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GEOMETRIC HYPOELLIPTIC LAPLACIAN
AND ORBITAL INTEGRALS

[after Bismut, Lebeau and Shen]

by Xiaonan MA

INTRODUCTION

In 1956, Selberg expressed the trace of an invariant kernel acting on a locally sym-
metric space Z = Γ\G/K as a sum of certain integrals on the orbits of Γ in G, the so
called “orbital integrals,” and he gave a geometric expression for such orbital integrals
for the heat kernel when G = SL2(R), and the corresponding locally symmetric space
is a compact Riemann surface of constant negative curvature. In this case, the orbital
integrals are one to one correspondence with the closed geodesics in Z. In the general
case, Harish-Chandra worked on the evaluation of orbital integrals from the 1950s
until the 1970s. He could give an algorithm to reduce the computation of an orbital
integral to lower dimensional Lie groups by the discrete series method. Given a reduc-
tive Lie group, in a finite number of steps, there is a formula for such orbital integrals.
See Section 3.5 for a brief description of Harish-Chandra’s Plancherel theory.

It is important to understand the different properties of orbital integrals even with-
out knowing their explicit values. The orbital integrals appear naturally in Langlands
program.

About 15 years ago, Bismut gave a natural construction of a Hodge theory whose
corresponding Laplacian is a hypoelliptic operator acting on the total space of the
cotangent bundle of a Riemannian manifold. This operator interpolates formally be-
tween the classical elliptic Laplacian on the base and the generator of the geodesic
flow. We will describe recent developments in the theory of the hypoelliptic Laplacian,
and we will explain two consequences of this program, the explicit formula obtained
by Bismut for orbital integrals, and the recent solution by Shen of Fried’s conjecture
(dating back to 1986) for locally symmetric spaces. The conjecture predicts the equal-
ity of the analytic torsion and of the value at 0 of the Ruelle dynamical zeta function
associated with the geodesic flow.
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We will describe in more detail these two last results.

Let G be a connected reductive Lie group, let g be its Lie algebra, let θ ∈ Aut(G) be
the Cartan involution of G. Let K ⊂ G be the maximal compact subgroup of G given
by the fixed-points of θ, and let k be its Lie algebra. Let g = p⊕k be the corresponding
Cartan decomposition of g.

Let B be a nondegenerate bilinear symmetric form on g which is invariant under
the adjoint action of G on g and also under θ. We assume B is positive on p and
negative on k. Then 〈·, ·〉 = −B(·, θ·) is a K-invariant scalar product on g that is such
that the Cartan decomposition is an orthogonal splitting.

Let Cg ∈ U(g) be the Casimir element of G. If {ei}mi=1 is an orthonormal basis of p
and {ei}m+n

i=m+1 is an orthonormal basis of k, set

B∗(g) = −1

2

∑
1≤i,j≤m

∣∣∣[ei, ej ]∣∣∣2 − 1

6

∑
m+1≤i,j≤m+n

∣∣∣[ei, ej ]∣∣∣2, L =
1

2
Cg +

1

8
B∗(g).

(0.1)

Let E be a finite dimensional Hermitian vector space, let ρE : K → U(E) be a
unitary representation of K. Let F = G ×K E be the corresponding vector bundle
over the symmetric space X = G/K. Then L descends to a second order differential
operator LX acting on C∞(X,F ). For t > 0, let e−tL

X

(x, x′) be the smooth kernel of
the heat operator e−tL

X

.

Assume γ ∈ G is semisimple. Then up to conjugation, there exist a ∈ p, k ∈ K such
that γ = eak−1 and Ad(k)a = a. Let Tr[γ]

[
e−tL

X
]
denote the corresponding orbital

integral of e−tL
X

(cf. (3.22), (3.46)). If γ = 1, then the orbital integral associated with
1 ∈ G is given by

Tr[γ=1]
[
e−tL

X
]

= TrF
[
e−tL

X

(x, x)
]

(0.2)

which does not depend on x ∈ X.

Let Z(γ) ⊂ G be the centralizer of γ, and let z(γ) be its Lie algebra. Set
p(γ) = z(γ) ∩ p, k(γ) = z(γ) ∩ k. Then z(γ) = p(γ)⊕ k(γ).

Set z0 = Ker(ad(a)), k0 = z0 ∩ k. Let z⊥0 be the orthogonal space to z0 in g.
Let k⊥0 (γ) be the orthogonal space to k(γ) in k0, and z⊥0 (γ) be the orthogonal
space to z(γ) in z0, so that z⊥0 (γ) = p⊥0 (γ) ⊕ k⊥0 (γ). For a self-adjoint matrix Θ,
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set Â(Θ) = det1/2
[

Θ/2
sinh(Θ/2)

]
. For Y ∈ k(γ), set

(0.3) Jγ(Y ) =
∣∣∣det(1−Ad(γ))|z⊥0

∣∣∣−1/2 Â(i ad(Y )|p(γ)
)

Â(i ad(Y )|k(γ)
)

×

 1

det(1−Ad(k−1))|z⊥0 (γ)

det
(

1− e−i ad(Y ) Ad(k−1)
)
|k⊥0 (γ)

det
(

1− e−i ad(Y ) Ad(k−1)
)
|p⊥0 (γ)


1/2

.

If γ = 1, then the above equation reduces to J1(Y ) =
Â(i ad(Y )|

p
)

Â(i ad(Y )|
k
)
for Y ∈ k = k(1).

Theorem 0.1 (Bismut’s orbital integral formula [12], Theorem 6.1.1)
Assume γ ∈ G is semisimple.Then for any t > 0, we have

(0.4) Tr[γ]
[
e−tL

X
]

= (2πt)− dim p(γ)/2e−
|a|2
2t∫

k(γ)

Jγ(Y ) TrE
[
ρE(k−1)e−iρ

E(Y )
]
e−
|Y |2
2t

dY

(2πt)dim k(γ)/2
.

There are some striking similarities of Equation (0.4) with the Atiyah-Singer index
formula, where the Â-genus of the tangent bundle appears. Here the Â-function of
both p and k parts (with different roles) appear naturally in the integral (0.4).

A more refined version of Theorem 0.1 for the orbital integral associated with the
wave operator is given in [12, Theorem 6.3.2] (cf. Theorem 3.12).

Let Γ ⊂ G be a discrete cocompact torsion free subgroup. The above objets con-
structed on X descend to the locally symmetric space Z = Γ\X and π1(Z) = Γ.
We denote by LZ the corresponding differential operator on Z. Let [Γ] be the set
of conjugacy classes in Γ. The Selberg trace formula (cf. (3.28), (3.64)) for the heat
kernel of the Casimir operator on Z says that

(0.5) Tr[e−tL
Z

] =
∑

[γ]∈[Γ]

Vol
(

Γ ∩ Z(γ)\Z(γ)
)

Tr[γ][e−tL
X

].

Each term Tr[γ][·] in (0.5) is evaluated in (0.4).
Assume m = dimX is odd now. Let ρ : Γ → U(q) be a unitary representation.

Then F = X ×Γ Cq is a flat Hermitian vector bundle on Z = Γ\X. Let T (F ) be the
analytic torsion associated with F on Z (cf. Definition 5.1), which is a regularized
determinant of the Hodge Laplacian for the de Rham complex associated with F .

In 1986, Fried discovered a surprising relation of the analytic torsion to dynamical
systems. In particular, for a compact orientable hyperbolic manifold, he identified
the value at zero of the Ruelle dynamical zeta function associated with the closed
geodesics in Z and with ρ, to the corresponding analytic torsion, and he conjectured
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that a similar result should hold for general compact locally homogenous manifolds.
In 1991, Moscovici-Stanton [54] made an important progress in the proof of Fried’s
conjecture for locally symmetric spaces. The following recent result of Shen establishes
Fried’s conjecture for arbitrary locally symmetric spaces, and Theorem 0.1 is one
important ingredient in Shen’s proof.

Given [γ] ∈ [Γ]\{1}, let B[γ] be the space of closed geodesics in Z which lie in
the homotopy class [γ], and let l[γ] be the length of the geodesic associated with γ

in Z. The group S1 acts on B[γ] by rotations. This action is locally free. Denote
by χorb(S1\B[γ]) ∈ Q the orbifold Euler characteristic number for the quotient orb-
ifold S1\B[γ]. Let

n[γ] =
∣∣Ker

(
S1 → Diff(B[γ])

)∣∣(0.6)

be the generic multiplicity of B[γ].

Theorem 0.2 ([62]). — For any unitary representation ρ : Γ→ U(q),

Rρ(σ) = exp

 ∑
[γ]∈[Γ]\{1}

Tr[ρ(γ)]
χorb(S1\B[γ])

n[γ]
e−σl[γ]

(0.7)

is a well-defined meromorphic function on C. If H•(Z,F ) = 0, then Rρ(σ) is holo-
morphic at σ = 0 and

Rρ(0) = T (F )2.(0.8)

This article is organized as follows. In Section 1, we describe Bismut’s program on
the geometric hypoelliptic Laplacian in de Rham theory, and we give its applications.
In Section 2, we introduce the heat kernel on smooth manifolds and the basic ideas
in the heat equation proof of the Lefschetz fixed-point formulas, which will serve
as a model for the proof of Theorem 0.1. In Section 3, we review orbital integrals,
their relation to Selberg trace formula, and we state Theorem 0.1. In Section 4, we
give the basic ideas in how to adapt the construction of the hypoelliptic Laplacian of
Section 1 in the context of locally symmetric spaces in order to establish Theorem 0.1.
In Section 5, we concentrate on Shen’s solution of Fried’s conjecture.

Notation. — If A is a Z2-graded algebra, if a, b ∈ A, the supercommutator [a, b] is
given by

[a, b] = ab− (−1)deg a·deg bba.(0.9)

If B is another Z2-graded algebra, we denote by A“⊗B the Z2-graded tensor product,
such that the Z2-degree of a“⊗b is given by deg a + deg b, and where the product is
given by

(a“⊗b) · (c“⊗d) = (−1)deg b·deg cac“⊗ bd.(0.10)
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If E = E+ ⊕ E− is a Z2-graded vector space, and τ = ±1 on E±, for u ∈ End(E),
the supertrace Trs[u] is given by

Trs[u] = Tr[τu].(0.11)

In what follows, we will often add a superscript to indicate where the trace or
supertrace is taken.

Acknowledgments. — I thank Professor Jean-Michel Bismut very heartily for his help
and advice during the preparation of this manuscript. It is a pleasure to thank Laurent
Clozel, Bingxiao Liu, George Marinescu and Shu Shen for their help and remarks.

1. FROM HYPOELLIPTIC LAPLACIANS TO THE TRACE FORMULA

In this section, we describe some basic ideas taken from Bismut’s program on
the geometric hypoelliptic Laplacian and its applications to geometry and dynamical
systems.

A differential operator P is hypoelliptic if for every distribution u defined on an
open set U such that Pu is smooth, then u is smooth on U . Elliptic operators are
hypoelliptic, but there are hypoelliptic differential operators which are not elliptic.
Classical examples are Kolmogorov operator ∂2

∂y2 − y ∂
∂x on R2 [44] and Hörmander’s

generalization
∑k
j=1X

2
j +X0 on Euclidean spaces [42]. Along this line, see for example

Helffer-Nier’s [38] recent book and Lebeau’s work [46] on the hypoelliptic estimates
and Fokker-Planck operators.

In 1978, Malliavin [50] introduced the so-called ‘Malliavin calculus’ to reprove Hör-
mander’s regularity result [42] from a probabilistic point of view. Malliavin calculus
was further developed by Bismut [4] and Stroock [63].

About 15 years ago, Bismut initiated a program whose purpose is to study the
applications of hypoelliptic second order differential operators to differential geometry.

In [6], Bismut constructed a (geometric) hypoelliptic Laplacian on the total space
of the cotangent bundle T ∗M of a compact Riemannian manifold M , that depends
on a parameter b > 0. This hypoelliptic Laplacian is a deformation of the usual
Laplacian on M . More precisely, when b → 0, it converges to the Laplacian on M

in a suitable sense, and when b→ +∞, it converges to the generator of the geodesic
flow. In this way, properties of the geodesic flow on M are potentially related to the
spectral properties of the Laplacian on M .

We now explain briefly Bismut’s hypoelliptic Laplacian in de Rham theory. Let
(M, gTM ) be a compact Riemannian manifold of dimension m. Let (Ω•(M), d) be the
de Rham complex ofM , let d∗ be the formal L2 adjoint of d, and let �M = (d+d∗)2 be
the Hodge Laplacian acting on Ω•(M).
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Let π : M →M be the total space of the cotangent bundle T ∗M . Let ∆V be the
Laplacian along the fibers T ∗M , and let H be the function on M defined by

H (x, p) =
1

2
|p|2 for p ∈ T ∗xM,x ∈M.(1.1)

Let Y H be the Hamiltonian vector field on M associated with H and with the
canonical symplectic form on M . Then Y H is the generator of the geodesic flow. Let
LY H denote the corresponding Lie derivative operator acting on Ω•(M ). For b > 0,
the Bismut hypoelliptic Laplacian on M is given by

Lb =
1

b2
α+

1

b
β + ϑ,(1.2)

with

α =
1

2
(−∆V + |p|2 −m+ · · · ), β = −LY H + · · · ,(1.3)

where the dots and ϑ are geometric terms which we will not be made explicit. The
operator Lb is essentially the weighted sum of the harmonic oscillator along the fiber,
minus the generator of the geodesic flow −LY H along the horizontal direction. (1)

The vector space Ker(α) is spanned by the function exp(−|p|2/2). We iden-
tify Ω•(M) to Ker(α) by the map s→ π∗s exp(−|p|2/2)/πm/4. Let P be the standard
L2-projector from Ω•(M ) on Ker(α). Then by [6, Theorem 3.14],

P (ϑ− βα−1β)P =
1

2
�M .(1.4)

In [6], Equation (1.4) is used to prove that as b→ 0, we have the formal convergence
of resolvents

(λ− Lb)
−1 → P

(
λ− 1

2
�M

)−1

P.(1.5)

Bismut-Lebeau [20] set up the proper analysis foundation for the study of the hy-
poelliptic Laplacian Lb. They not only proved a corresponding version of the Hodge
theorem, but they also studied the precise properties of its resolvent and of the corre-
sponding heat kernel. Since M is noncompact, they needed to refine the hypoelliptic
estimates of Hörmander in order to control hypoellipticity at infinity. They developed
the adequate theory of semiclassical pseudodifferential operators with parameter ~ = b

and obtained the proper version of the convergence of resolvents in (1.5). They devel-
oped also a hypoelliptic local index theory which is itself a deformation of classical
elliptic local index theory.

In [20], Bismut-Lebeau defined a hypoelliptic version of the analytic torsion of Ray-
Singer [56] associated with the elliptic Hodge Laplacian in (1.4). The main result in

(1) On Euclidean spaces, all geometric terms vanish and the operator Lb acting on functions reduces
to the Fokker-Planck operator.
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[20] is the proof of the equality of the hypoelliptic torsion with the Ray-Singer analytic
torsion.

In his thesis [61], Shen studied the Witten deformation of the hypoelliptic Laplacian
for a Morse function on the base manifold, and identified the hypoelliptic torsion to
the combinatory torsion. Shen’s work gives a new proof of Bismut-Lebeau’s result on
the equality of the hypoelliptic torsion and the Ray-Singer analytic torsion.

This article concentrates on applications of the hypoelliptic Laplacian to orbital
integrals. We will briefly summarize other applications.

A version of Theorem 0.1 for compact Lie groups can be found in [7]. In [7, Theo-
rem 4.3], as a test of his ideas, Bismut gave a new proof of the classical explicit formula
for the scalar heat kernel in terms of the coroots lattice [29] for a simple simply con-
nected compact Lie group, by using the hypoelliptic Laplacian on the total space of
the cotangent bundle of the group. In [8], Bismut also constructed a hypoelliptic Dirac
operator which is a hypoelliptic deformation of the usual Dirac operator.

In [14, Theorem 0.1], Bismut established a Grothendieck-Riemann-Roch theorem
for a proper holomorphic submersion π : M → B of complex manifolds in Bott-Chern
cohomology. For compact Kähler manifolds, Bott-Chern cohomology coincides with
de Rham cohomology. In the general situation considered in [14], the elliptic methods
of [5], [18] are known to fail, and hypoelliptic methods seem to be the only way to
obtain this result.

As in the case of the Dirac operator, there does not exist a universal hypoelliptic
Laplacian which works for all situations, there are several hypoelliptic Laplacians.
To attack a specific (geometric) problem, we need to construct the corresponding
hypoelliptic Laplacian. Still all the hypoelliptic Laplacians have naturally the same
structure, but the geometric terms depend on the situation. Probability theory plays
an important role, both formally and technically in its construction and in its use.

