biLbi-b;
To— — , + iyl L-i—( T m)
3= —gr Ly (07" 07y (Faer) g+ Tuam =g
Observe that by (5.93), when we evaluate Uy q in (5.77), in each monomial, if the
total degree of b;, Z° is not as same as the total degree of bl+, 29, then the contribution

of this term is 0. Thus by (3.9), (3.54), (5.77), (5.84), (5.87), (5.88), (5.95) and (6.9),

(6.10) Wy (24 = {(520)—119“ [1'1 N

B, bt bi-bitbk
Ly(pl+ o pd - ijj 1\ % kY91 Om N Logly
+<f1(eﬂ)(bﬂ +b7) + T 167r)(f1(6’f)4w+7’”m 19272 )}P }(Z 27)
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By (3.8), (3.19) and (6.4),
(6.11) (b;29PN)(0,0) = —26;;PN(0,0), (bbb 22PN)(0,0) = 8760, PN (0,0).

From Theorem 3.1, (3.9), (3.54), (6.4), (6.9) and (6.11),

(6.12) ()~ PN 1,PN)(0,0)
1 _ I
= 337 L2 PV Tan() (4T3 (G20 b 4+ b0 T (%)) P 0,0)
_— 9 (0 biby  biby by .0\ pN
_M—W%k(a_z?){(%’(azo) 5 T g Lir (2 ))P }(0,0)

l

By (3.9), (3.54), (5.5d), (5.14), (5.84) and (6.9),

1
(6.13) (PN TPN)(2,(0,24) = 555 { P T (520)

(b T = b T ()bt PN} (2,(0,24)

[bJM(zO)BL

33’

1 n
— 55 Tir G PV BT (0) (265 b + 20705+ 4 dmd )

+ 2T (52 (b bkt —bjbj%)}bﬁbfPN}(Z, 0, 2'))

0
0z}

= =5 Ty (52 { b1 (6472 T, (=) + 167Toy0 (2O)0 b + 48 Tua ()b b )

— 2T b b P H(Z, (0, 20).

0
0z

If ajjr, B € Clor j,5', k,1 € {1,--- ,no} and [y is symmetric on k, I, then by (3.22)
and (6.4),
(6.14) (ajj/ﬁklbj‘bj?bé‘bf‘PN)(O,O)
= { {Z <2akzﬂkl + akkﬁll)(b,i‘)z(bll)Q + o Bu (bj-)* PN} (0,0)
i

= (4m)? ( Z(Qaklﬁkl + agefu) + 30&11511)PN(0, 0)
Py

= (47)2 (2031 811 + arrBu) PN (0,0).
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Thus by Theorem 3.1, (3.8), (6.4), (6.11), (6.13) and (6.14), we get

1

(6.15) ((£3)7 PV 12PN)(0,0) = 55T (52

)[(16@7 (%)

afg)bjbfbﬁbf)PN] (0.0)

4 1
+gbz‘7kj’(zo)bjlbﬁ + g%’bﬁkl(zo)b?bf - ngz(

|7}j’ (320

1 647
- 2872 3
2 (2T (5P + T (32
1
© 28 3m
By (3.9), (3.54) and (6.9), we get

VoI~
(6.16) TP = —*—T,; [blb%”’-'l( L) + Tombi b

[—76|73-jf<850

bibk
167

1
+ 5Ty b b | P,
By (5.5¢), (5.14), (6.4), (6.14) and (6.16), we get

=

(6.17) ((92”20)‘1PNL13PN) (0,0) = LTy Ty PN (0,0) = 0,

as ’]szj/ is anti-symmetric on %, j and 7;;; is symmetric on i, j.
By Theorem 3.1, (3.9), (3.54) and (6.4),

bL
6.18) ((Z9) PV File) ) + bR (ed) 2= PY) (0,0)
1 1 2 N
= 53 (Fi(efr2@h2PY) 0, :——Z]-'l )2PN (0,0).
Recall that 7y, is symmetric on k, [, m.
By Theorem 3.1, (3.9), (3.54), (5.84) and (6.4),
(6.19)
~ by bi-b- Bisy
{2 PY (R + ) T 25 + Ty 2 i (e )b ) PY (0,0)
bbbt bibl
_ 1pN*+ 1L k 070\ N
= {( @) PV R (0 Tam 252 + T 22 ) PV 1(0,0)