In this article, we will not touch the analytic and probabilistic aspects of the proofs.
We will explain how to give a natural construction of the hypoelliptic Laplacian
which is needed in order to establish Theorem 0.1. The method consists in giving a
cohomological interpretation to orbital integrals, so as to reduce their evaluation to
methods related to the proof of Lefschetz fixed-point formulas. Theorem 0.1 gives a
direct link of the trace formula to index theory.

We hope this article can be used as an invitation to the original papers [6, 7, 8, 12,
14, 17] and to several surveys on this topic [9, 10, 11, 13, 15, 16] and [47].
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2. HEAT KERNEL AND LEFSCHETZ FIXED-POINT FORMULA

This section is organized as follows. In Section 2.1, we explain some basic facts
about heat kernels. In Section 2.2, we review the heat equation proof of the Lefschetz
fixed-point formula. This proof will be used as a model for the proof of the main
theorem of this article.

2.1. A brief introduction to the heat kernel

Let M be a compact manifold of dimension m. Let TM be the tangent bundle,
T ∗M be the cotangent bundle, and let gTM be a Riemannian metric on M . Let
hF be a Hermitian metric on F . Let C∞(M,F ) be the space of smooth sections of F
on M . Let 〈·, ·〉 be the L2-Hermitian product on C∞(M,F ) defined by the integral
of the pointwise product with respect to the Riemannian volume form dx. We denote
by L2(M,F ) the vector space of L2-integrable sections of F on M .

Let ∇F : C∞(M,F ) → C∞(M,T ∗M ⊗ F ) be a Hermitian connection on (F, hF )

and let ∇F,∗ be its formal adjoint. Then the (negative) Bochner Laplacian ∆F acting
on C∞(M,F ), is defined by

(2.1) −∆F = ∇F,∗∇F .

The operator −∆F is an essentially self-adjoint second order elliptic operator. Let
∇TM be the Levi-Civita connection on (TM, gTM ). We can rewrite it as

(2.2) −∆F = −
m∑
i=1

(
(∇Fei)

2 −∇F∇TMei ei

)
,

where {ei}mi=1 is a local smooth orthonormal frame of (TM, gTM ).
For a self-adjoint section Φ ∈ C∞(M,End(F )) (for any x ∈M that Φx ∈ End(Fx)

is self-adjoint), set

(2.3) −∆F
Φ = −∆F − Φ.

Then the heat operator et∆
F
Φ : L2(M,F )→ L2(M,F ) for t > 0 of −∆F

Φ is the unique
solution of

(2.4)

{(
∂
∂t −∆F

Φ

)
et∆

F
Φ = 0

limt→0 e
t∆F

Φ s = s ∈ L2(M,F ) for any s ∈ L2(M,F ).

For x, x′ ∈ M , let et∆
F
Φ (x, x′) ∈ Fx ⊗ F ∗x′ be the Schwartz kernel of the opera-

tor et∆
F
Φ with respect to the Riemannian volume element dx′. Classically, et∆

F
Φ is

smooth in x, x′ ∈M, t > 0.
Since M is compact, the operator −∆F

Φ has discrete spectrum, consisting of eigen-
values λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · counted with multiplicities, with λk → +∞
as k → +∞. Let {ϕj}+∞j=1 be a system of orthonormal eigenfunctions such that
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−∆F
Φϕj = λjϕj . Then {ϕj}+∞j=1 is an orthonormal basis of L2(M,F ). The heat kernel

can also be written as (cf. [3, Proposition 2.36], [48, Appendix D])

(2.5) et∆
F
Φ (x, x′) =

+∞∑
j=1

e−tλjϕj(x)⊗ ϕj(x′)∗

where ϕj(x′)∗ ∈ F ∗x′ is the metric dual of ϕj(x′) ∈ Fx′ .
The trace of the heat operator is given by

(2.6) Tr[et∆
F
Φ ] =

+∞∑
j=1

e−tλj .

The (heat) trace Tr[et∆
F
Φ ] involves the full spectrum information of operator ∆F

Φ and
has many applications.

In general, it is difficult to evaluate explicitly Tr[et∆
F
Φ ] for t > 0. However, we will

explain the explicit formula obtained by Bismut for locally symmetric spaces and its
connection with Selberg trace formula.

Remark 2.1. — Let π : M̃ → M be the universal cover of M with fiber π1(M), the
fundamental group ofM . Then geometric data onM lift to M̃ , and we will add a ˜ to
denote the corresponding objets on M̃ . It’s well-known (see for instance [49, (3.18)])
that if x̃, x̃′ ∈ M̃ are such that π(x̃) = x, π(x̃′) = x′, we have

(2.7) et∆
F
Φ (x, x′) =

∑
γ∈π1(M)

γet∆̃
F
Φ (γ−1x̃, x̃′),

where the right-hand side is uniformly convergent.

2.2. The Lefschetz fixed-point formulas

Let Ω•(M) =
⊕

j Ωj(M) =
⊕

j C
∞(M,Λj(T ∗M)) be the vector space of smooth

differential forms on M (with values in R), which is Z-graded by degree. Let
d : Ωj(M)→ Ωj+1(M) be the exterior differential operator. Then d2 = 0 so that
(Ω•(M), d) forms the de Rham complex. The de Rham cohomology groups of M are
defined by

(2.8) Hj(M,R) =
Ker(d|Ωj(M)

)

Im(d|Ωj−1(M)
)
, H•(M,R) =

m⊕
j=0

Hj(M,R).

They are canonically isomorphic to the singular cohomology of M .
Let d∗ : Ω•(M) → Ω•−1(M) be the formal adjoint of d with respect to the scalar

product 〈·, ·〉 on Ω•(M), i.e., for all s, s′ ∈ Ω•(M),

(2.9) 〈d∗s, s′〉 := 〈s, ds′〉.
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Set

(2.10) D = d+ d∗.

Then D is a first order elliptic differential operator, and we have

(2.11) D2 = dd∗ + d∗d.

The operator D2 is called the Hodge Laplacian, it is an operator of the type (2.3)
for F = Λ•(T ∗M), which preserves the Z-grading on Ω•(M). By Hodge theory, we
have the isomorphism,

(2.12) Ker(D|Ωj(M)
) = Ker(D2|Ωj(M)

) ' Hj(M,R), for j = 0, 1, . . . ,m.

We give here a baby example to explain the heat equation proof of the Atiyah-
Singer index theorem (cf. [3]).

LetH be a compact Lie group acting onM on the left. Since the exterior differential
commutes with the action of H on Ω•(M), H acts naturally on Hj(M,R) for any j.
The Lefschetz number for h ∈ H is given by

(2.13) χh(M) =

m∑
j=0

(−1)j Tr[h|Hj(M,R)
] = Trs[h|H•(M,R)

].

The Lefschetz fixed-point formula computes χh(M) in term of geometric data on the
fixed-point set of h.

Instead of working on Hj(M,R), we will work on the much larger space Ω•(M) to
establish the Lefschetz fixed-point formulas.

Since H is compact, by an averaging argument on H, we can assume that the
metric gTM is H-invariant. Then the operator D defined above is also H-invariant.
We have the following result (cf. [3, Theorem 3.50, Proposition 6.3]),

Theorem 2.2 (McKean-Singer formula). — For any t > 0,

(2.14) χh(M) = Trs[he
−tD2

].

Proof. — For any t > 0, we have
∂

∂t
Trs[he

−tD2

] = −Trs[hD
2e−tD

2

]

= −1

2
Trs[[D,hDe

−tD2

]] = 0.

(2.15)

Here [·, ·] is a supercommutator defined as in (0.9), and as in the case of matrices, the
supertrace of a supercommutator vanishes by a simple algebraic argument.

By (2.6) and (2.12), we have

(2.16) lim
t→+∞

Trs[he
−tD2

] = χh(M).

Combining (2.15) and (2.16), we get (2.14).
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A simple analysis shows that only the fixed-points of h contribute to the limit
of Trs[he

−tD2

] as t→ 0. Further simple work then leads to the Lefschetz fixed-point
formulas.

Even though we will work on a more refined object the trace of a heat operator,
the above philosophy still applies.

3. BISMUT’S EXPLICIT FORMULA FOR THE ORBITAL INTEGRALS

In this section, we give an introduction to orbital integrals and to Selberg trace
formula, and we present the main result of this article: Bismut’s explicit evaluation
of the orbital integrals. Also, we compare Harish-Chandra’s Plancherel theory with
Bismut’s explicit formula for the orbital integrals.

This section is organized as follows. In Section 3.1, we recall some basic facts on
symmetric spaces, and we explain how the Casimir operator for a reductive Lie group
induces a Bochner Laplacian on the associated symmetric space. In Section 3.2, we give
an introduction to orbital integrals and to Selberg trace formula, and in Section 3.3, we
describe the geometric definition of orbital integrals given by Bismut. In Section 3.4,
we present the main result of this article, Bismut’s explicit evaluation of the orbital
integrals, and give some examples. Finally in Section 3.5, we present briefly Harish-
Chandra’s Plancherel theory for comparison with Bismut’s result.

3.1. Casimir operator and Bochner Laplacian

Let G be a connected real reductive Lie group with Lie algebra g and Lie
bracket [·, ·]. Let θ ∈ Aut(G) be its Cartan involution. Let K be the subgroup of G
fixed by θ, with Lie algebra k. Then K is a maximal compact subgroup of G, and
K is connected.

The Cartan involution θ acts naturally as a Lie algebra automorphism of g. Then
the Cartan decomposition of g is given by

(3.1) g = p⊕ k, with p = {a ∈ g : θa = −a}, k = {a ∈ g : θa = a}.

From (3.1), we get

(3.2) [p, p] ⊂ k, [k, k] ⊂ k, [p, k] ⊂ p.

Put n = dim k,m = dim p. Then dim g = m+ n.
If g, h ∈ G, u ∈ g, let Ad(g)h = ghg−1 be the adjoint action of g on h, and

let Ad(g)u ∈ g denote the action of g on u via the adjoint representation. If u, v ∈ g,
set

(3.3) ad(u)v = [u, v],
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then ad is the derivative of the map g ∈ G→ Ad(g) ∈ Aut(g).
Let B be a real-valued nondegenerate symmetric bilinear form on g which is invari-

ant under the adjoint action of G on g, and also under the action of θ. Then (3.1) is
an orthogonal splitting of g with respect to B. We assume that B is positive on p
and negative on k. Put 〈·, ·〉 = −B(·, θ·) the associated scalar product on g, which is
invariant under the adjoint action of K. Let | · | be the corresponding norm on g. The
splitting (3.1) is also orthogonal with respect to 〈·, ·〉.

Remark 3.1. — For G = GL+(q,R) = {A ∈ GL(q,R),detA > 0}, the Cartan
involution is given by θ(g) = tg−1, where t· denotes the transpose of a matrix.
Then K = SO(q), the special orthogonal group, and k is the vector space of anti-
symmetric matrices and p is the vector space of symmetric matrices. We can take
B(u, v) = 2 TrR

q

[uv] for u, v ∈ g = gl(q,R) = End(Rq).

Let U(g) be the enveloping algebra of g which will be identified with the algebra
of left-invariant differential operators on G. Let Cg ∈ U(g) be the Casimir element. If
{ei}mi=1 is an orthonormal basis of (p, 〈·, ·〉) and if {ei}m+n

i=m+1 is an orthonormal basis
of (k, 〈·, ·〉), then

(3.4) Cg = Cp + Ck, with Cp = −
m∑
i=1

e2
i , C

k =

m+n∑
i=m+1

e2
i .

Then Ck is the Casimir element of k with respect to the bilinear form induced by B
on k. Note that Cg lies in the center of U(g).

Let ρV : K → Aut(V ) be an orthogonal or unitary representation of K on a finite
dimensional Euclidean or Hermitian vector space V . We denote by Ck,V ∈ End(V )

the corresponding Casimir operator acting on V , given by

(3.5) Ck,V =

m+n∑
i=m+1

ρV,2(ei).

Let

p : G→ X = G/K(3.6)

be the quotient space. Then X is contractible. More precisely, X is a symmetric space
and the exponential map exp : p → G/K, a 7→ pea is a diffeomorphism. We have a
natural identification of vector bundles on X:

(3.7) TX = G×K p,

where K acts on p via the adjoint representation. The scalar product of p descends to
a Riemannian metric gTX on TX. Let ωg be the canonical left-invariant 1-form on G
with values in g, and let ωk be the k-component of ωg. Then ωk defines a connection
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on the K-principal bundle G → G/K. The connection ∇TX on TX induced by ωk

and by (3.7) is precisely the Levi-Civita connection on (TX, gTX).
Note since the adjoint representation of K preserves p and k, we obtain

Ck,p ∈ End(p), Ck,k ∈ End(k). In fact, Trp[Ck,p] is the scalar curvature of X,

and −1

4
Trk[Ck,k] is the scalar curvature of K for the Riemannian structure induced

by B (cf. [12, (2.6.8) and (2.6.9)]).
Let ρE : K → Aut(E) be a unitary representation of K. Then the vector space E

descends to a Hermitian vector bundle F = G×KE on X, and ωk induces a Hermitian
connection ∇F on F . Then C∞(X,F ) can be identified to C∞(G,E)K , the K-invari-
ant part of C∞(G,E). The Casimir operator Cg, acting on C∞(G,E), descends to
an operator acting on C∞(X,F ), which will still be denoted by Cg.

Let A be a self-adjoint endomorphism of E which is K-invariant. Then A descends
to a parallel self-adjoint section of End(F ) over X.

Definition 3.2. — Let LX , LXA act on C∞(X,F ) by the formulas,

LX =
1

2
Cg +

1

16
Trp[Ck,p] +

1

48
Trk[Ck,k];

LXA = LX +A.
(3.8)

From (3.4), −Cp descends to the Bochner Laplacian ∆F on C∞(X,F ), the oper-
ator Ck descends to a parallel section Ck,F of End(F ) on X. If the representation ρE

above is irreducible, then Ck,F acts as c IdF , where c is a constant function on X.
Thus from (2.3) and (3.8), we have

(3.9) LX = −1

2
∆F
φ with φ = −Ck,F − 1

8
Trp[Ck,p]− 1

24
Trk[Ck,k].

The group G acts on X on the left. This action lifts to F . More precisely, for any
h ∈ G and [g, v] ∈ F , the left action of h is given by

(3.10) h.[g, v] = [hg, v] ∈ G×K E = F.

Then the operators LX , LXA commute with G.
Let Γ ⊂ G be a discrete subgroup ofG such that the quotient space Γ\G is compact.

Set

(3.11) Z = Γ\X = Γ\G/K.

Then Z is a compact locally symmetric space. In general Z is an orbifold. If Γ is
torsion-free (i.e., if γ ∈ Γ, k ∈ N∗, then γk = 1 implies γ = 1), then Z is a smooth
manifold.

From now on, we assume that Γ is torsion free, so that Γ = π1(Z) and X is just
the universal cover of Z.
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A vector bundle like F onX descends to a vector bundle on Z, which we still denote
by F . Then the operators LX , LXA descend to operators LZ , LZA acting on C∞(Z,F ).

For t > 0, let e−tL
X
A (x, x′) (x, x′ ∈ X), e−tL

Z
A (z, z′) (z, z′ ∈ Z) be the smooth

kernels of the heat operators e−tL
X
A , e−tL

Z
A with respect to the Riemannian volume

forms dx′, dz′ respectively. By (2.7), we get

Tr[e−tL
Z
A ] =

∫
Z

Tr[e−tL
Z
A (z, z)]dz(3.12)

=

∫
Γ\X

∑
γ∈Γ

Tr[γe−tL
X
A (γ−1z̃, z̃)]dz.

3.2. Orbital integrals and Selberg trace formula

Let Cb(X,F ) be the vector space of continuous bounded sections of F over X. Let
Q be an operator acting on Cb(X,F ) with a continuous kernel q(x, x′) with respect
to the volume form dx′. It is convenient to view q as a continuous function q(g, g′)

defined on G×G with values in End(E) which satisfies for any k, k′ ∈ K,

(3.13) q(gk, g′k′) = ρE(k−1)q(g, g′)ρE(k′).

Now we assume that the operatorQ commutes with the left action ofG on Cb(X,F )

defined in (3.10). This is equivalent to

(3.14) q(gx, gx′) = gq(x, x′)g−1 for any x, x′ ∈ X, g ∈ G,

where the action of g−1 maps Fgx′ to Fx′ , the action of g maps Fx to Fgx.
If we consider instead the kernel q(g, g′), then this implies that for all g′′ ∈ G,

(3.15) q(g′′g, g′′g′) = q(g, g′) ∈ End(E).

Thus the kernel q is determined by q(1, g). Set

(3.16) q(g) = q(1, g).

Then we obtain from (3.13) and (3.15) that for g ∈ G, k ∈ K,

(3.17) q(k−1gk) = ρE(k−1)q(g)ρE(k).

This implies that TrE [q(g)] is invariant when replacing g by k−1gk.
In the sequel, we will use the same notation q for the various versions of the

corresponding kernel Q.

Definition 3.3. — The element γ ∈ G is said to be elliptic if it is conjugate in G

to an element of K. We say that γ is hyperbolic if it is conjugate in G to ea, a ∈ p.
For γ ∈ G, γ is semisimple if there exist g ∈ G, a ∈ p, k ∈ K such that

Ad(k)a = a, γ = Ad(g)
(
eak−1

)
.(3.18)
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By [27, Theorem 2.19.23], if γ ∈ G is a semisimple element, Ad(g)ea and Ad(g)k−1

are uniquely determined by γ (i.e., they do not depend on g ∈ G such that (3.18)
holds), and

Z(γ) = Z (Ad(g)ea) ∩ Z
(
Ad(g)k−1

)
,(3.19)

where Z(γ) ⊂ G is the centralizer of γ in G.
Let dk be the Haar measure on K that gives volume 1 to K. Let dg be measure

on G (as a K-principal bundle on X = G/K) given by

(3.20) dg = dx dk.

Then dg is a left-invariant Haar measure on G. Since G is unimodular, it is also a
right-invariant Haar measure.

For γ ∈ G semisimple, Z(γ) is reductive and K(γ), the fixed-points set
of Ad(g)θAd(g)−1 in Z(γ) (cf. (3.19)), is a maximal compact subgroup. Let dy be
the volume element on the symmetric space X(γ) = Z(γ)/K(γ) induced by B. Let
dk′ be the Haar measure on K(γ) that gives volume 1 to K(γ). Then dz = dydk′ is
a left and right Haar measure on Z(γ). Let dv be the canonical measure on Z(γ)\G
that is canonically associated with dg and dz so that

dg = dzdv.(3.21)

Definition 3.4 (Orbital integral). — For γ ∈ G semisimple, we define the orbital
integral associated with Q and γ by

Tr[γ][Q] =

∫
Z(γ)\G

TrE [q(v−1γv)]dv,(3.22)

once the integral converges.

Note that the map

Z(γ)\G→ Oγ = AdG γ given by v → v−1γv(3.23)

identifies Z(γ)\G as the orbit Oγ of γ with the adjoint action of G on G. This justifies
the name “orbital integral” for (3.22).

Let Γ ⊂ G be a discrete torsion free cocompact subgroup as in Section 3.1. Since the
operator Q commutes with the left action of G, Q descends to an operator QZ acting
on C∞(Z,F ). We assume that the sum

∑
γ∈Γ q(g

−1γg′) is uniformly and absolutely
convergent on G×G.

Let [Γ] be the set of conjugacy classes in Γ. If [γ] ∈ [Γ], set

(3.24) qX,[γ](g, g′) =
∑
γ′∈[γ]

q(g−1γ′g′).
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Then from (3.15)–(3.24), we get

(3.25) qZ(z, z′) =
∑

[γ]∈[Γ]

qX,[γ](g, g′),

with g, g′ ∈ G fixed lift of z, z′ ∈ Z. Thus as in (3.12),

(3.26) Tr[QZ ] =
∑

[γ]∈[Γ]

Tr[QZ,[γ]] with Tr[QZ,[γ]] =

∫
Z

Tr[qX,[γ](z, z)]dz.

From (3.20), (3.24), (3.26), and the fact that [γ] ' Γ ∩ Z(γ)\Γ, we have

Tr[QZ,[γ]] =

∫
Γ∩Z(γ)\G

TrE [q(g−1γg)]dg

= Vol
(

Γ ∩ Z(γ)\Z(γ)
)

Tr[γ][Q]

= Vol
(

Γ ∩ Z(γ)\X(γ)
)

Tr[γ][Q].

(3.27)

From (3.26) and (3.27), we get

Theorem 3.5 (Selberg trace formula). — We have

Tr
[
QZ
]

=
∑

[γ]∈[Γ]

Vol
(

Γ ∩ Z(γ)\X(γ)
)

Tr[γ][Q].(3.28)

Selberg [59, (3.2)] was the first to give a closed formula for the trace of the heat
operator on a compact hyperbolic Riemann surface via (3.28), which is the original
Selberg trace formula. Harish-Chandra’s Plancherel theory, developed from the 1950s
until the 1970s, is an algorithm to reduce the computation of an orbital integral to a
lower dimensional group by the discrete series method, cf. Section 3.5.

To understand better the structure of each integral in (3.22), we first reformulate
it in more geometric terms.

3.3. Geometric orbital integrals

Let d(·, ·) be the Riemannian distance on X. If γ ∈ G, the displacement function dγ
is given by for x ∈ X,

(3.29) dγ(x) = d(x, γx).

By [1, §6.1], the function dγ is convex on X, i.e., for any geodesic t ∈ R → xt ∈ X
with constant speed, the function dγ(xt) is convex on t ∈ R.

Recall that p : G → X = G/K is the natural projection in (3.6). We have the
following geometric description on the semisimple elements in G.
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Theorem 3.6 ([12], Theorem 3.1.2). — The element γ ∈ G is semisimple if and
only if the function dγ attains its minimum in X. If γ ∈ G is semisimple, and

X(γ) = {x ∈ X : dγ(x) = mγ := inf
y∈X

dγ(y)},(3.30)

for g ∈ G, x = pg ∈ X, then x ∈ X(γ) if and only if there exist a ∈ p, k ∈ K such
that

(3.31) γ = Ad(g)(eak−1) and Ad(k)a = a.

If gt = geta, then t ∈ [0, 1] → xt = pgt is the unique geodesic connecting x ∈ X(γ)

and γx in X. Moreover, we have

(3.32) mγ = |a|.

Since the integral (3.27) depends only on the conjugacy class of γ, from Theorem 3.6
or (3.18), we may and we will assume that

(3.33) γ = eak−1, Ad(k)a = a, a ∈ p, k ∈ K.

Furthermore, by (3.19), we have

(3.34) Z(γ) = Z(ea) ∩ Z(k), z(γ) = z(ea) ∩ z(k),

where we use the symbol z to denote the corresponding Lie algebras of the centralizers.

Put

(3.35) p(γ) = z(γ) ∩ p, k(γ) = z(γ) ∩ k.

From (3.2) and (3.34), we get

(3.36) z(γ) = p(γ)⊕ k(γ).

Thus the restriction of B to z(γ) is non-degenerate. Let z⊥(γ) be the orthogonal space
to z(γ) in g with respect to B. Then z⊥(γ) splits as

(3.37) z⊥(γ) = p⊥(γ)⊕ k⊥(γ),

where p⊥(γ) ⊂ p, k⊥(γ) ⊂ k are the orthogonal spaces to p(γ), k(γ) in p, k with
respect to the scalar product induced by B.

Set

(3.38) K(γ) = K ∩ Z(γ),

then from (3.34) and (3.35), k(γ) is just the Lie algebra of K(γ).
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Theorem 3.7 ([12], Theorems 3.3.1, 3.4.1, 3.4.3). — The set X(γ) is a submanifold
of X. In the geodesic coordinate system centered at p1, we have the identification

(3.39) X(γ) = p(γ).

The action of Z(γ) on X(γ) is transitive and we have the identification of Z(γ)-man-
ifolds,

(3.40) X(γ) ' Z(γ)/K(γ).

The map

(3.41) ργ : (g, f, k′) ∈ Z(γ)×K(γ) (p⊥(γ)×K)→ gefk′ ∈ G

is a diffeomorphism of left Z(γ)-spaces, and of right K-spaces. The map (g, f, k′) 7→ (g, f)

corresponds to the projection p : G→ X = G/K. In particular, the map

(3.42) ργ : (g, f) ∈ Z(γ)×K(γ) p
⊥(γ)→ p(gef ) ∈ X

is a diffeomorphism.
Moreover, under the diffeomorphism (3.41), we have the identity of right K-spaces,

(3.43) p⊥(γ)K(γ) ×K = Z(γ)\G.

Finally, there exists Cγ > 0 such that if f ∈ p⊥(γ), |f | > 1,

dγ(ργ(1, f)) ≥ |a|+ Cγ |f |.(3.44)

The map ργ in (3.42) is the normal coordinate system on X based at X(γ).

x0 = p1 γx0X(γ) ' p(γ)

f γf

dγ(ργ(1, f)) ≥ |a|+ Cγ|f |

p⊥(γ) ' Z(γ)\G

Figure 1. Normal coordinate

Recall that dy is the volume element on X(γ) (cf. Section 3.2). Let df be the
volume element on p⊥(γ). Then dydf is a volume form on Z(γ) ×K(γ) p

⊥(γ) that is
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Z(γ)-invariant. Let r(f) be the smooth function on p⊥(γ) that is K(γ)-invariant such
that we have the identity of volume element on X via (3.42),

(3.45) dx = r(f)dydf, with r(0) = 1.

In view of (3.43), (3.45), Bismut could reformulate geometrically the orbital inte-
gral (3.22) as an integral along the normal direction of X(γ) in X.

Proposition 3.8 (Geometric orbital integral). — The orbital integral for the oper-
ator Q in Section 3.2 and a semisimple element γ ∈ G is given by

(3.46) Tr[γ][Q] =

∫
p⊥(γ)

TrE [q(e−fγef )]r(f)df.

Equation (3.46) gives a geometric interpretation for orbital integrals. It is remark-
able that even before its explicit computation, the variational problem connected with
the minimization of the displacement function dγ is used in (3.46).

We need the following criterion for the semisimplicity of an element.

Proposition 3.9 (Selberg [60], Lemmas 1, 2). — If Γ ⊂ G is a discrete cocompact
subgroup, then for any γ ∈ Γ, γ is semisimple, and Γ ∩ Z(γ) is cocompact in Z(γ).

Proof. — Let U be a compact subset of G such that G = Γ · U . Let γ ∈ Γ. Let
{xk}k∈N be a family of points in X such that d(xk, γxk) → mγ = infx∈X d(x, γx)

as k → +∞.

Then there exists γk ∈ Γ, x′k ∈ U such that γkx′k = xk. Since U is compact, there
is a subsequence {x′kj}j∈N of {x′k}k∈N such that as j → +∞, x′kj → y ∈ U . Then

d(y, γ−1
kj
γγkjy) ≤ d(x′kj , y) + d(x′kj , γ

−1
kj
γγkjx

′
kj ) + d(γ−1

kj
γγkjx

′
kj , γ

−1
kj
γγkjy)

= 2d(x′kj , y) + d(xkj , γxkj ),
(3.47)

where the right side tends to mγ as j → +∞.

Since Γ is discrete and each γ−1
kj
γγkj ∈ Γ, the set of such γ−1

kj
γγkj is bounded, so

that there exist infinitely many j such that γ−1
kj
γγkj = γ′ ∈ Γ. Then

(3.48) mγ = d(y, γ′y) = d(γkjy, γγkjy).

This means that dγ reaches its minimum in X. Therefore γ is semisimple.

Since Γ is discrete, [γ] is closed in G, thus Γ ·Z(γ) as the inverse image of [γ] of the
continuous map g ∈ G → gγg−1 ∈ G, is closed in G. This implies Γ ∩ Z(γ)\Z(γ) =

Γ\Γ ·Z(γ) is a closed subset of the compact quotient Γ\G. Thus Γ∩Z(γ) is cocompact
in Z(γ).
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Let Γ ⊂ G be a discrete torsion free cocompact subgroup as in Section 3.2. Set
Z = Γ\X, then Γ = π1(Z). For x ∈ X(γ), the unique geodesic from x to γx descends
to the closed geodesic in Z in the homotopy class γ ∈ Γ which has the shortest
length mγ . Thus the Selberg trace formula (3.28) relates the trace of an operator Q
to the dynamical properties of the geodesic flow on Z via orbital integrals.

3.4. Bismut’s explicit formula for orbital integrals

By the standard heat kernel estimate, for the heat operator e−tL
X
A on X, there exist

c > 0, λ,C > 0, M > 0 such that for any t > 0, x, x′ ∈ X, we have (cf. for instance
[49, (3.1)]) ∣∣∣e−tLXA (x, x′)

∣∣∣ ≤ Ct−Meλt−c d2(x,x′)/t.(3.49)

Note also that by Rauch’s comparison theorem, there exist C0, C1 > 0 such that for
all f ∈ p⊥(γ),

|r(f)| ≤ C0e
C1|f |.(3.50)

From (3.44), (3.49) and (3.50), the orbital integral Tr[γ][e−tL
X
A ] is well-defined for any

semisimple element γ ∈ G.
Let γ ∈ G be the semisimple element as in (3.33). Set

(3.51) p0 = z(a) ∩ p, k0 = z(a) ∩ k, z0 = z(a) = p0 ⊕ k0.

Let z⊥0 be the orthogonal space to z0 in g with respect to B.

Let p⊥0 (γ) be the orthogonal to p(γ) in p0, and let k⊥0 (γ) be the orthogonal space
to k(γ) in k0. Then the orthogonal space to z(γ) in z0 is

(3.52) z⊥0 (γ) = p⊥0 (γ)⊕ k⊥0 (γ).

For Y k0 ∈ k(γ), we claim that

(3.53) det
(

1− exp(−iθ ad(Y k0 )) Ad(k−1)
)
|z⊥0 (γ)

det
(

1−Ad(k−1)
)
|z⊥0 (γ)

has a natural square root, which depends analytically on Y k0 . Indeed, ad(Y k0 ) commutes
with Ad(k−1), and no eigenvalue of Ad(k) acting on z⊥0 (γ) is equal to 1. If z⊥0 (γ) is
1-dimensional, then Ad(k)|z⊥0 (γ)

= −1 and ad(Y k0 )|z⊥0 (γ)
= 0, the square root is just 2.

If z⊥0 (γ) is 2-dimensional, if Ad(k)|z⊥0 (γ)
is a rotation of angle φ and θ ad(Y k0 )|z⊥0 (γ)

acts by an infinitesimal rotation of angle φ′, such a square root is given by (cf. [12,
(5.4.10)])

(3.54) 4 sin
(φ

2

)
sin
(φ+ iφ′

2

)
.
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If V is a finite dimensional Hermitian vector space and if Θ ∈ End(V ) is self-adjoint,

then
Θ/2

sinh(Θ/2)
is a self-adjoint positive endomorphism. Set

(3.55) Â(Θ) = det1/2
[ Θ/2

sinh(Θ/2)

]
.

In (3.55), the square root is taken to be the positive square root.
For Y k0 ∈ k(γ), set

Jγ(Y k0 ) =
1∣∣ det(1−Ad(γ))|z⊥0

∣∣1/2 · Â(i ad(Y k0 )|p(γ)
)

Â
(
i ad(Y k0 )|k(γ)

) ·
 1

det(1−Ad(k−1))|z⊥0 (γ)

det
(

1− exp(−i ad(Y k0 )) Ad(k−1)
)
|k⊥0 (γ)

det
(

1− exp(−i ad(Y k0 )) Ad(k−1)
)
|p⊥0 (γ)


1/2

.

(3.56)

From (3.53), we know that (3.56) is well-defined. Moreover, there exist cγ , Cγ > 0

such that for any Y k0 ∈ k(γ)

(3.57) |Jγ(Y k0 )| ≤ cγ eCγ |Y
k
0 |.

We note that p = dim p(γ), q = dim k(γ) and r = dim z(γ) = p + q. Now we can
restate Theorem 0.1 as follows.

Theorem 3.10 ([12], Theorem 6.1.1). — For any t > 0, we have

Tr[γ][e−tL
X
A ] =

e−|a|
2/2t

(2πt)p/2

∫
k(γ)

Jγ(Y k0 ) TrE
[
ρE(k−1)e−iρ

E(Y k0 )−tA
]
e−|Y

k
0 |

2/2t dY k0
(2πt)q/2

.

(3.58)

Remark 3.11. — For γ = 1, we have k(1) = k, p(1) = p, and for Y k0 ∈ k, by (3.56),

(3.59) J1(Y k0 ) =
Â(i ad(Y k0 )|p)

Â(i ad(Y k0 )|k)
.