1 bbbt
= 392 {}H( )(E@lm% + @lmbfb}n)PN}(o, 0)
)2(bih)? (b+)4
- 32772{ (ZTN s T i +Tju(bf)2)PN}(o,0)

I#j

- _F}'l( ) TuPY(0,0).
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As Tk, is symmetric on k, [, m, we know that

k<l<m k#m
kAlEmAk k£m

From (6.4) and (6.20), we get

(6.21) (ia-mlmb%bjbﬁbibfb:PN)(0,0):{ (36 3" Ta. 00200205
k<l<m

+9 Z EkmElM(bkl)Q(blL)Q(b#m)Q +6 Z Ekammm(bkl)Q(brln)4
k£l£m+Ak k#£m

9" Tt Tt (02 (05 + T2, (05)° ) PV £ (0,0)
k#m

= (~4m)*(36 Y Thu 9 D TaemTim
k<l<m kAlAmAk

k#m

= (—4m)® - 3(27,3;m + 37;kmfllm)PN(o, 0).
By (3.9), (3.54) and (5.84), we have also

1jg’ R

(6.22) PN Ti0 B, Tumbibibk PN = (ij/%lmb*b*b»,bébllbfn

+ 367 Ty Thtmbi- b bik b + 367 - swzlmmmbﬂﬁ) PN,
Thus from Theorem 3.1, (6.14), (6.21) and (6.22),

bbbl
19272

_ 1
(6.23) {((9%20) 1PN m—ﬂﬂjj’Bi#j’ﬂlm

)PN}(O,O)

- ! T it Trim bbb bbbt 97. Thim b bbbt

= 510 3,8 | \9ay “ids" Lrim D 05 03003 0 m+11jm kimb; 05 by b
+367 Tt Tuamb 01 ) PV} (0,0)

1
= 5103, {=8(2T,3 + 3Tikem Tuim) + 36(2T3, + Tiotorn Tuim) — 1447,3,,, 1 PN (0,0)

1
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From (6.10), (6.12), (6.15), (6.17), (6.18), (6.19) and (6.23), we get

(6.24)
1
011(0) = {575 [_mmj,( 2)7 + 2%(40)%( 2r) = 2275, + 3Tk Tim |
1
- 51T (%) T Zﬂ 2 s (e Tu PN (0,0),
From (6.24) we get (6.8). O

6.2. The term ¥, >
Recall that B(Z,e;j") was defined in (5.24).

Lemma 6.2. — The following identity holds,

(6.25) EB(Z, ef) =

™

(RTB(R+,R%)ef, JR)

l\JI»—A

- —<V%Y< (ex.€")), JRY) Zy,

l\JI»—A

< SRTP(RE, e )RY + Vo © (Ale)er ) 2, JR0>
1

+3 (T(RO,€9), Je;") (T(R- — RO, Jel), JRT)

+ i (T(R*,€9), Jei) (T(RO, Je), JR™)

(T(R°, JR®), T(R*,e")) — é (T(R,€i"), T(R*, JR"))
1

1
+3 (T(R*,JT(R°,JR")), Jei" ) + 5 (T(R,JRY),T(R,ei")).

Proof. — By (5.34), (5.55) and A(R°)A(R®)ei* € Ng, as A exchanges T X and Ng,
we get

1
8

(6.26)
1
IR (VIXVTE e M) r ) = =5 (JRT(R, VRPel) + VEX (T(ef! e) Zi)

+ <JR0 SRTP(RE, e )RE + RTP(RE,R)ep + Vo @ (A(e g)ef)z,3>.
y (1.8), (5.13), (5.54), we have at xo,

(6.27) - % (JRT,T(R,VEPei)) = i (Jei", T(R®,€})) (JRH, T (R, Jef)),
- % <JR0,v£X(T( 0 LHy) 7, > - —i( (R, ef), T(R, JRO)).
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By (5.5a), (5.5d), (5.13), (5.54), (5.55) and VEX(T(eX,ell))Z; Z), = 0, we have

1 €

<J(VTXVTX H)(R R)s €] >Zk S <T(R, V%Bek), JelL> Zk

N | =

== (T(R,2AR°)R*+ + A

—~

RORY), Jei-)
(6.28)

N =N =

(T(R,€)), Je;) (T(R°, JeY), JR*)
— —(T(R% ), T(R°, JR")) + % (T(R*,JT(R®,JR")), Jei") .