Let S (R) be the Schwartz space of R. Let Tr[γ][cos(s
√

LXA )] be the even distribution
on R determined by the condition that for any even function µ ∈ S (R) with compactly
supported Fourier transformation µ̂, we have

Tr[γ]

[
µ

(√
LXA

)]
=

∫
R
µ̂(s) Tr[γ]

[
cos

(
2πs
√

LXA

)]
ds.(3.60)

The wave operator cos(
√

2πs
√

LXA ) defines a distribution on R×X ×X.
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Let ∆z(γ) be the standard Laplacian on z(γ) with respect to the scalar product
〈·, ·〉 = −B(·, θ·). Now we can state the following microlocal version of Theorem 3.10
for the wave operator.

Theorem 3.12 ([12], Theorem 6.3.2). — We have the following identity of even dis-
tributions on R supported on {|s| ≥

√
2|a|} and with singular support in ±

√
2|a|,

Tr[γ]

[
cos

(
s
√

LXA

)]
=

∫
Hγ

TrE

[
cos

(
s

√
−1

2
∆z(γ) +A

)
Jγ(Y k0 )ρE(k−1)e−iρ

E(Y k0 )

]
,

(3.61)

where Hγ = {0} × (a, k(γ)) ⊂ z(γ)× z(γ).

Remark 3.13. — We assume that the semisimple element γ is nonelliptic, i.e., a 6= 0.
We also assume that

(3.62) [k(γ), p0] = 0.

Then for Y k0 ∈ k(γ), ad(Y k0 )|p(γ)
= 0, ad(Y k0 )|p⊥0 (γ)

= 0.

Now from (3.58), we have [12, Theorem 8.2.1]: for t > 0,

Tr[γ]
[
e−tL

X
A

]
=

e−|a|
2/2t∣∣det(1−Ad(γ))|z⊥0

∣∣1/2 1

det(1−Ad(k−1))|p⊥0 (γ)

1

(2πt)p/2
· TrE

[
ρE(k−1) exp

(
− t
(
A+

1

48
Trk0 [Ck0,k0 ] +

1

2
Ck0,E

))]
.

(3.63)

Note that if G is of real rank 1, then p0 is the vector subspace generated by a,
so that (3.62) holds. Thus (3.63) recovers the result of Sally-Warner [58] where they
assume that the real rank of G is 1.

From (3.28) and (3.58), we obtain a refined version of the Selberg trace formula
for the Casimir operator :

(3.64) Tr[e−tL
Z
A ] =

∑
[γ]∈[Γ]

Vol
(

Γ ∩ Z(γ)\X(γ)
)

Tr[γ][e−tL
X
A ],

and each term Tr[γ][·] is given by the closed formula (3.58).
We give two examples here to explain the explicit version of the Selberg trace

formula (3.64).

Example 3.14 (Poisson summation formula). — Take G = R and A = 0. Then

K={0}. We have X = R and LXA = −1

2
∆R = −1

2

∂2

∂x2
, where x is the coordinate

on R. Let pt(x, x′) be the heat kernel associated with et∆
R/2.
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For a ∈ R, we have Z(a) = R, k(a) = {0}. By (3.22) or (3.46), we have

Tr[a]
[
e−tL

X
A

]
= pt(0, a).(3.65)

From (3.58), we get

(3.66) Tr[a]
[
e−tL

X
A

]
=

1√
2πt

e−
a2

2t .

Thus (3.58) gives simply an evaluation of the heat kernel on R which is well-known
that

pt(x, x
′) =

1√
2πt

e−
(x−x′)2

2t .(3.67)

Take Γ = Z ⊂ R, then Z = Z\R = S1. For any γ ∈ Γ,X(γ)=Z(γ)/K(γ)=Z(γ)=R.
Thus Γ ∩ Z(γ)\Z(γ) = Z\R = S1 and Vol(S1) = 1. The Selberg trace formula (3.64)
reduces to the Poisson summation formula:

(3.68)
∑
k∈Z

e−2π2k2t =
∑
k∈Z

1√
2πt

e−
k2

2t for any t > 0.

Example 3.15. — Let G = SL2(R) be the 2 × 2 real special linear group with Lie
algebra g = sl2(R). The Cartan involution is given by θ : G → G, g 7→ tg−1.

Then K = SO(2) =
{[ cosβ sinβ

− sinβ cosβ

]
: β ∈ R

}
' S1 is the corresponding

maximal compact subgroup and X = G/K is the Poincaré upper half-plane defined
as H = {z = x + iy ∈ C : y > 0, x ∈ R}. Precisely, an element g =

[
a b
c d

]
∈ SL2(R)

acts on H by

(3.69) gz =
az + b

cz + d
∈ H for z ∈ H.

The Cartan decomposition of sl2(R) is

(3.70) g = p⊕ k,

where k is the set of real antisymmetric matrices, and p is the set of traceless symmetric
matrices. Let B be the bilinear form on g defined for u, v ∈ g by

(3.71) B(u, v) = 2 TrR
2

[uv].

Set

(3.72) e1 =

[
1
2 0

0 − 1
2

]
, e2 =

[
0 1

2

1
2 0

]
, e3 =

[
0 1

2

− 1
2 0

]
.

Then {e1, e2} is a basis of p, and e3 is a basis of k. They together form an orthonormal
basis of the Euclidean space (g, 〈·, ·〉 = −B(·, θ·)). Moreover,we have the relations,

(3.73) [e1, e2] = e3, [e2, e3] = −e1, [e3, e1] = −e2.
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The metric on X is given by 1
y2 (dx2 + dy2). The scalar curvature of X is

(3.74) Trp[Ck,p] = −2|[e1, e2]|2 = −2.

Let ∆X be the Bochner Laplacian acting on C∞(X,C). Then ∆X = y2( ∂2

∂x2 + ∂2

∂y2 ).
Since Trk[Ck,k] = 0 here, we have on C∞(X,C),

(3.75) LX =
1

2
Cg +

1

16
Trp[Ck,p] +

1

48
Trk[Ck,k] = −1

2
∆X − 1

8
.

From (3.73), we see that a semisimple nonelliptic element γ ∈ G is hyperbolic.
Thus such γ is conjugate to eae1 with some a ∈ R\{0}. Note that the orbital integral
depends only on the conjugacy class of γ in G

If γ = eae1 with a ∈ R\{0}, then by (3.73), k(γ) = 0, z0 = z(γ) = Re1, and we
have

(3.76) det(1−Ad(γ))|z⊥0
= −(ea/2 − e−a/2)2.

From Theorem 3.10, (3.75) and (3.76), we get

(3.77) Tr[γ]
[
et∆

X/2
]

=
1√
2πt

exp(−a
2

2t −
t
8 )

2 sinh( |a|2 )
.

For Y k0 = y0e3 ∈ k, the relations (3.73) imply that

(3.78) Â(iad(Y k0 )|p) =
y0/2

sinh(y0/2)
.

From Theorem 3.10, (3.59) and (3.78), we get

(3.79) Tr[1][et∆
X/2] =

e−t/8

2πt

∫
R
e−y

2
0/2t

y0/2

sinh(y0/2)

dy0√
2πt

.

By taking the derivative with respect to y0 in both sides of 1√
2πt

e−y
2
0/2t =

1
2π

∫
R e
−tρ2/2−iρy0dρ, we get

(3.80)
1√
2πt

e−y
2
0/2t

y0

t
=

1

2π

∫
R
e−tρ

2/2ρ sin(ρy0)dρ.

Thus
1

t

∫
R
e−y

2
0/2t

y0/2

sinh(y0/2)

dy0√
2πt

=
1

4π

∫
R
e−tρ

2/2ρ

(∫ +∞

−∞

sin(ρy0)

sinh(y0/2)
dy0

)
dρ

=
1

2

∫
R
e−tρ

2/2ρ tanh(πρ)dρ,

(3.81)

where we use the identity
∫ +∞
−∞

sin(ρy0)
sinh(y0/2)dy0 = 2π tanh(πρ).

Let Γ ⊂ SL2(R) be a discrete torsion-free cocompact subgroup. Then Z = Γ\X is
a compact Riemann surface. We say that γ ∈ Γ is primitive if there does not exist
β ∈ Γ and k ∈ N, k ≥ 2 such that γ = βk.
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If γ = eae1 ∈ Γ is primitive, then |a| is the length of the corresponding closed
geodesic in Z and for any k ∈ Z, k 6= 0, Z(γk) = Z(γ) = eRe1 , and moreover,

(3.82) Vol(Z(γk) ∩ Γ\Z(γk)) = |a|.

Thus by (3.64), (3.77), (3.79), (3.81) and (3.82), we get

Tr[et∆
Z/2] =

∑
γ∈Γ primitive,
[γ]=[eae1 ], a 6=0

|a|
∑

k∈N, k 6=0

Tr[ekae1 ][et∆
X/2] + Vol(Z) Tr[1][et∆

X/2]

=
∑

γ∈Γ primitive,
[γ]=[eae1 ], a 6=0

|a|
∑

k∈N, k 6=0

1√
2πt

1

2 sinh(k|a|2 )
e−

k2a2

2t −
t
8

+
Vol(Z)

4π
e−t/8

∫
R
e−tρ

2/2ρ tanh(πρ)dρ.

(3.83)

Formula (3.83) is exactly the original Selberg trace formula in [59, (3.2)] (cf. also [52,
p. 233]).

3.5. Harish-Chandra’s Plancherel Theory

In this subsection, we briefly describe Harish-Chandra’s approach to orbital inte-
grals. This approach can be used to evaluate the orbital integrals of arbitrary test
function, for sufficiently regular semisimple elements. This formula contains compli-
cated expressions involving infinite sums which do not converge absolutely, and have
no obvious closed form except for some special groups. An useful reference on Harish-
Chandra’s work on orbital integrals is Varadarajan’s book [64].

Recall that G is a connected reductive group. Denote by G′ ⊂ G the space of
regular elements. Let C∞c (G) be the vector space of smooth functions with compact
support on G. For f ∈ C∞c (G), attached to each θ-invariant Cartan subgroup H of G,
Harish-Chandra introduce a smooth function ′FHf (cf. [34, §17]), as an orbital integral
of f in a certain sense, defined on H ∩G′, which has reasonable limiting behavior on
the singular set in H.

Let γ be a semisimple element such that (3.33) holds. If γ is regular, then up to
conjugation there exists a unique θ-invariant Cartan subgroup H which contains γ.
In this case, ′FHf (γ) is equal to a product of Tr[γ][f ] and an explicit Lefschetz like
denominator of γ. Now if γ is a singular semisimple element, let H be the unique (up
to conjugation) θ-invariant Cartan subgroup with maximal compact dimension, which
contains γ. Following Harish-Chandra [33], there is an explicit differential operator D
defined on H such that

Tr[γ][f ] = lim
γ′∈H∩G′→γ

D ′FHf (γ′).(3.84)
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Thus, to determine the orbital integral Tr[γ][f ], it is enough to calculate ′FHf on the
regular set H ∩G′.

Take γ ∈ H ∩G′ a regular element in H. Harish-Chandra developed certain tech-
niques to calculate ′FHf , obtaining formulas which are known as Fourier inverse for-
mula. Indeed, f ∈ C∞c (G)→ ′FHf (γ) defines an invariant distribution on G. The idea
is to write ′FHf (γ) as a combination of invariant eigendistributions (i.e., a distribution
on G which is invariant under the adjoint action of G, and which is an eigenvector of
the center of U(g)), like the global character of the discrete series representations and
the unitary principal series representations of G, as well as certain singular invariant
eigendistributions. More precisely, let H = HIHR be Cartan decomposition of H
(cf. [34, §8]), where HI is a compact Abelian group and HR is a vector space. De-
note by “H, “HI , “HR the set of irreducible unitary representations of H,HI , HR. Then“H = “HI×“HR. Following [36, 41], for a∗ = (a∗I , a

∗
R) ∈ “H, we can associate an invariant

eigendistribution ΘH
a∗ on G. Note that if H is compact and if a∗I is regular, then ΘH

a∗ is
the global character of the discrete series representations of G, and that if H is non-
compact and if a∗I is regular, then ΘH

a∗ is the global character of the unitary principal
series representations of G. When a∗I is singular, ΘH

a∗ is much more complicated. It is
an alternating sum of some unitary characters, which in general are reducible.

In [36], Harish-Chandra announced the following theorem.

Theorem 3.16 ([36], Theorem 15). — Let {H1, . . . ,Hl} be the complete set of non
conjugated θ-invariant Cartan subgroups of G. Then there exist computable continuous
functions Φij on Hi × “Hj such that for any regular element γ ∈ Hi ∩G′,

′FHif (γ) =

l∑
j=1

∑
a∗I∈ĤjI

∫
a∗R∈ĤjR

Φij(γ, a
∗
I , a
∗
R)Θ

Hj
a∗ (f)da∗R.(3.85)

In [36], Harish-Chandra only explained the idea of a proof by induction on dimG.
A more explicit version is obtained by Sally-Warner [58] when G is of real rank one
(cf. Remark 3.13), and by Herb [40] (cf. also Bouaziz [25]) for general G. However,
Herb’s formula only holds for γ in an open dense subset of Hi∩G′ and involves certain
infinite sum of integrals which converges, but cannot be directly differentiated, term
by term. In particular, the orbital integral of singular semisimple elements could not
be obtained from Herb’s formula by applying term by term the differential operator D
in (3.84). When γ = 1, much more is known:
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Theorem 3.17 (Harish-Chandra [35]). — There exists computable real analytic ele-
mentary functions pHj (a∗) defined on “Hj such that for f ∈ C∞c (G), we have

Tr[1][f ] = f(1) =

l∑
j=1

∑
a∗I∈ĤjI ,regular

∫
a∗R∈ĤjR

Θ
Hj
a∗ (f)pHj (a∗I , a

∗
R)da∗R.(3.86)

Theorem 3.17 can be applied to more general functions such as Harish-Chandra
Schwartz functions, e.g., the trace of the heat kernel qt ∈ C∞(G,End(E)) of e−tL

X
A .

Thus,

Tr[1]
[
e−tL

X
A

]
=

l∑
j=1

∑
a∗I∈ĤjI ,regular

∫
a∗R∈ĤjR

Θ
Hj
a∗
(
TrE [qt]

)
pHj (a∗I , a

∗
R)da∗R.(3.87)

For Hj , we can associate a cuspidal parabolic subgroup Pj with Langlands decom-
position Pj = MjHjRNj such that HjI ⊂ Mj is a compact Cartan subgroup of Mj .
For a∗ = (a∗I , a

∗
R) ∈ “Hj with a∗I regular, denote by (ςa∗I , Va∗I ) the discrete series repre-

sentations of Mj associated to a∗I , and denote by (πa∗ , Va∗) the associated principal
series representations of G associated to ςa∗I and a∗R. We have

Θ
Hj
a∗
(
TrE [qt]

)
= TrVa∗⊗E [πa∗(qt)] with πa∗(qt) =

∫
G

qt(g)πa∗(g)dg.(3.88)

It is not difficult to see that the image of the operator πa∗(qt) is (Va∗ ⊗ E)K '
(Va∗I⊗E)K∩Mj , and πa∗(qt) acts as e−t(

1
2C

g,πa∗+ 1
16 Trp[Ck,p]+ 1

48 Trk[Ck,k]+A) on its image.
We get

TrVa∗⊗E [πa∗(qt)] = e−t(
1
2C

g,πa∗+ 1
16 Trp[Ck,p]+ 1

48 Trk[Ck,k]) Tr
(Va∗

I
⊗E)K∩Mj

[e−tA].(3.89)

Thus,

(3.90) Tr[1]
[
e−tL

X
A

]
=

l∑
j=1

∑
a∗I∈ĤjI ,regular

∫
a∗R∈ĤjR

e−t(
1
2C

g,πa∗+ 1
16 Trp[Ck,p]+ 1

48 Trk[Ck,k])

Tr
(Va∗

I
⊗E)K∩Mj

[e−tA]pHj (a∗I , a
∗
R)da∗R.

Remark 3.18. — Equation (3.90) is not as explicit as (3.58), because in general it is
not easy to determine all parabolic subgroups, all the discrete series of M , and the
Plancherel densities pHj (a∗).

We hope that from these descriptions, the readers got an idea on Harish-Chandra’s
Plancherel theory as an algorithm to compute orbital integrals. These results use the
full force of the unitary representation theory (harmonic analysis) of reductive Lie
groups, both at the technical and the representation level.

Bismut’s explicit formula of the orbital integrals associated with the Casimir op-
erator gives a closed formula in full generality for any semisimple element and any
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reductive Lie group. Bismut avoided completely the use of the harmonic analysis on
reductive Lie groups. The hypoelliptic deformation allows him to localize the orbital
integral for γ to any neighborhood of the family of shortest geodesic associated with γ,
i.e., X(γ).

There is a mysterious connection between Harish-Chandra’s Plancherel theory and
Theorem 0.1: in Harish-Chandra’s Plancherel theory, the integral are taken on the
p part, but in Theorem 0.1, the integral is on the k part. In particular, in Exam-
ple 3.15 for G = SL2(R), we obtain the contribution

∫
R e
−tρ2/2ρ tanh(πρ)dρ from the

Plancherel theory for γ = 1. This coincide with (3.79) by using a Fourier transforma-
tion argument as explained in (3.81).

Remark 3.19. — Assume G = SO0(m, 1) with m odd. There exists only one Cartan
subgroup H, and pH(a∗I , ·) is an explicit polynomial. In this case, (3.90) becomes
completely explicit.

4. GEOMETRIC HYPOELLIPTIC OPERATOR AND DYNAMICAL SYSTEMS

In this section, we explain how to construct geometrically the hypoelliptic Lapla-
cians for a symmetric space, with the goal to prove Theorem 0.1 in the spirit of the
heat kernel proof of the Lefschetz fixed-point formula (cf. Section 2.2). We introduce
a hypoelliptic version of the orbital integral that depends on b. The analog of the
methods of local index theory are needed to evaluate the limit. Theorem 4.13 iden-
tifies the orbital integral associated with the Casimir operator to the hypoelliptic
orbital integral for the parameter b > 0. As b→ +∞, the hypoelliptic orbital integral
localizes near X(γ).

This section is organized as follows. In Section 4.1, we explain how to compute the
cohomology of a vector space by using algebraic de Rham complex and its Bargmann
transformation, whose Hodge Laplacian is a harmonic oscillator. In Section 4.2, we
recall the construction of the Dirac operator of Kostant, and in Sections 4.3, we
construct the geometric hypoelliptic Laplacian by combining the constructions in
Sections 4.1 and 4.2. In Section 4.4, we introduce the hypoelliptic orbital integrals
and a hypoelliptic version of the McKean-Singer formula for these orbital integrals.
In Section 4.5, we describe the limit of the hypoelliptic orbital integrals as b→ +∞.
Finally, in Section 4.6, we explain some relations of the hypoelliptic heat equation to
the wave equation on the base manifold, which plays an important role in the proof
of uniform Gaussian-like estimates for the hypoelliptic heat kernel.
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4.1. Cohomology of a vector space and harmonic oscillator

Let V be a real vector space of dimension n, and let V ∗ be its dual. Let Y be the
tautological section of V over V . Then Y can be identified with the corresponding
radial vector field. Let dV denote the de Rham operator.

Let LY be the Lie derivative associated with Y , and let iY be the contraction of Y .
By Cartan’s formula, we have the identity

(4.1) LY = [dV , iY ].

Let S•(V ∗) =
⊕∞

j=0 S
j(V ∗) be the symmetric algebra of V ∗, which can be canoni-

cally identified with the polynomial algebra of V . Then Λ•(V ∗)⊗S•(V ∗) is the vector
space of polynomial forms on V . Let NS•(V ∗), NΛ•(V ∗) be the number operators
on S•(V ∗), Λ•(V ∗), which act by multiplication by k on Sk(V ∗), Λk(V ∗). Then

(4.2) LY |Λ•(V ∗)⊗S•(V ∗) = NS•(V ∗) +NΛ•(V ∗).

By (4.1) and (4.2), the cohomology of the polynomial forms (Λ•(V ∗) ⊗ S•(V ∗), dV )

on V is equal to R1.
Assume that V is equipped with a scalar product. Then Λ•(V ∗), S•(V ∗) inherit

associated scalar products. For instance, if V = R, then ‖1⊗j‖2 = j!. With respect
to this scalar product on Λ•(V ∗) ⊗ S•(V ∗), iY is the adjoint of dV . Therefore LY is
the associated Hodge Laplacian on Λ•(V ∗)⊗S•(V ∗). Remarkably enough, it does not
depend on gV . By (4.2), we get

(4.3) Ker(LY ) = R1.

We have given a Hodge theoretic interpretation to the proof that the cohomology of
the complex of polynomial forms is concentrated in degree 0.

Let ∆V denote the (negative) Laplacian on V . Let L2(V ) be the corresponding
Hilbert space of square integrable real-valued functions on V .

Definition 4.1. — Let T : S•(V ∗) → L2(V ) be the map such that given
P ∈ S•(V ∗), then

(4.4) (TP )(Y ) = π−n/4e−
|Y |2

2 (e−∆V /2P )(
√

2Y ).

Since P is a polynomial, e−∆V /2P is defined by taking the obvious formal expansion
of e−∆V /2. Its inverse, the Bargmann kernel, is given by

(4.5) (Bf)(Y ) = πn/4e∆V /2
(
e|Y |

2/4f(
Y√

2
)
)
.

Here the operator e∆V /2 is defined via the standard heat kernel of V .
Set

(4.6) d = TdVB, d
∗

= TiYB : Λ•(V ∗)⊗ L2(V )→ Λ•(V ∗)⊗ L2(V ).
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Then by (4.4) and (4.5), we get

(4.7) d =
1√
2

(dV + Y ∗∧) , d
∗

=
1√
2

(dV ∗ + iY ).

Here Y ∗ is the metric dual of Y in V ∗, and dV ∗ is the usual formal L2 adjoint of dV .
Let {ej} be an orthonormal basis of V and let {ej} be its dual basis. For U ∈ V ,

let ∇U be the usual differential along the vector U . Put Y =
∑n
j=1 Yjej , then

(4.8)

dV =

n∑
j=1

ej ∧∇ej , dV ∗ = −
n∑
j=1

iej∇ej ;

Y ∗∧ =

n∑
j=1

Yje
j∧, iY =

n∑
j=1

Yjiej .

From (4.7) and (4.8), we get

(4.9) d
2

= (d
∗
)2 = 0, TLY T

−1 = [d, d
∗
] =

1

2

(
−∆V + |Y |2 − n

)
+NΛ•(V ∗).

Note that 1
2 (−∆V + |Y |2 − n) is the harmonic oscillator on V already appeared in

(1.3). In (4.3), we saw that the kernel of [dV , iY ] in Λ•(V ∗) ⊗ S•(V ∗) is generated
by 1 and so it is 1-dimensional and is concentrated in total degree 0. Equivalently the
kernel of the unbounded operator [d, d

∗
] acting on Λ•(V ∗) ⊗ L2(V ) is 1-dimensional

and is generated by the function e−|Y |
2/2/πn/4.

4.2. The Dirac operator of Kostant

Let V be a finite dimensional real vector space of dimension n and let B be a real
valued symmetric bilinear form on V .

Let c(V ) be the Clifford algebra associated to (V,B). Namely, c(V ) is the algebra
generated over R by 1, u ∈ V and the commutation relations for u, v ∈ V ,

(4.10) uv + vu = −2B(u, v).

We denote by ĉ(V ) the Clifford algebra associated to −B. Then c(V ), ĉ(V ) are filtered
by length, and their corresponding Gr· is just Λ•(V ). Also they are Z2-graded by
length.

In the sequel, we assume that B is nondegenerate. Let ϕ : V → V ∗ be the isomor-
phism such that if u, v ∈ V ,

(4.11) (ϕu, v) = B(u, v).

If u ∈ V , let c(u), ĉ(u) act on Λ•(V ∗) by

(4.12) c(u) = ϕu ∧ −iu, ĉ(u) = ϕu ∧+iu.

Here iu is the contraction operator by u.
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Using supercommutators as in (0.9), from (4.12), we find that for u, v ∈ V ,

(4.13) [c(u), c(v)] = −2B(u, v), [ĉ(u), ĉ(v)] = 2B(u, v), [c(u), ĉ(v)] = 0.

Equation (4.13) shows that c(·), ĉ(·) are representations of the Clifford algebras c(V ),
ĉ(V ) on Λ•(V ∗).

We will apply now the above constructions to the vector space (g, B) of Section 3.1.
If {ei}m+n

i=1 is a basis of g, we denote by {e∗i }
m+n
i=1 its dual basis of g with respect

to B (i.e., B(ei, e
∗
j ) = δij), and by {ei}m+n

i=1 the dual basis of g∗.
Let κg ∈ Λ3(g∗) be such that if a, b, c ∈ g,

(4.14) κg(a, b, c) = B([a, b], c).

Let ĉ(κg) ∈ ĉ(V ) correspond to κg ∈ Λ3(g∗) defined by

(4.15) ĉ(κg) =
1

6
κg(e∗i , e

∗
j , e
∗
k) ĉ(ei) ĉ(ej) ĉ(ek).

Definition 4.2. — Let “Dg ∈ ĉ(g)⊗ U(g) be the Dirac operator

(4.16) “Dg =

m+n∑
i=1

ĉ(e∗i )ei −
1

2
ĉ(κg).

Note that ĉ(κg), “Dg areG-invariant. The operator “Dg acts naturally on C∞(G,Λ•(g∗)).

Theorem 4.3 (Kostant formula, [45], [12, Theorem 2.7.2, (2.6.11)])

(4.17) “Dg,2 = −Cg − 1

8
Trp[Ck,p]− 1

24
Trk[Ck,k].

4.3. Construction of geometric hypoelliptic operators

The operator “Dg acts naturally on C∞(G,Λ•(g∗)) and also on C∞(G,Λ•(g∗) ⊗
S•(g∗)). As we saw in Section 4.1, from a cohomological point of view, Λ•(g∗) ⊗
S•(g∗) ' R. This is how ultimately C∞(G,R) (and C∞(X,R)) will reappear.

We denote by ∆p⊕k the standard Euclidean Laplacian on the Euclidean vector
space g = p⊕ k. If Y ∈ g, we split Y in the form

Y = Y p + Y k with Y p ∈ p, Y k ∈ k.(4.18)

If U ∈ g, we use the notation

ĉ(ad(U)) = −1

4
B([U, e∗i ], e

∗
j ) ĉ(ei) ĉ(ej),

c(ad(U)) =
1

4
B([U, e∗i ], e

∗
j ) c(ei) c(ej).

(4.19)

Here is the operator Db appeared in [12, Definition 2.9.1] which acts on

C∞(G,Λ•(g∗)⊗ S•(g∗)) “'” C∞(G× g,Λ•(g∗)).(4.20)
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Definition 4.4. — Set

(4.21) Db = “Dg + ic
(

[Y k, Y p]
)

+

√
2

b

(
d
p − idk + d

p∗
+ id

k∗)
.

The introduction of i in the third term in the right-hand side of (4.21) is made so
that its principal symbol anticommutes with the principal symbol of “Dg.

Let {ej}mj=1 be an orthonormal basis of p, and let {ej}m+n
j=m+1 be an orthonormal

basis of k. If U ∈ k, ad(U)|p acts as an antisymmetric endomorphism of p and by
(4.19), we have

(4.22) c(ad(U)|p) =
1

4

∑
1≤i,j≤m

〈[U, ei], ej〉c(ei)c(ej).

Finally, if v ∈ p, ad(v) exchanges k and p and is antisymmetric with respect to B, i.e.,
it is symmetric with respect to the scalar product on g. Moreover, by (4.19)

(4.23) c(ad(v)) = −1

2

∑
m+1≤i≤m+n

1≤j≤m

〈[v, ei], ej〉c(ei)c(ej).

If v ∈ g, we denote by ∇Vv the corresponding differential operator along g. In
particular, ∇V[Y k,Y p] denotes the differentiation operator in the direction [Y k, Y p] ∈ p.
If Y ∈ g, we denote by Y p + iY k the section of U(g) ⊗R C associated with
Y p + iY k ∈ g⊗R C.

Theorem 4.5 ([12], Theorem 2.11.1). — The following identity holds:

(4.24)
D2
b

2
=

“Dg,2
2

+
1

2

∣∣∣[Y k, Y p]∣∣∣2 +
1

2b2

(
−∆p⊕k + |Y |2 −m− n

)
+
NΛ•(g∗)

b2

+
1

b

(
Y p + iY k − i∇V[Y k,Y p] + ĉ(ad(Y p + iY k)) + 2ic(ad(Y k)|p)− c(ad(Y p))

)
.

By (3.7),

(4.25) G×K g = TX ⊕N, with N = G×K k.

Let “X be the total space of TX ⊕ N over X, and let π̂ : “X → X be the natural
projection. Let Y = Y TX + Y N , Y TX ∈ TX, Y N ∈ N be the canonical sections
of π̂∗(TX ⊕N), π̂∗(TX), π̂∗(N) over “X .

Note that the natural action of K on C∞(g,Λ•(g∗)⊗ E) is given by

(4.26) (k · φ)(Y ) = ρΛ•(g∗)⊗E(k)φ(Ad(k−1)Y ), for φ ∈ C∞(g,Λ•(g∗)⊗ E).

Therefore

S•(T ∗X ⊕N∗)⊗ Λ•(T ∗X ⊕N∗)⊗ F = G×K (S•(g∗)⊗ Λ•(g∗)⊗ E),(4.27)
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and the bundle G×K C∞(g,Λ•(g∗)⊗ E) over X is just

C∞(TX ⊕N, π̂∗(Λ•(T ∗X ⊕N∗)⊗ F )).

By (4.26), the K action on C∞(G× g,Λ•(g∗)⊗ E) is given by

(k · s)(g, Y ) = ρΛ•(p∗⊕k∗)⊗E(k)s
(
gk,Ad(k−1)Y

)
.(4.28)

If a vector spaceW is a K-representation, we denote byWK its K-invariant subspace.
Then

C∞(G,S•(g∗)⊗ Λ•(g∗)⊗ E)K

= C∞(X,S•(T ∗X ⊕N∗)⊗ Λ•(T ∗X ⊕N∗)⊗ F )

“'” C∞(X,C∞(TX ⊕N, π̂∗(Λ•(T ∗X ⊕N∗)⊗ F )))

= C∞(“X , π̂∗(Λ•(T ∗X ⊕N∗)⊗ F )).

(4.29)

As we saw in Section 3.1, the connection form ωk on K-principal bundle
p : G→ X = G/K also induces a connection on C∞(TX⊕N, π̂∗(Λ•(T ∗X⊕N∗)⊗F ))

over X, which is denoted by ∇C∞(TX⊕N,π̂∗(Λ•(T∗X⊕N∗)⊗F )). In particular, for the
canonical section Y TX of π̂∗(TX) over “X , the covariant differentiation with respect
to the given canonical connection in the horizontal direction corresponding to Y TX is

(4.30) ∇C
∞(TX⊕N,π̂∗(Λ•(T∗X⊕N∗)⊗F ))

Y TX
.

Since the operator Db is K-invariant, by (4.29), it descends to an operator DXb
acting on C∞(“X , π̂∗(Λ•(T ∗X ⊕N∗)⊗F )). It is the same for the operator “Dg, which
descends to an operator “Dg,X over X.

Recall that A is the self-adjoint K-invariant endomorphism of E in Section 3.1.
For b > 0, let LXb , L

X
A,b act on C

∞(“X , π̂∗(Λ•(T ∗X ⊕N∗)⊗ F )) by

LXb = −1

2
“Dg,X,2 +

1

2
DX,2b ,

LXA,b = LXb +A.
(4.31)

Let 〈·, ·〉 be the usual L2 Hermitian product on the vector space of smooth com-
pactly supported sections of π̂∗(Λ•(T ∗X ⊕N∗)⊗ F ) over “X . Set

α =
1

2

(
−∆TX⊕N + |Y |2 −m− n

)
+NΛ•(T∗X⊕N∗),

β = ∇C
∞(TX⊕N,π̂∗(Λ•(T∗X⊕N∗)⊗F ))

Y TX
+ ĉ(ad(Y TX))

− c(ad(Y TX) + iθad(Y N ))− iρE(Y N ),

ϑ =
1

2

∣∣∣[Y N , Y TX ]
∣∣∣2.

(4.32)
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Theorem 4.6 ([12], Theorems 2.12.5, 2.13.2). — We have

(4.33) LXb =
α

b2
+
β

b
+ ϑ.

The operator ∂
∂t + LXb is hypoelliptic.

Also
1

b
∇C

∞(TX⊕N,π̂∗(Λ•(T∗X⊕N∗)⊗F ))

Y TX
is formally skew-adjoint with respect to 〈·, ·〉

and LXb −
1

b
∇C

∞(TX⊕N,π̂∗(Λ•(T∗X⊕N∗)⊗F ))

Y TX
is formally self-adjoint with respect to 〈·, ·〉.

Remark 4.7. — We will now explain the presence of the term ic([Y k, Y p]) in the
right-hand side of (4.21). Instead of Db, we could consider the operator

(4.34) Db = “Dg +
1

b
(d
p − idk + d

p∗
+ id

k∗
).

From (4.7), (4.9), (4.16) and (4.34), we get

(4.35) D2
b = “Dg,2 +

1

2b2
(−∆p⊕k) +

√
2

b
(Y p + iY k) + zero order terms.