From (3.40), (5.5a), (5.13), (5.54) and the fact that A exchanges T X¢ and Ng, we
get

1
(6.29) <Jv£Xegf, v%Xeva> 7y = <Jv£Bek, A(R®)ejr — 5T(R, ell)> Z,
1
— <JA(R0)R07 —5T(R, ef)> +2(JARORY, AR%)ei),

(T(R°, JR), (R7ef)>—%<JehT(R 7)) (JRTT(RY, Jej)).

’ J

u>|~

From (5.52), (5.53), (5.62), (6.26)-(6.29), we get

V-1

(6.30) TB(Z,ef)zé(Jef,T(R 9) (JRE,T(R, Je))

’ J

LR VR (Ten e )2) — H(T(R.cf), TR, IRY)

%< RTB (R, e )R + RTP(RY, R%)ei + Vi ¢ (Ale g)ef)z,2>
i( (R,€9), Jei") (T(R®, Jel), JR') — é (T(R°,ei), T(R®, JR"))

1 1
+ 5 (TR JT(RY, JR), Jei') + 1 (T(RY, JRY), T(R, ei"))

_1<Jef,T(R 7)) (JRE,T(R, Jef))

’ J

(TR, JR),T(R.ei")) = (VR (T(ex €), JR™) Zi

[\J|H

From (6.30) we get (6.25). O

Now we need to compute the contribution from —(£3)~1 PN “O,PN. Recall that
I was defined in (5.24).
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Lemma 6.3. — We have the following identity,

I 1
030 = () PN RPY) 0.0) = {5 (RO )y )

7 5v—-1
== (e Vol (T(g%, 520)) + V1§ (Tler, 520))
6 2°m k J J 920 J
3 TB(,L 0\, L @ 3 o 9 \2
+E<R (eka@)ekaaﬁgﬂ?>+%|T(@aaﬁgﬂ?)|
1 L o oy2 V-1 Lol o o N
_E|T(ek73_§?_)| ~ Tow <T(ek’Jek)aT(3_z?va7?_)> P™(0,0).
Proof. — From Theorem 3.1, (5.15), (5.84) and (6.4),
(6.32) ((30)*1PNLZLZLPN) (0,0) = (bﬁblL PN)(O 0) = —2K_pN (g o)
. 2 k “l ) 277'('3 ) 3972 s V)

Set

=

633 Ti=—{(Z) PV (3% (B2 52) - 3% (B2 52)) ) PN} (0.0

<.

At first, if Q is a monomial on b;, b, b+, b1 ", Z; and the total degree of b;, b;’, Z9 or

i Y50 %
bjL, bj‘*, Zjl is odd, then by Theorem 3.1,
(6.34) ((zg)—le‘QPN) (0,0) = 0.

By (6.34), only the monomials of B(Z, e?) with odd degree on Z° have contributions
for Zy.

If we denote by Ez(e?) the odd degree component on Z° of the difference of
B(Z,€?) and of the sum of the first two and the last terms of B(Z,¢€)) in (5.46b),
then by (5.46b) we know that Ez(e?) is a linear function on Z° and 8%? (Ez(a%?))
and _8%2 (Ez(aiz?)) are equal.

Moreover, by T(%,J%) = T(%,J%) (or by (5.5e), (6.32)), we know the
contribution of the laéic terrri of B(Z, e?j) in (5.46b) is zero in Zy.
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Thus by Remark 5.2, (5.4), (5.46b) and (6.33),

1
(6.35) Tp=mv/~ {($°>—1PN‘ [ga%g@TXG(RO,JROmO,%}
1 1ol TX 0 0 0 _o
- (e )
5
— (IR VR (G ) + V7Y (T(ei, )2 = V7Y (T(et s )21 )
J J 8_257 J @}T J
3v-1
+3VTT(RTE(RE, 2 )RY, oy ) = 2= (JRE, Ty, e)) (TR T, 520))

L g 1 )+ (10 TG )] P 00

By (5.93), (5.108a), (6.32) and (6.35), comparing with (5.104) and (5.105), we get

62? 63_? d
+i<RTB(eJ_ o) )ej_ i>+i|T( 9 i)|2
327 ROk 05 [T Gan ! V0= 07
1 V1
g T(eb ) = S (Tt Jeb) Ty ) | P 0.0