If e ∈ k, let ∇e,l be the differentiation operator with respect to the left invariant
vector field e, by (4.28), for s ∈ C∞(G,C∞(g,Λ•(g∗)⊗ E))K ,

(4.36) ∇e,ls = (LV[e,Y ] − ρ
E(e))s.

Here [e, Y ] is a Killing vector field on g = p ⊕ k and the corresponding Lie deriva-
tive LV[e,Y ] acts on C

∞(g,Λ•(g∗)). By [12, (2.12.4)], we have the formula

(4.37) LV[e,Y ] = ∇V[e,Y ] − (c+ ĉ)(ad(e)).

When we use the identification (4.29), the operator iY k contributes the first order
differential operator i∇V[Y N ,Y TX ] along TX. This term is very difficult to control an-
alytically.

The miraculous fact is that after adding ic([Y k, Y p]) to Db, in the operator LXb ,
we have eliminated i∇V[Y N ,Y TX ] and we add instead the term ϑ = 1

2 |[Y
N , Y TX ]|2,

which is nonnegative. This ensures that the operator α
b2 + ϑ is bounded below. The

operator LXb is a nice operator.

Proposition 4.8 ([12], Proposition 2.15.1). — We have the identity[
DXb , L

X
A,b

]
= 0.(4.38)

Proof. — The classical Bianchi identity say that[
DXb ,D

X,2
b

]
= 0.(4.39)

By (4.17), “Dg,X,2 is the Casimir operator (up to a constant), so that[
DXb ,

“Dg,X,2] = 0.(4.40)
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We have the trivial [DXb , A] = 0. From (4.31), (4.39) and (4.40), we get (4.38).

By analogy with (2.16), we will need to show that as b→ 0, in a certain sense,

e−tL
X
A,b → e−tL

X
A .(4.41)

We explain here an algebraic argument which gives evidence for (4.41). This will
be the analog of (1.4). We denote by H the fiberwise kernel of α, so that

H = e−|Y |
2/2 ⊗ F.(4.42)

Let H⊥ be the orthogonal to H in L2(“X , π̂∗(Λ•(T ∗X ⊕N∗)⊗ F )).
Note that β maps H to H⊥. Let α−1 be the inverse of α restricted to H⊥. Let

P, P⊥ be the orthogonal projections on H and H⊥ respectively. We embed L2(X,F )

into L2(“X , π̂∗(Λ•(T ∗X ⊕N∗)⊗ F )) isometrically via s→ π̂∗s e−|Y |
2/2/π(m+n)/4.

Theorem 4.9 ([12], Theorem 2.16.1). — The following identify holds:

P (ϑ− βα−1β)P = LX .(4.43)

Proof. — From (4.21), we can write
1√
2
DXb = E1 +

F1

b
, with E1 =

1√
2

(“Dg,X + ic([Y N , Y TX ])
)
.(4.44)

Then comparing (4.31), (4.33) and (4.44), we get

α = F 2
1 , β = [E1, F1], ϑ = E2

1 −
1

2
“Dg,X,2.(4.45)

Since H is the kernel of F1, we have PF1 = F1P = 0. We obtain thus

P (ϑ− βα−1β)P = P

(
E2

1 − E1P
⊥E1 −

1

2
“Dg,X,2)P = (PE1P )2 − 1

2
P “Dg,X,2P.(4.46)

But H is of degree 0 in Λ•(g∗), “Dg + ic([Y k, Y p]) is of odd degree, we know that
PE1P = 0. Thus, (4.43) holds.

4.4. Hypoelliptic orbital integrals

Under the formalism of Section 3.2, we replace now the finite dimensional vector
space E by the infinite dimensional vector space

E = Λ•(p∗ ⊕ k∗)⊗ S•(p∗ ⊕ k∗)⊗ E.(4.47)

Using (4.29), from now on, we will work systematically on C∞(“X , π̂∗(Λ•(T ∗X⊕N∗)⊗F )).
Let dY be the volume element of g = p⊕k with respect to the scalar product 〈·, ·〉 =

−B(·, θ·). It defines a fiberwise volume element on the fiber TX ⊕N , which we still
denote by dY . Our kernel q(g) now acts as an endomorphism of E and verifies (3.15)
and (3.17). In what follows, the operator q(g) is given by continuous kernels q(g, Y, Y ′),
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Y, Y ′ ∈ g. Let q((x, Y ), (x′, Y ′)), (x, Y ), (x′, Y ′) ∈ “X be the corresponding kernel
on “X .

Definition 4.10 ([12], Definition 4.3.3). — For a semisimple element γ ∈ G, we
define Tr[γ]

s [Q] as in (3.46),

Tr[γ]
s [Q] =

∫
p⊥(γ)×g

TrΛ•(p∗⊕k∗)⊗E
s

[
q(e−fγef , Y, Y )

]
r(f)dfdY(4.48)

once it is well-defined. Note here TrΛ•(p∗⊕k∗)⊗E
s [·] = TrΛ•(p∗⊕k∗)⊗E [(−1)N

Λ•(p∗⊕k∗) ·],
i.e., we use the natural Z2-grading on Λ•(p∗ ⊕ k∗).

Definition 4.11. — Let P be the projection from Λ•(T ∗X ⊕ N∗) ⊗ F on
Λ0(T ∗X ⊕N∗)⊗ F .

Recall that e−tL
X
A (x, x′) is the heat kernel of LXA in Section 3.1. For t > 0,

(x, Y ), (x′, Y ′) ∈ “X , put

qX0,t
(
(x, Y ), (x′, Y ′)

)
= Pe−tL

X
A (x, x′)π−(m+n)/2e−

1
2 (|Y |2+|Y ′|2)P.(4.49)

Let e−tL
X
A,b be the heat operator of LXA,b and qXb,t

(
(x, Y ), (x′, Y ′)

)
be the kernel

of the heat operator e−tL
X
A,b associated with the volume form dx′dY ′. In [12, §11.5,

11.7], Bismut studied in detail the smoothness of qXb,t((x, Y ), (x′, Y ′)) for t > 0, b > 0,

(x, Y ), (x′, Y ′) ∈ “X . In particular, he showed that it is rapidly decreasing in the
variables Y, Y ′.

Now we state an important result [12, Theorem 4.5.2] whose proof was given in [12,
§14] where Theorem 4.9 plays an important role. It ensures that the hypoelliptic
orbital integral is well-defined for e−tL

X
A,b and that the analog of Theorem 2.2 holds

for h = e−tL
X
A and DXb .

Theorem 4.12. — Given 0 < ε ≤M , there exist C,C ′ > 0 such that for 0 < b ≤M ,
ε ≤ t ≤M , (x, Y ), (x′, Y ′) ∈ “X ,∣∣∣qXb,t((x, Y ), (x′, Y ′)

)∣∣∣ ≤ C exp
(
− C ′

(
d2(x, x′) + |Y |2 + |Y ′|2

))
.(4.50)

Moreover, as b→ 0,

qXb,t
(
(x, Y ), (x′, Y ′)

)
→ qX0,t

(
(x, Y ), (x′, Y ′)

)
.(4.51)

The formal analog of Theorem 2.2 is as follows.

Theorem 4.13 ([12], Theorem 4.6.1). — For any b > 0, t > 0, we have

Tr[γ]
[
e−tL

X
A

]
= Tr[γ]

s

[
e−tL

X
A,b

]
.(4.52)
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Proof. — In [12, §4.3], Bismut showed that the hypoelliptic orbital integral (4.48)
is a trace on certain algebras of operators given by smooth kernels which exhibit a
Gaussian decay like in (4.50). By Theorem 4.12, the kernel function qXb,t is in this
algebra. As in (2.15), by Proposition 4.8,

∂

∂b
Tr[γ]
s

[
e−tL

X
A,b

]
= Tr[γ]

s

[
−t
( ∂
∂b

LXA,b

)
e−tL

X
A,b

]
= −tTr[γ]

s

[
1

2

[
DXb ,

∂

∂b
DXb

]
e−tL

X
A,b

]
= − t

2
Tr[γ]
s

[[
DXb , (

∂

∂b
DXb )e−tL

X
A,b

]]
= 0.

(4.53)

By Theorem 4.12, we have

lim
b→0

Tr[γ]
s

[
e−tL

X
A,b

]
= Tr[γ]

[
e−tL

X
A

]
.(4.54)

From (4.53), (4.54), we get (4.52).

4.5. Proof of Theorem 3.10

For b > 0, s(x, Y ) ∈ C∞(“X , π̂∗(Λ•(T ∗X ⊕N∗)⊗ F )), set

Fbs(x, Y ) = s(x,−bY ).(4.55)

Put

L
X
A,b = FbL

X
A,bF

−1
b .(4.56)

Let qX
b,t

((x, Y ), (x′, Y ′)) be the kernel associated with e−tL
X
A,b . When t = 1, we will

write qX
b

instead of qX
b,1

. Then from (4.56), we have

qX
b,t

(
(x, Y ), (x′, Y ′)

)
= (−b)m+nqXb,t

(
(x,−bY ), (x′,−bY ′)

)
.(4.57)

Let aTX be the vector field on X associated with a in (3.33) induced by the left action
of G on X (cf. (3.10)). Let d(·, X(γ)) be the distance function to X(γ).

Theorem 4.14 ([12], Theorem 9.1.1, (9.1.6)). — Given 0 < ε ≤ M , there exist
C,C ′ > 0, such that for any b ≥ 1, ε ≤ t ≤M , (x, Y ), (x′, Y ′) ∈ “X ,∣∣∣qX

b,t

(
(x, Y ), (x′, Y ′)

)∣∣∣ ≤ Cb4m+2n exp
(
−C
(
d2(x, x′) + |Y |2 + |Y ′|2

))
.(4.58)

Given δ > 1, β > 0, 0 < ε ≤ M , there exist C,C ′ > 0, such that for any b ≥ 1,
ε ≤ t ≤M , (x, Y ) ∈ “X , if d(x,X(γ)) ≥ β,∣∣∣qX

b,t

(
(x, Y ), γ(x, Y )

)∣∣∣ ≤ Cb−δ exp
(
−C ′

(
d2
γ(x) + |Y |2

))
.(4.59)
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Given δ > 1, β > 0, µ > 0, there exist C,C ′ > 0 such that for any b ≥ 1, (x, Y ) ∈ “X ,
if d(x,X(γ)) ≤ β, and |Y TX − aTX(x)| ≥ µ,∣∣∣qX

b,t

(
(x, Y ), γ(x, Y )

)∣∣∣ ≤ Cb−δe−C′|Y |2 .(4.60)

In view of Theorem 4.14, the proof of Theorem 3.10 consists in obtaining the
asymptotics of Tr[γ]

s [e−tL
X
A,b ] as b → +∞. By [12, (2.14.4)], the operator in (4.31)

associated with B/t is up to conjugation, tLX√
tb
. Observe that Jγ(Y k0 ) is unchanged

when replacing the bilinear form B by B/t, t > 0. Thus we only need to establish the
corresponding result for t = 1.

When f ∈ p⊥(γ), we identify ef with efp1. For f ∈ p⊥(γ), Y ∈ (TX ⊕N)ef , set

QX
b

(ef , Y ) = TrΛ•(T∗X⊕N∗)⊗F
s

[
γqX
b

(
(ef , Y ), γ(ef , Y )

)]
.(4.61)

Then

Tr[γ]
s

[
e−LXA,b

]
=

∫
(ef ,Y )∈π̂−1p⊥(γ)

QX
b

(ef , Y )r(f)dfdY.(4.62)

Take β ∈]0, 1]. By Theorem 4.14, as b→ +∞,∫
(ef ,Y )∈π̂−1p⊥(γ),|f |≥β

QX
b

(ef , Y )r(f)dfdY → 0,∫
(ef ,Y )∈π̂−1p⊥(γ),|f |<β,|Y TX−aTX(ef )|≥µ

QX
b

(ef , Y )r(f)dfdY → 0.

(4.63)

We need to understand the integral on the domain |f | < β, |Y TX − aTX(ef )| < µ,
when b→ +∞.

Let π : X → X be the total space of the tangent bundle TX to X. Let ϕt|t∈R be
the group of diffeomorphisms of X induced by the geodesic flow. By [12, Proposi-
tion 3.5.1], ϕ1(x, Y TX) = γ · (x, Y TX) is equivalent to x ∈ X(γ) and Y TX = aTX(x).
Equation (4.63) shows that as b → +∞, the right-hand side of (4.62) localizes near
the minimizing geodesic xt connecting x and γx so that ẋ = aTX .

Let N(γ) be the vector bundle on X(γ) which is the analog of the vector bundle N
onX in (4.25). Then N(γ) ⊂ N |X(γ)

. Let N⊥(γ) be the orthogonal to N(γ) in N |X(γ)
.

Clearly,

N⊥(γ) = Z(γ)×K(γ) k
⊥(γ).(4.64)

Let pγ : X → X(γ) be the projection defined by (3.40) and (3.42). We trivial-
ize the vector bundles TX,N by parallel transport along the geodesics orthogonal
to X(γ) with respect to the connection ∇TX ,∇N , so that TX,N can be identified
with p∗γTX|X(γ)

, p∗γN |X(γ)
. At x = p1, we have

N(γ) = k(γ), N⊥(γ) = k⊥(γ).(4.65)
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Therefore at ργ(1, f), we may write Y N ∈ N in the form

Y N = Y k0 + Y N,⊥, with Y k0 ∈ k(γ), Y N,⊥ ∈ k⊥(γ).(4.66)

Let dY k0 , dY N,⊥ be the volume elements on k(γ), k⊥(γ), so that

dY N = dY k0 dY
N,⊥.(4.67)

To evaluate the limit of (4.62) as b → +∞ for β > 0, we may by (4.63), as well
consider the integral

(4.68)
∫
|f |<β,|Y TX−aTX(ef )|<µ

QX
b

(
ef , Y

)
r(f)dfdY TXdY k0 dY

N,⊥

= b−4m−2n+2r

∫
|f |<b2β,|Y TX |<b2µ

QX
b

(
ef/b

2

,
Y TX

b2
+ aTX(ef/b

2

), Y k0 +
Y N,⊥

b2

)
r(f/b2)dfdY TXdY k0 dY

N,⊥.

Let z(γ) be the another copy of z(γ), and let z(γ)∗ be the corresponding copy of the
dual of z(γ). Also, for u ∈ z(γ)∗, we denote by u the corresponding element in z(γ)∗.
Let e1, . . . , er be a basis of z(γ), let e1, . . . , er be the corresponding dual basis of z(γ)∗.

Put G = End(Λ•(g∗))“⊗Λ•(z(γ)∗). Let er+1, . . . , em+n be a basis of z⊥(γ), and
let e∗r+1, . . . , e

∗
m+n be the dual basis to er+1, . . . , em+n with respect to B|z⊥(γ)

. Then

G is generated by all the monomials in c(ei), ĉ(ei), 1 ≤ i ≤ m + n, ej , 1 ≤ j ≤ r.
Let T̂rs be the linear map from G into R that, up to permutation, vanishes on all
monomials except those of the following form:

T̂rs
[
c(e1)e1 · · · c(er)erc(e∗r+1)ĉ(er+1) · · · c(e∗m+n)ĉ(em+n)

]
= (−1)r(−2)m+n−r.

(4.69)

For u ∈ G , v ∈ End(E), we define

T̂rs[uv] = T̂rs[u] TrE [v].(4.70)

Set

α =

r∑
i=1

c(ei)e
i ∈ c(z(γ))“⊗Λ•(z(γ)∗).(4.71)

Definition 4.15. — Let qXb ((x, Y ), (x′, Y ′)) denote the smooth kernel associated
with e−LXA,b−α, and

QXb (x, Y ) = γqXb
(
(x, Y ), γ(x, Y )

)
.(4.72)

Since L
X
A,b + α can be obtained from L

X
A,b by a conjugation, by a simple argument

on Clifford algebras, we get:
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Proposition 4.16 ([12], Proposition 9.5.4). — For b > 0, the following identity
holds:

QX
b

(x, Y ) = b−2rT̂rs
[
QXb (x, Y )

]
.(4.73)

Now we define a limit operator acting on C∞(p × g,Λ•(g∗)“⊗Λ•(z(γ)∗) ⊗ E). We
denote by y the tautological section of the first component of p in p × g, and by
Y = Y p + Y k the tautological section of g = p⊕ k. Let dy the volume form on p and
let dY the volume form on g = p⊕ k.