By (3.9), (3.54) and (5.84),

- 1
(20z2)PN)(2,0) = (z?zb—;PN)(Z, 0) = %((bjzg +26:;)PN)(Z,0),
1
(6.37) i o (bt bt + 4mdry) PN,



136 CHAPTER 6. THE COEFFICIENT P® (0,0)

From Theorem 3.1, (3.9), (3.54), (5.93), (6.4), (6.11) and (6.37),

(PY* 22 PY)(0,0) = 25 (b PY)(0,0) =~ SLPY(0,0),

16 2
(6.38) ((ff)_lPNLb»zQZ,ﬁZl PV} (0,0)

1 {( bbbz + Opab; z) }(0,0): o 25”5klp (0,0),

~ 1672
_ 1 b;
()" 1bl 22 5P) 0.0) = oo {002 (g + 205) P} 0.0)
= 24 257J5klp (0)0)7
() PV 2 22020PY ) (0,0)
1

=1 {(.;2”20)‘1PNL (b Zi; +5kl)Z?Z }(O 0) = 5o 35”5klp (0,0).

By (5.5¢), (5.107), (5.108a), (6.38) and comparing with (5.109), we get

(6.39) — ((30) 1PN B(Z, BEQ)PN) (0,0)

1
_J _ TXg( 0 0y 9 TXg( 0 0y 0 _9_
= { on <R (70 550) 30 + B 79 (5500 50 v azg>

\/__
o

+

3

1

L et e
967r’ (e5 727)

From (6.25) and (6.34),

(6.40)  ((-22) "0 B(Z,€e;)PY) (0,0) = —nv/=1{(£) b
[% (RTB(R*+,R%)ef, JR") — 2 <VT{( (ex,ef), JRY) Zit

= (TR, ), TRY) 20— £ (T(RY, ), T ) (T(RY, Je), TRY)
+ é (T(R°,JR®), T(R*,¢ef")) — é (T(R°,ef), T(R*, JR))
§< (R, JT(R®,JR)), Jer") §< (R, JRY), (R%eﬁﬂPN}(oyo).
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As T is anti-symmetric, from (3.9), (3.54), we get

b (VR (T(ei e)), JRE) 23PN
= (2= (VR (T(et ). IR ) ) 2P,
bl (T(R*, JRY), T(RY, i) PV
= —(T(R*, Jef") + T(ef, JRY), T(R*,ef)) PV.

(6.41)

From (5.5e), (5.124), (6.32), (6.38), (6.40), (6.41) and the anti-symmetric property
of T', we get

(642) — 3 ()0 BZe)P) (0,0)
= VL (VT (et et ) Tt ) + (VT (e et ). Tt ))
+ oV (Tt ) + VI (T Glp et ). Jet)
+2—16 (T(ei, Jeit) + T(ef, Je,i),T(eﬁ,ezL»} PN(0,0) =0.

By (5.102), (5.124), (6.33), (6.36), (6.39), (6.42) and since RTX¢(-,-) is a (1,1)-
form, comparing with (5.105) and (5.109), we get (6.31). O

We compute U1 2(0) now.

Lemma 6.4. — The following identity holds,

1 1
(6.43) \11172(0) = {—ﬂ_T‘fOG + —REG(BLZ?, aiz?) + _ﬂ_AXG logh

1 ~ ~ =~ 7
+ g Tign(Tegi + Tigi) + o5 (2Tfkm + TjjmTkkm)

1
S <(V.TY9'.TY)(E#’€7+)J@,§ + 2(V_TYg'.TY)(e]+’ekL)Jej, Je,i>

267
—1 _ N
o ({1t 9610 2161 V113) ) P00



138 CHAPTER 6. THE COEFFICIENT P® (0,0)

Proof. — Recall that from (3.6), (5.5a), (5.5b) and (5.13),

AD)er * = 4| A(gZ)ei [P = |T (5, JEI® = 2T (. 2017,
2
(6.44) <A(e?)eg’A(6§?)e§>:4‘ZT(£?’£§) ’

1
|A(ed)ef|* = JIT(ed, JERI* = T (55, Tej)I* = 2T (5%, 7)1

From (5.93), (5.111), (6.32), (6.44) and since RTX¢ (-, ) is a (1, 1)-form (comparing
with (5.113b), (5.114)), (note that in each monomial, if the total degree of b;, Z° is

not as same as the total degree of ler, 29, then the contribution of this term is 0 at
(0,0)), we get

_ L 4
049) (20 PN 1PY) 0.0) = {2 (R ey o)
1 1
~ g7 (R e iy = g7 (R i )

By (3.6), (3.54), (5.25), (5.83), (5.93), (5.112), (6.32), (6.44) and since RTXc (-, ")
is a (1,1)-form (comparing with (5.113a)), we get

(6.46) — ((£) PV (Ta(R),e) Vo, PV) (0,0)
. 2
= {7 P (5 (R0 (R, e)el, 32 ) by
+= (RTB(R, e0)el + Ale )A(e?)Rl,ekﬂbkl)PN}(o,O)
1 TXg(_0 0,0 _9 1 TB(,L 0\ 0 L 1 0y, L2 N
= = (BT (G, el 2 ) = 1o (R7P (e el)el e ) + s |A(eD)et [ ¢ PV (0,0)

2
(- 2Rl )y + R ek ety )+ Ty ) | PY 0.0

X
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By Z)PN =0, (5.25), (5.93), (6.38), (6.44) and since RTX¢ (-,-) is a (1, 1)-form

(comparing with (5.115)), we get

(6.47) — {(zg)*lpw EKQ(R) -

% (Z (A(e0)e?, RL) )2, .,2@0} PN}(O, 0)

!
= (P [jem) - (3 (At =) ) TP 0.0)
l

1
= i {PNL K%RTXG (R, Q)R + RTB(Ri,e?)RL,e9>
1 1 2
+ 5 (RTP(RE R ) +5 (D (A, RY) ) = AR PN}(O,O)
1 TX, o 0y .0 9 1 TB
:(6_7T< G(a_z.?a z)ezva > ].6 <R eka eka >
1 1
e (BT (et et o) — | S AEDE] + Ak ) PY 0,0,
1 1
- (e ) T%mzaea@
1 9 9 1 2] 2] 2 1 TB,L 1\, L1 _L N
_S_W‘Xi:T(az?’ﬁz?) +8_|T(8z?’8_5?)| —487T< (€k7€ )€k7€j>)P (070)
(3.12), (3.54), (5.83), (5.93), (6.32) and (6.44),
(6.48)
?a RL> vA(e?)e?

_{(520)—1PN¢(_%<A(6?)6?,R )V ageyen + 2 (A(e?)
<RTB(RL, el)et ej>v0,ej)PN}(o,o)
; (—%@A@ﬂez! UMD + 2 (R} eb et ef) )PV (0,0)

T 167

= (5|
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For Fj;.;; € C, from Theorem 3.1, (5.15), (6.4), (6.37) and comparing with (6.14), we
get

(6.49) {(L) PN Pz 23 2 2PV} (0,0)

= {(-5/”20)_1PNL [Z(Fjj;kk + Fijskg + Frjigi) (22 (Zi0)? + Fkk;kk(Z,i)“} PN}(O, 0)

ik
1 n (b7 )2(bi)* 1 182
= 3 {PN [#kajj;kk P + Fraign) (g2 + 5 (01 + (6)%)
(bé)4 1\2 N
+Flok:kk (16—7r + 3(by) )}P (0,0)
-3
= 553 (Ejgib & Flejikj + Fijoj6) PN (0,0).
By (5.46a),
1 2 2

(6.50) 5> [(ORRE")0y (Roen)] = =723 (JT(RE, ), RY)

~ 1Y (JT(R,e}), RY)”.
J
By (3.6), (5.14), (6.49) and Tx;(e?) is symmetric on k, [, we get

(651) —72Y () PV (JT(RE,e)), RH)* PY) (0,0)

= =2 (L) PN Ty (D) Tu(e) 2 23 22 PY ) (0,0)
3
= 5= (2T () + Ty (D) Tua (D)) PV (0.0)
3

= - (217t )P + [ 3 T ()

J

2)PN(O,O).