Definition 4.17. — Given Y k0 ∈ k(γ), set

(4.74) Pa,Y k0
=

1

2

∣∣∣[Y k, a] + [Y k0 , Y
p]
∣∣∣2 − 1

2
∆p⊕k +

r∑
i=1

c(ei)e
i −∇HY p −∇V[a+Y k0 ,[a,y]]

− ĉ(ad(a)) + c(ad(a) + iθ ad(Y k0 ))

acting on C∞(p× g,Λ•(g∗)“⊗Λ•(z(γ)∗)⊗ E).

Let RY k0 ((y, Y ), (y′, Y ′)) be the smooth kernel of e
−P

a,Y k0 with respect to the volume
form dydY on p× g. Then

RY k0 ((y, Y ), (y′, Y ′)) ∈ End(Λ•(z⊥(γ)∗))“⊗c(z(γ))“⊗Λ•(z(γ)∗).(4.75)

The following result gives an estimate and pointwise asymptotics of QXb .

Theorem 4.18 ([12], Theorems 9.5.6, 9.6.1). — Given β > 0, there exist C,C ′γ > 0

such that for b ≥ 1, f ∈ p⊥(γ), |f | ≤ βb2, and |Y TX | ≤ βb2,

(4.76) b−4m−2n
∣∣∣QXb (ef/b2 , aTX(ef/b

2

) + Y TX/b2, Y k0 + Y N,⊥/b2
)∣∣∣

≤ C exp
(
−C ′

∣∣Y k0 ∣∣2 − C ′γ (|f |2 +
∣∣Y TX ∣∣2 +

∣∣(Ad(k−1)− 1)Y N,⊥
∣∣+
∣∣[a, Y N,⊥]

∣∣)) .
As b→ +∞,

(4.77) b−4m−2nQXb

(
ef/b

2

, aTX(ef/b
2

) + Y TX/b2, Y k0 + Y N,⊥/b2
)

→ e−(|a|2+|Y k0 |
2)/2 Ad

(
k−1

)
RY k0

(
(f, Y ),Ad(k−1)(f, Y )

)
ρE
(
k−1

)
e−iρ

E(Y k0 )−A.

A crucial computation in [12, Theorem 5.5.1, (5.1.11)] gives the following key result.

Theorem 4.19. — For Y k0 ∈ k(γ), we have the identity

(2π)r/2
∫
p⊥(γ)×(p⊕k⊥(γ))

T̂rs

[
Ad(k−1)RY k0

(
(y, Y ),Ad(k−1)(y, Y )

)]
dydY = Jγ

(
Y k0
)
.

(4.78)

From Theorems 4.18, 4.19, (4.61)-(4.63), and (4.73), we obtain Theorem 3.10.
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Example 4.20 ([12], §10.6; [13], §5.1). — In Example 3.14, we have N equal to 0,“X = TX ⊕N = TR = R⊕ R. Using the coordinates (x, y) ∈ R⊕ R, we get

LXb = Mb +
NΛ•(R)

b2
, with Mb =

1

2b2

(
− ∂2

∂y2
+ y2 − 1

)
+
y

b

∂

∂x
.(4.79)

The heat kernel pb,t((x, y), (x′, y′)) associated with e−tMb depends only on x′−x, y, y′.
The heat kernel of the operator − ∂2

∂y2 + y ∂
∂x was first calculated by Kolmogorov [44],

and pb,t((x, y), (x′, y′)) has been computed explicitly in [12, Proposition 10.5.1].

Let a ∈ p = R. Then a acts as translation by a on the first component of R ⊕ R.
From (4.48) and (4.79), we deduce that

Tr[a]
s

[
e−tL

X
b

]
=
(

1− e−t/b
2
)∫

R
pb,t
(
(0, Y ), (a, Y )

)
dY.(4.80)

Theorem 4.13 can be stated in the special case of this example as follows.

Theorem 4.21. — For any t > 0, b > 0, we have

Tr[a]
[
et∆

R/2
]

= Tr[a]
s

[
e−tL

X
b

]
.(4.81)

Proof. — We give a simple direct proof which can be ultimately easily justified. Note
that

Mb =
1

2b2

(
− ∂2

∂y2
+

(
y + b

∂

∂x

)2

− 1

)
− 1

2

∂2

∂x2
.(4.82)

By (4.82), we get

e−b
∂2

∂x∂yMbe
b ∂2

∂x∂y =
1

2b2

(
− ∂2

∂y2
+ y2 − 1

)
− 1

2

∂2

∂x2
.(4.83)

Using the fact that pb,t((x, y), (x′, y′)) only depends on x′ − x, y, y′, we deduce from
(4.83) that ∫

R
pb,t
(
(0, y), (a, y)

)
dy = Tr

[
e
− t

2b

(
− ∂2

∂y2 +y2−1
)]

Tr[a]
[
et∆

R/2
]

=
1

1− e−t/b2
Tr[a]

[
et∆

R/2
]
,

(4.84)

since the spectrum of the harmonic oscillator 1
2 (− ∂2

∂y2 + y2 − 1) is N. By (4.80) and
(4.84), we get (4.81).

By (4.81), we can compute the limit as b → +∞ of the right-hand side of (4.80)
from the explicit formula of pb,t((x, y), (x′, y′)), and in this way we get (3.66). In other
words, we interpret (3.66) as a consequence of a local index theorem.
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4.6. A brief idea on the proof of Theorems 4.12, 4.14, 4.18

The wave operator for the elliptic Laplacian has the property of finite propagation
speed, which explain the Gaussian decay of the elliptic heat kernel. The hypoelliptic
Laplacian does not have a wave equation.

One difficult point in Theorems 4.12, 4.14 and 4.18 is to get the uniform Gaussian-
like estimate. Let us give an argument back to [12, §12.3] which explains some heuristic
relations of the hypoelliptic heat equation to the wave equation on X. Here qXb,t will
denote scalar hypoelliptic heat kernel on the total space X of the tangent bundle TX.
Put

σb,t((x, Y ), x′) =

∫
Y ′∈Tx′X

qXb,t
(
(x, Y ), (x′, Y ′)

)
dY ′,

Mb,t((x, Y ), x′) =
1

σb,t((x, Y ), x′)

∫
Y ′∈Tx′X

qXb,t
(
(x, Y ), (x′, Y ′)

)
(Y ′ ⊗ Y ′)dY ′.

(4.85)

Then Mb,t((x, Y ), x′) takes its values in symmetric positive endomorphisms of Tx′X.
We can associate to Mb,t the second order elliptic operator acting on C∞(X,R),

Mb,t(x, Y )g(x′) =
〈
∇TX· ∇·,Mb,t((x, Y ), x′)g(x′)

〉
,(4.86)

where the operator ∇TX· ∇· acts on the variable x′. Then we have [12, (12.3.12)](
b2
∂2

∂t2
+
∂

∂t
−Mb,t(x, Y )

)
σb,t((x, Y ), ·) = 0.(4.87)

This is a hyperbolic equation. As b → 0, it converges in the proper sense to the
standard parabolic heat operator( ∂

∂t
− 1

2
∆
)
pt(x, ·) = 0.(4.88)

The above consideration plays an important role in the proof given in [12] of the
estimates (4.50), (4.58), (4.59) and (4.76).

5. ANALYTIC TORSION AND DYNAMICAL ZETA FUNCTION

Recall that a flat vector bundle (F,∇) with flat connection ∇ over a smooth man-
ifold M comes from a representation ρ : π1(M) → GL(q,C) so that if M̃ is the
universal cover of M , then F = M̃ ×ρ Cq. The analytic torsion associated with a flat
vector bundle on a smooth compact Riemannian manifold M is a classical spectral
invariant defined by Ray and Singer [56] in 1971. It is a regularized determinant of the
Hodge Laplacian for the de Rham complex associated with this flat vector bundle.

For Γ ⊂ G a discrete cocompact torsion free subgroup of a connected reductive Lie
group G, if Z = Γ\G/K is the locally symmetric space as in (3.11), then Γ = π1(Z).
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By the superrigidity theorem of Margulis [51, Chap. VII, §5], if the real rank of G
is ≥ 2, a general representation of Γ is not too far from a unitary representation of Γ

or the restriction to Γ of a representation of GC, the complexification of G. See [24,
Chap. XIII, 4.6] for more details.

Assume that the difference of the complex ranks of G and K is different from 1. For
a flat vector bundle induced by a GC-representation, as an application of Theorem 0.1,
we obtain a vanishing result of individual orbital integrals that appear in the super-
trace of the heat kernel from which the analytic torsion can be obtained. In particular,
this implies that the associated analytic torsion is equal to 1 (cf. Theorem 5.5).

We explain finally Shen’s recent solution on Fried’s conjecture for locally symmetric
spaces: for any unitary representation of Γ such that the cohomology of the associated
flat vector bundle on Z = Γ\G/K vanishes, the value at zero of a Ruelle dynamical
zeta function identifies to the associated analytic torsion.

This section is organized as follows. In Section 5.1, we introduce the Ray-Singer
analytic torsion. In Section 5.2, we study the analytic torsion on locally symmetric
spaces for flat vector bundles induced by a representation of GC. Finally in Section 5.3,
we describe Shen’s solution of Fried’s conjecture in the case of locally symmetric
spaces. In Section 5.4, we make some remarks on related research directions.

5.1. Analytic torsion

Let M be a compact manifold of dimension m. Let (F,∇) be a flat complex vector
bundle on M with flat connection ∇ (i.e., its curvature (∇)2 = 0). The flat connec-
tion ∇ induces an exterior differential operator d on Ω•(M,F ), the vector space of
differential forms on M with values in F , and d2 = 0. Let H•(M,F ) be the cohomol-
ogy group of the complex (Ω•(M,F ), d) as in (2.8).

Let hF be a Hermitian metric on F . Then as explained in Section 2.2, gTM and
hF induce naturally a Hermitian product on Ω•(M,F ). Let D be as in (2.10).

We introduce here a refined spectral invariant of D2 which is particularly interest-
ing.

Let P be the orthogonal projection from Ω•(M,F ) onto Ker(D) and let
P⊥ = 1− P . Let N be the number operator acting on Ω•(M,F ), i.e., multipli-
cation by j on Ωj(M,F ). For s ∈ C and Re(s) >

m

2
, set

θ(s) = −
m∑
j=0

(−1)jj Tr |Ωj(M,F )
[(D2)−sP⊥]

= − 1

Γ(s)

∫ +∞

0

Trs[Ne
−tD2

P⊥]ts
dt

t
,

(5.1)

where Γ(·) is the Gamma function.
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From the small time heat kernel expansion (cf. [3, Theorem 2.30]), we know that
θ(s) is well-defined for Re(s) >

m

2
and extends holomorphically near s = 0.

Definition 5.1 ([56]). — The (Ray-Singer) analytic torsion is defined as

T (gTM , hF ) = exp
(1

2

∂θ

∂s
(0)
)
.(5.2)

We have the formal identity,

(5.3) T (gTM , hF ) =

m∏
j=0

det(D2|Ωj(M,F )
)(−1)jj/2.

Remark 5.2. — a) If hF is parallel with respect to ∇, then F is induced by a
unitary representation of π1(M), and we say that (F,∇, hF ) is a unitary flat
vector bundle. In this case, if m is even and M is orientable, by a Poincaré
duality argument, we have T (gTM , hF ) = 1.

b) If m is odd, and H•(M,F ) = 0, then T (gTM , hF ) does not depend on the choice
of gTM , hF , thus it is a topological invariant (cf. [23, Theorem 0.1]).

5.2. Analytic torsion for locally symmetric spaces

We use the same notation and assumptions as in Section 3. Recall that
ρE : K → U(E) is a finite dimensional unitary representation ofK, and F = G×KE is
the induced Hermitian vector bundle on the symmetric space X = G/K. Assume
form now on that the complexification GC of G exists, and the representation ρE is
induced by a holomorphic representation of GC → Aut(E), that is still denoted
by ρE . We have the canonical identification of G×K E as a trivial bundle E on X:

F = G×K E → X × E, (g, v)→ ρE(g)v.(5.4)

This induces a canonical flat connection ∇ on F such that

∇ = ∇F + ρEωp.(5.5)

Remark 5.3. — Let U be a maximal compact subgroup of GC. Then U is the compact
form of G and u = ip⊕k is its Lie algebra. By Weyl’s unitary trick [43, Proposition 5.7],
if U is simply connected, it is equivalent to consider representations of G, of U on E, or
holomorphic representations of the complexification GC of G on E, or representations
of g, or u on E.

We fix a U -invariant Hermitian metric on E. This implies in particular it is K-in-
variant, and ρE(v) ∈ End(E) is symmetric for v ∈ p. This induces a Hermitian met-
ric hF on F . As in Section 5.1, we consider now the operator D acting on Ω•(X,F )

induced by gTX , hF .
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Let Cg,X be the Casimir operator of G acting on C∞(X,Λ•(T ∗X)⊗F ) as in (3.8).
Then by [12, (2.6.11)] and [22, Proposition 8.4], we have

D2 = Cg,X − Cg,E .(5.6)

Let T be a maximal torus in K and let t ⊂ k be its Lie algebra. Set

b = {v ∈ p : [v, t] = 0}.(5.7)

Put

h = b⊕ t.(5.8)

By [43, p. 129], we know that h is a Cartan subalgebra of g and that dim t is the
complex rank of K and dim h is the complex rank of G. Also, m and dim b have the
same parity.

For γ = eak−1 ∈ G a semisimple element as in (3.33), let K0(γ) ⊂ K(γ) be
the connected component of the identity. Let T (γ) ⊂ K0(γ) be a maximal torus
in K0(γ), and let t(γ) ⊂ k(γ) be its Lie algebra. By (3.34) and (3.38), k commutes
with T (γ), thus by [43, Theorem 4.21], there exists k1 ∈ K such that k1T (γ)k−1

1 ⊂ T ,
k1kk

−1
1 ⊂ T . By working on k1γk

−1
1 = eAd(k1)a(Ad(k1)k)−1 instead of γ, we may and

we will assume that T (γ) ⊂ T , k ∈ T . In particular t(γ) ⊂ t. Set

b(γ) = {v ∈ p : [v, t(γ)] = 0, Ad(k)v = v}.(5.9)

Then

b ⊂ b(γ) and b(1) = b.(5.10)

Recall that NΛ•(T∗X) is the number operator on Λ•(T ∗X).

Theorem 5.4 ([12], Theorem 7.9.1, [21], [22], Theorem 8.6, Remark 8.7)
For any semisimple element γ ∈ G, if m is even, or if m is odd and dim b(γ) ≥ 2,

then for any t > 0, we have

Tr[γ]
s

[(
NΛ•(T∗X) − m

2

)
e−

t
2D

2
]

= 0.(5.11)

Proof. — By Theorem 3.10, (3.8) and (5.6), for any t > 0 and any semisimple element
γ ∈ G,

(5.12) Tr[γ]
s

[(
NΛ•(T∗X) − m

2

)
e−

t
2D

2
]

=
e−|a|

2/2t

(2πt)p/2
e
t
16 Trp[Ck,p]+ t

48 Trk[Ck,k]∫
k(γ)

Jγ(Y k0 ) TrΛ•(p∗)⊗E
s

[(
NΛ•(p∗) − m

2

)
ρΛ•(p∗)⊗E(k−1)e−iρ

Λ•(p∗)⊗E(Y k0 )+ t
2C

g,E
]

e−|Y
k
0 |

2/2t dY k0
(2πt)q/2

.
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But

(5.13) TrΛ•(p∗)⊗E
s

[(
NΛ•(p∗) − m

2

)
ρΛ•(p∗)⊗E(k−1)e−iρ

Λ•(p∗)⊗E(Y k0 )+ t
2C

g,E
]

= TrΛ•(p∗)
s

[(
NΛ•(p∗) − m

2

)
ρΛ•(p∗)(k−1)e−iρ

Λ•(p∗)(Y k0 )
]

TrE
[
ρE(k−1)e−iρ

E(Y k0 )+ t
2C

g,E
]
.

If u is an isometry of p, we have

TrΛ•(p∗)
s [u] = det

(
1− u−1

)
,

TrΛ•(p∗)
s

[
NΛ•(p∗)u

]
=

∂

∂s
det
(
1− u−1es

)
(0).

(5.14)

If the eigenspace associated with the eigenvalue 1 is of dimension ≥ 1, the fist quantity
in (5.14) vanishes. If it is of dimension ≥ 2, the second expression in (5.14) also
vanishes. Also, if m is even and u preserves the orientation, then

TrΛ•(p∗)
s

[(
NΛ•(p∗) − m

2

)
u
]

= 0.(5.15)

From (5.12), (5.14) and (5.15), we get (5.11).

Now let Γ be a discrete torsion free cocompact subgroup of G. Set Z = Γ\X. Then
π1(Z) = Γ and the flat vector bundle F descents as a flat vector bundle F over Z.