In the same way, by (5.5¢), (5.14), (6.49), we get
(652) —7*>" ((320)—113“ (JT(R*, et), REY? PN) 0,0)
J

3 o~ - ~
= o5, Zign(Tije + Trji) P (0,0).
By (5.14) and (6.38),

(6.53) —n°>" ((.,2”20)*1PNL <JT(R0,ej),Ri>2PN) (0,0)

7 7
48—7T|73'k(5%9)|2PN(0,0) = 48—7r|T(€$’ %)|2PN(070)-
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By (5.46a) and (5.116), the total degree of Z°, Vieo in the fourth term of
Of in (5.27) is 1, thus the contribution of the fourth term of O} in (5.27) for
—((L9)=1PN" 0, PN)(0,0) is zero. By (5.27), (6.31), (6.45)-(6.48) and (6.50)-(6.53),
comparing with (5.118), we get

050 (2P 0,PY) 0.0) = {5 (R )y )

5v/—1
i (set VI 9 k) )

LT
6

3 TB/,L 0O 1L 9 3 9 0 _\|2
+ 1o (B2 (e, et o) + 55— 1T(% . 52|

3.7
+(

7 ((£9) ' PY Oy PV ) (0,0) = —4r { (£) 7 PN
1 . .
3 <(V.TY9.TY)(RO7R0)J'RJ' + (VTYQTY)(RL7RL)JRL, J'RJ‘>

(VRN (T(et, June?)) 24 20 + VR (T (), Ty 2020, JRE)

1 1 2
+ 5 (RTP(RY,ROR,RY) — El: (T(R e;), JR*)

1

— 5 2 (TR @), JR)’ +£|T<Rl, JRL)P}PN} (0,0).
l

Now {er} = (e} U {ef}.
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By Theorem 5.1, (5.108a), (5.120), (5.124), (6.38), (6.49), (6.51), (6.52), (6.55) and
comparing with (5.121),

-3 T
1 . .
T o6 <(VTYQTY)(63LeJL)Jekl + 2(v-TYg~TY)(ejL,ekL)J€jLa JekL>

261
2

+ Tijk('z‘jk + 7~7cji)

7
e (27}im + Tjjmmm) } PN(0,0).

By (5.74), (5.77), (6.32), (6.54) and (6.56), comparing with (5.101), we have

(6.57) Wy4(0) = — ((.ZS)*PNL (O + 4772(’)’2’)PN) (0,0)

167 K
- {%< X6 oy )y o) + 5r R (o o)
+ 1 [ v tosh + g (R (e e ) + g |1 o
- % <T(eé, JekL),T(a%?, %)> + 1;% (T %) i
7&{; <vziy (T(eks 325)) + Vel (T30, 5%)), J6$>]
+ g Tlet )P = 5= (Rt et oy ) + 1= T (ol )P
| ST (0| + 5= T Tk + Ta) + 5= (2T + Tigm Toen
J
— % <(v.TYg'.TY><e;,e;)Jei + 2(VTY9'TY)(6;,¢)J€;'L, J€ﬁ>

T R

V1 ( (T(et, Jel), iF) — 2 <Jejl, szj’ﬁE> ) } PN(0,0).

By (5.124), (5.131), the term Z[-- -] in (6.57) is (%AXC logh + &[T (et 8_gg)|2).
J

By (5.130) and (6.57), we get (6.43).
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The proof of Lemma 6.4 is complete. o

Lemma 6.5. — The following identity holds,

<(VTY ) Jet, Je; > =4V,. V. logh,

(6.58) <(VTY ) Jet ,Jek> =4V, V. logh + 2’ S Tl
l

1 ~ ~ ~
= 2T (i, 520)1° = 5 (Twi + Tije) Tije-

Proof. — By using the same argument as in (5.120), we get the first equation of
(6.58).

Recall that PTHX, PTY are the projections from TX = TH X ®TY onto THX TY.
By (1.3), (1.7), (3.1), (3.40) and (3.41) (cf. also (5.32)),

(6.59a) (PT"XJe )10y =0, (Je )y € TY,
6500) (Ve ) = 5T e,
(VI e M)y = (A ) = ST ),
(6.59c¢) (VT Lo € = % (T (e, ej), Jef> ejH + (T (ex, Jei), Jej) JejL.

From (6.59a), we get
(6.60) VI PTIX et = =Vix L PTX gt = g,
By (3.40), (5.14), (5.72) and (6.59b), we get at zo,
(6.61) veT;?HPTHXJefH - va’?f PTX je
= —iJT(eé,eh 1<JT(eé,ej> et)e;
_5(’%@ 77€Jl)e +3 <JT(€kv g) € >€?'

y (5.6a), (6.59b), (6.60) and (6.61), at xo,
vToffHPTYJef’H = JvTOXHeIL = JA(E)e - —JT(e o)
(662) V! HPTYJ = JV e P ~ VI PTX Jeit
=3 <JT(eé‘,ej),el >ej :—%ﬁjlej‘ <JT er,e j >e
Thus by (6.62), at xo,
(6.63) v:{g}, PTY Je-t = PTYVET;?H PTY Je- " = 0.
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By (1.3), (1.6), (1.7) and (6.63), at xo,
(6.64) <(VTY DY) Jet, Jef > _ <ng PTYJef,PTYJe¢>
= 26% <VPTyJeLel ’PTYJe >
<VPTyJeLel ,Jeé>_2€é <VPTprLel ,PT XJ >
By (5.5¢), (5.14), (6.59a), (6.59¢) and (6.61), at zo, we have
(6.65) — 2ei <VPTYJ6Lel ,PT7X Jel > 2<v1€§yJ Lo, VIXPTX et >
1
= =5 (Tl e5) Jeir) (JT(ex ) i) = —Tl( D Twr(€])-
Now by (5.6a),
(666) €L <VPTYJeLel 7J€k> <VPTYJ6LJ61 ,ek>
= —eit (VES o PTVJel + VY s P X Jeit e ).
Observe that for any Y € €°(X,TY), [ei"H, Y] € TY. Thus
(6.67) lex™, PTY Je" " e TY.
From (6.59a) and (6.67), at o,

(6.68) ViXs prv gt H]PTHXJelL -

And by (5.5d), (6.59a)-(6.59¢), (6.60) and (6.61), as ﬁlj, Tkl(e?) are constant func-
tions along the fiber Gz, at zq,

(6.69) — 2er <VPTYJ6LPT X Je; ,ek>
<(VPTYJ6 V +VTLHPTYJLH]>PT XJ@LH é>
= —<T(— E(ﬁlj ﬂjl)e + = <JT(ek, J) ef‘>e ) Jej >

1
— 2T, ).

—5(%1@‘ — Tej) Tm 5| ;

Finally, by (1.4), (1.7), (1.24) and (6.63), as in (5.120),
(6.70) — 2e} <VPTYJ L PTY Jeit, et > = 2ei (T(eit, PTY Jeit), PTY Jet)

= (VI 1Y )Jet Jef ) =4V, V1 logh.
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Thus by (6.64)-(6.70),

1
(6.71)  ((VIYGIY)Jet Jeit ) = AN,y V. logh + 5 Tu(€)) Ton(e5)

1 1~ o~ o~
- §|T(€kl7 e} — 5(77@‘ = Tijt) T

From (3.6), (5.14) and (6.71), we get (6.58). O

6.3. Proof of Theorem 0.7
By (5.14), (5.95),

Zﬂ ei)? = = fiay: Fiay ) g —<~E 3\/_T(el,Jel)+2T( 64)>
3\/_<

Filep) T = —V—1 <T(€f, Jei), i + T(5%, %)> + = Tum Tk -

By (5.14), (6.6), (6.7), (6.8) and (6.72), we have

1 1
(6.73) (W11 + 0T, +P13—P14)(0) = {—— Z]—'l(eﬁf - —wfl(e,im”

2m k 8
11 9 2 13 1 2 v
48—7r‘ #(550) T 96 .3, 5o it + ﬂﬂkmﬁzm ——’;ﬂk(ﬁ) }p (0,0)
1 ~F ~F 1 ~B 7 n n 5 9
- %<M“’°’”“’0>g” +; H 7§V_1T(€l s Je )+T(a—2976—3§))
1 2 7/ —1 47
— 52| T )|+ e (Tlet o), T ) = g Tokn T
J
11 PN 13 ) 1 5 N
_48—7T‘T(€k’8_2_?) 37 Lkim —3 ’;Tkk(fﬁg) P7(0,0)
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By (6.43) and (6.58), we get

1 1 1
(6.74) Wy 5(0) + Uy 5(0)* = {gr;{f + —REG(B—%, 6%) + ;AXG log h

V-1
o (Tlet e ). T 5))

3 35 n 5
veﬁ veﬁ 1Ogh + 48—7T|T(€k 5 8_2?” +

87
2
- Y T
k

1 2] 2]
+ 57| TG o)

1 1~ ~ - - SO
5 [Tijk(ﬂji + Tiji) + 2(Tjni + ij),];jk} + o

_|_ -
207
VL ((0et Tt ). i7) 2 (et VTV EE)) } PN (0,0).

8T
Thus by (6.1), (6.73) and (6.74), as ﬁjk is anti-symmetric on i, j, we get

1 1 1 3
(6.75) P2 (0,0) = {S—er;(f + ;REG(B%?, 84) + —Axglogh— =V V., logh

1 1 2
+ 5T ek, 3202 + 5| T (G 520)

<~E ~E

5 1~ o~ .~ 1
— —Tkom Ziim + —W'Tijk(—Tka' +3T1) + o VM Hm0>gw

16m 26
+ % <ﬁE, Z\/—_lT(ef, Jel) + T(a%o, %)> +§ <Je¢,v§gﬁ’5>} PN(0,0).
By Theorem 5.1, (1.4), (1.24), (5.5¢) and (5.14), as same as in (5.120), we get for
UeTXa,

Tiim =
T(ej, Jei) = 2(V,. log h)Jei,

Tie(U) = =2(T(JU, Jey), Jex ) = — {33 Jeps, Jep ) = —4V ju log h.

- <T(e,ln, Jei), Jef> = -2V, logh,

(6.76)

By (6.5), (6.75) and (6.76), we get Theorem 0.7.



CHAPTER 7

BERGMAN KERNEL AND GEOMETRIC
QUANTIZATION

In this Chapter, we prove Theorems 0.10, 0.12.

Proof of Theorem 0.10. — We use the notations in Section 4.5.

By Lemma 4.6 and Theorem 4.8, we know that p’nTO (JPOU;)% is a Toeplitz operator

with principal symbol (273" /h(x0)) Id g, in the sense of Definition 4.3, and its kernel
has an expansion analogous to (4.79) and Qo therein is 2% /h(xo).
We claim that

ng

(7.1) T, =p % (0p00%)2h%(0, 0 07%)*

is a Toeplitz operator with principal symbol 27 Id Eg-

Indeed, when E = C, this is a consequence of [9] on the composition of the Toeplitz
operators.

To get the above claim for general E, we need just keep in mind that the kernel
Tp(zo,xp) of T), with respect dvx, (z() has the expansion analogous to (4.79) and
Qo,0 therein is 2% Idg,.

By Theorem 4.4, our claim then follows from the composition of the expansion of
the kernel ofp’nT0 (opo O';)%, as well as the Taylor expansion of h? (cf. also [31, Chap.
7).

Now we still denote by (, ) the L?-scalar product on ¢*°(X¢, LY, ® E¢) induced
by hG, hPe, gTXc asin (1.19).

Let {s}'} be an orthonormal basis of (H°(X,LP ® E)%, (, )), then

is an orthonormal basis of (H*(X¢, LY. ® Ec), (, ).
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From Definition 4.3, (0.28), (1.19) and (7.1), we get

g

_ng _ N e 1
(12) @20)"F (opst o)y = (2)7 % ((op 0 73) %l (o 0 07) B )

=27 Tyl pf) = 6 + 0 (%) :

The proof of Theorem 0.10 is complete. o

In the symplectic case, we use (4.88) to define o, : (ker D,)¢ — ker D¢, which
is an isomorphism for p large enough. Now by Theorems 4.4, 4.12, Corollary 4.13 as
the above argument, we know (2p)_"°/ 10, is an asymptotic isometry is the sense of
(0.29).

Proof of Theorem 0.12. — Set
nPe = p2pPe.
Then ]5;% is the orthogonal projection from ¢ (X¢, LY, ® E¢) onto H*(X, LL,® Eg),
associated to the Hermitian product on ¢>°(X¢, LY, ® E¢) induced by the metrics
hte, EEG, gTXc asin (1.19).
Let ]3;(5 (x0, () be the smooth kernel of ]5;(@ with respect to dvx (z(). Then

(7.3) PX6 (x0,x) = h*(x() PX6 (w0, 7).

Let VZ¢ be the Hermitian holomorphic connection on (Eg, hP¢) with curvature
REG . Then

(7.4) VPe = vPe 4 9log(h?), RPS = RFS + 200 logh.
Thus from (7.4),
(7.5) RF6 (w?,w9) = 21§EG(6%, 64) = RP¢ (w9, @?) + Ax, logh.

By (5.19), (7.3) and (7.5), Theorem 0.12 is a direct consequence of [17, Theorem
1.3] (or Theorem 0.6 with G = {1}) for P;XS (xo, x0). O
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