Theorem 5.5 ([22], Remark 8.7). — For a flat vector bundle F on Z = Γ\X in-
duced by a holomorphic representation of GC, if m is even, or if m is odd and
dim b ≥ 3, then T (gTZ , hF ) = 1.

Proof. — Under the condition of Theorem 5.5, from Theorem 5.4, (3.64) and (5.10),
we get

Trs

[(
NΛ•(T∗Z) − m

2

)
e−

t
2D

Z,2
]

= 0.(5.16)

Now Theorem 5.5 is a direct consequence of (2.14) for h = 1, (5.1) and (5.16).

Remark 5.6. — a) If F is trivial, i.e., it is induced by the trivial representation
of G, then Theorem 5.4 under the condition of Theorem 5.5 was first obtained
by Moscovici-Stanton [54, Theorem 2.1].

b) Assume G is semisimple, then the induced metric hF on F is unimodular, i.e.,
the metric hdetF on detF := ΛmaxF induced by hF is parallel with respect
to the flat connection on detF . In this case, Theorem 5.4 for γ = 1 was first
obtained by Bergeron-Venkatesh [2, Theorem 5.2], and Müller and Pfaff [55]
gave a new proof of Theorem 5.5.

c) We can drop the condition on torsion freeness of Γ in (5.16).
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Remark 5.7. — For p, q ∈ N, let SO0(p, q) be the connected component of the identity
in the real group SO(p, q). By [39, Table V p. 5.18] and [43, Table C1 p. 713, Table C2
p. 714], among the noncompact simple connected complex groups such that m is odd
and dim b = 1, there is only SL2(C), and among the noncompact simple real connected
groups, there are only SL3(R), SL4(R), SL2(H), and SO0(p, q) with pq odd > 1. Also,
by [39, p. 519, 520], sl2(C) = so(3, 1), sl4(R) = so(3, 3), sl2(H) = so(5, 1). Therefore
the above list can be reduced to SL3(R) and SO0(p, q) with pq odd > 1.

Assume from now on that ρ : Γ → U(q) be a unitary representation. Then
F = X ×Γ Cq is a flat vector bundle on Z = Γ\X with metric hF induced by the
canonical metric on Cq, i.e., F is a unitary flat vector bundle on Z with holonomy ρ.
By Remark 5.2, if m is even, then T (gTZ , hF ) = 1. Thus we can simply assume that
m is odd.

Observe that the pull back of (F, hF ) over X is Cq with canonical metric, thus the
heat kernel on X is given by

e−tD
2

(x, x′) = e−tD
2
0 (x, x′)⊗ IdCq(5.17)

where e−tD
2
0 (x, x′) ∈ Λ•(T ∗xX) ⊗ Λ•(T ∗x′X)∗ is the heat kernel on X for the trivial

representation G→ Aut(C). Thus,

(5.18) Trs

[(
NΛ•(T∗X) − m

2

)
γe−tD

2

(γ−1z̃, z̃)
]

= Tr[ρ(γ)] Trs

[(
NΛ•(T∗X) − m

2

)
γe−tD

2
0 (γ−1z̃, z̃)

]
.

Note that for γ ∈ Γ, Tr[ρ(γ)] depends only on the conjugacy class of γ, thus form
(3.12), (3.27) and (5.18), we get the analog of Theorem 3.5,

(5.19) Trs

[(
NΛ•(T∗Z) − m

2

)
e−tD

Z,2
]

=
∑

[γ]∈[Γ]

Vol
(
Γ ∩ Z(γ)\X(γ)

)
Tr[ρ(γ)] Tr[γ]

s

[(
NΛ•(T∗X) − m

2

)
e−tD

2
0

]
.

Since the metric hF is given by the unitary representation ρ and gTZ is induced
by the bilinear form B on g, we denote the analytic torsion in Section 5.1 by T (F ).

By Theorem 5.4 for the trivial representation G → Aut(C) and (5.19), we get a
result similar to Theorem 5.5.

Theorem 5.8 ([54], Corol. 2.2). — For a unitary flat vector bundle F on Z = Γ\X,
if m is odd and dim b ≥ 3, then for t > 0, we have

Trs

[(
NΛ•(T∗Z) − m

2

)
e−tD

Z,2/2
]

= 0.(5.20)

In particular, T (F ) = 1.
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5.3. Fried’s conjecture for locally symmetric spaces

The possible relation of the topological torsion to the dynamical systems was first
observed by Milnor [53] in 1968. A quantitative description of their relation was
formulated by Fried [30] when Z is a closed oriented hyperbolic manifold. Namely,
he showed that for an acyclic unitary flat vector bundle F , the value at zero of
the Ruelle dynamical zeta function, constructed using the closed geodesics in Z and
the holonomy of F , is equal to the associated analytic torsion. In [31, p.66], Fried’s
conjectured that a similar result still holds for general closed locally homogenous
manifolds. In 1991, Moscovici-Stanton [54] made an important contribution to the
proof of Fried’s conjecture for locally symmetric spaces.

Let Γ ⊂ G be a discrete cocompact torsion free subgroup of a connected reductive
Lie group G. Then we get the symmetric space X = G/K and the locally symmetric
space Z = Γ\X. By Remark 5.2, we may assume that dimZ = m is odd.

Recall that [Γ] is the set of conjugacy classes of Γ. For [γ] ∈ [Γ]\{1}, denote
by B[γ] the space of closed geodesics in [γ]. As a subset of the loop space LZ,
we equipped B[γ] the induced topology and smooth structure. By Proposition 3.9,
B[γ] ' Γ ∩ Z(γ)\X(γ) is a compact locally symmetric space, and the elements of B[γ]

have the same length l[γ] > 0. The group S1 acts on B[γ] by rotation. This ac-
tion is locally free. Denote by χorb(S1\B[γ]) ∈ Q the orbifold Euler characteristic
number for the quotient orbifold S1\B[γ]. Recall that if e(S1\B[γ],∇T (S1\B[γ])) ∈
Ω•(S1\B[γ], o(T (S1\B[γ]))) is the Euler form defined using Chern-Weil theory for the
Levi-Civita connection ∇T (S1\B[γ]), then

χorb(S1\B[γ]) =

∫
S1\B[γ]

e(S1\B[γ],∇T (S1\B[γ])).(5.21)

Let

n[γ] =
∣∣Ker

(
S1 → Diff(B[γ])

)∣∣(5.22)

be the generic multiplicity of B[γ].

Definition 5.9. — Given a representation ρ : Γ→ U(q), we say that the dynamical
zeta function Rρ(σ) is well-defined if the following properties hold:

1. For σ ∈ C, Re(σ)� 1, the sum

Ξρ(σ) =
∑

[γ]∈[Γ]\{1}

Tr[ρ(γ)]
χorb(S1\B[γ])

n[γ]
e−σl[γ](5.23)

defines to a holomorphic function.
2. The function Rρ(σ) = exp(Ξρ(σ)) has a meromorphic extension to σ ∈ C.

Note that γ ∈ Γ is primitive means if γ = βk, β ∈ Γ, k ∈ N∗, then γ = β.
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Remark 5.10. — If Z is a compact oriented hyperbolic manifold, then S1\B[γ] is a
point. Moreover, if ρ is the trivial representation, then

Rρ(σ) = exp

 ∑
[γ]∈[Γ]\{1}

1

n[γ]
e−σl[γ]

 =
∏

[γ] primitive,γ 6=1

(
1− e−σl[γ]

)−1
.(5.24)

Theorem 5.11 ([62]). — For any unitary flat vector bundle F on Z with holon-
omy ρ, the dynamical zeta function Rρ(σ) is a well-defined meromorphic function
on C which is holomorphic for Re(σ) � 1. Moreover, there exist explicit constants
Cρ ∈ R and rρ ∈ Z such that, when σ → 0, we have

Rρ(σ) = CρT (F )2σrρ + O(σrρ+1).(5.25)

If H•(Z,F ) = 0, then

Cρ = 1, rρ = 0,(5.26)

so that

Rρ(0) = T (F )2.(5.27)

Proof of Theorem 5.11. — The most difficult part of the proof is to express the Rρ(σ)

as a product of determinant of shifted Casimir operators, (2) in fact being the analytic
torsion. Shen’s idea is to interpret the right-hand side of (5.23) as the Selberg trace
formula (by eliminating the term Tr[1]) of the heat kernel for some representations
of K by using Theorems 3.5 and 3.10.

By Theorem 5.8, we can concentrate on the proof in the case dim b = 1. From now
on, we assume dim b = 1.

Up to conjugation, there exists a unique standard parabolic subgroup Q ⊂ G with
Langlands decomposition Q = MQAQNQ such that dimAQ = 1. Let m, b, n be the
respective Lie algebras ofMQ, AQ, NQ. LetM be the connected component of identity
of MQ. Then M is a connected reductive group with maximal compact subgroup
KM = M ∩ K and with Cartan decomposition m = pm ⊕ km, and KM acts on pm,
M acts on n andM acts trivially on b. We have an identity of realKM -representations

p ' pm ⊕ b⊕ n,(5.28)

and dim n is even. Moreover there exists ν ∈ b∗ such that (cf. [62, Proposition 6.2])

[a, f ] = 〈ν, a〉f for any f ∈ n, a ∈ b.(5.29)

For γ ∈ G semisimple, Shen [62, Proposition 4.11] observes that

γ can be conjugated into H := exp(b)T (cf.(5.8)) iff dim b(γ) = 1.(5.30)

(2) The gap in Moscovici-Stanton’s paper comes from using an operator ∆j,l
φ [54, p. 206] which could

not be defined on Z.
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Let R(K,R), R(KM ,R) be the real representation rings of K and KM . We can
prove that the restriction R(K,R) → R(KM ,R) is injective. The key result [62,
Theorem 6.11] is that the KM -representation on n has a unique lift in R(K,R).
As p is a K-representation, KM -action on pm also lifts to K by lifting b as a trivial
K-representation in (5.28).

For a real finite dimensional representation ς ofM on the vector space Eς , such that
ς|KM can be lifted into R(K,R), this implies that there exists a real finite dimensional

Z2-representation ς̂ = ς̂+− ς̂− of K on E
ς̂

= E+

ς̂
−E−

ς̂
such that we have the equality

in R(KM ,R),

E
ς̂ |KM =

dim pm∑
i=0

(−1)iΛi(p∗m)⊗ (Eς |KM ).(5.31)

Let E
ς̂

= G×K E
ς̂
be the induced Z2-graded vector bundle on X, and F

ς̂
= Γ\E

ς̂
. Let

Cg,Z,ς̂,ρ be the Casimir element of G acting on C∞(Z,F
ς̂
⊗F ). Modulo some technical

conditions, with the help of Theorem 5.4 and (5.30), Shen [62, Theorems 5.3, 7.3]
obtains the identity

(5.32) Trs

[
e−tC

g,Z,̂ς,ρ/2

]
= q Vol(Z) Tr[1]

[
e−tC

g,X,̂ς/2

]
+

1√
2πt

e−cςt
∑

[γ]∈[Γ]\{1}

Tr[ρ(γ)]
χorb(S1\B[γ])

n[γ]

TrEς [ς(k−1)]∣∣∣det(1−Ad(γ))|z⊥0

∣∣∣1/2 |a|e−|a|
2/2t,

where cς is some explicit constant, and k−1 is defined in (3.33). We do not write here

the exact formula for Tr[1][e−tC
g,X,̂ς/2].

By (5.32), if we set

Ξς,ρ(σ) =
∑

[γ]∈[Γ]\{1}

Tr[ρ(γ)]
χorb(S1\B[γ])

n[γ]

TrEς [ς(k−1)]∣∣∣det(1−Ad(γ))|z⊥0

∣∣∣1/2 e−|a|σ,(5.33)

we need to eliminate the denominator
∣∣∣det(1−Ad(γ))|z⊥0

∣∣∣1/2 to relate Ξς,ρ to Ξρ, the

logarithm of the dynamical zeta function Rρ(σ).

Set 2l = dim n. The following observation is crucial.

Proposition 5.12. — [62, Proposition 6.5] For γ = eak−1 ∈ H := exp(b)T , a 6= 0,
with ν ∈ b∗ in (5.29), we have∣∣∣det(1−Ad(γ))|z⊥0

∣∣∣1/2 =

2l∑
j=0

(−1)j TrΛj(n∗)
[
Ad
(
k−1

)]
e(l−j)|ν||a|,(5.34)
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Let ςj be the representation of M on Λj(n∗). By (5.33) and (5.34), we have

Ξρ(σ) =

2l∑
j=0

(−1)jΞςj ,ρ(σ + (j − l)|ν|).(5.35)

On the other hand, since dim b = 1, from (5.28), we have the following identity
in R(KM ,R),

dim p∑
i=0

(−1)i−1iΛi(p∗) =

dim n∑
j=0

(−1)j
( dim pm∑

i=0

(−1)iΛi(p∗m)
)
⊗ Λj(n∗).(5.36)

Note that
∑dim p
i=0 (−1)i−1iΛi(p∗) ∈ R(K,R) is used to define the analytic tor-

sion. From (5.35) and (5.36), Shen obtains a very interesting expression for Rρ(σ)

in term of determinants of shifted Casimir operators, from which he could obtain
Equation (5.25).

For a representation ς of M in (5.31), set

rς,ρ = dimC Ker(Cg,Z,ς̂
+,ρ)− dimC Ker(Cg,Z,ς̂

−,ρ).(5.37)

Then Shen [62, (5.12), (7.75)] obtains the formula

Cρ =

l−1∏
j=0

(
−4|l − j|2|ν|2

)(−1)j−1rςj ,ρ , rρ = 2

l∑
j=0

(−1)j−1rςj ,ρ.(5.38)

Shen shows that if H•(Z,F ) = 0, then rςj ,ρ = 0 for any 0 ≤ j ≤ l by using the
spectral aspect of the Selberg trace formula (Theorem 0.1 and (0.5)), and some deep
results on the representation theory of reductive groups.

For a G-representation π : G → Aut(V ) and v ∈ V , recall that v is said to be
differentiable if cv : G → V , cv(g) = π(g)v is C∞, that v is said to be K-finite if
it is contained in a finite dimensional subspace stable under K. We denote by V(K)

the subspace of differentiable and K-finite vectors in V . Let H•(g,K;V(K)) be the
(g,K)-cohomology of V(K).

We denote by “Gu the unitary dual of G, that is the set of equivalence classes of
complex irreducible unitary representation π of G on the Hilbert space Vπ. Let χπ be
the corresponding infinitesimal character.

Let p̂ : Γ\G → Z be the natural projection. The group G acts unitarily on the
right on L2(Γ\G, p̂∗F ), then L2(Γ\G, p̂∗F ) decomposes into a discrete Hilbert direct
sum with finite multiplicities of irreducible unitary representations of G,

L2(Γ\G, p̂∗F ) =
fl⊕
π∈Ĝu

nρ(π)Vπ with nρ(π) < +∞,(5.39)

here ‹ means the Hilbert completion.
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Set

W =
Â�⊕

π∈Ĝu,χπ is trivial

nρ(π)Vπ,(5.40)

then W is the closure in L2(Γ\G, p̂∗F ) of W∞, the subspace of C∞(Γ\G, p̂∗F ) on
which the center of U(g) acts by the same scalar as in the trivial representation of g.
By standard arguments [24, Chap. VII, Theorem 3.2, Corollary 3.4], the cohomology
H•(Z,F ) is canonically isomorphic to the (g,K)-cohomologyH•(g,K;W(K)) ofW(K),
the vector space of differentiable and K-finite vectors of W , i.e.,

H•(Z,F ) =
⊕

π∈Ĝu,χπ is trivial

nρ(π)H•(g,K;Vπ,(K)).(5.41)

Vogan-Zuckerman [66, Theorem 1.4] and Vogan [65, Theorem 1.3] classified all ir-
reducible unitary representations of G with nonzero (g,K)-cohomology. On the other
hand, in [57, Theorem 1.8], Salamanca-Riba showed that any irreducible unitary rep-
resentation of G with trivial infinitesimal character is in the class specified by Vogan
and Zuckerman, which means that it possesses nonzero (g,K)-cohomology. In sum-
mary, if (π, Vπ) ∈ “Gu, then

χπ is non-trivial if and only if H•(g,K;Vπ,(K)) = 0.(5.42)

By the above considerations, H•(Z,F ) = 0 is equivalent to W = 0. This is the
main algebraic ingredient in the proof of (5.26).

Shen’s contribution [62, Corollary 8.15] is to give a formula for rςj ,ρ using Hecht-
Schmid’s work [37, Theorem 3.6, Corollary 3.32] on the n-homology of W , Theo-
rem 3.10 and (3.64). From this formula, we see immediately that W = 0 implies
rςj ,ρ = 0 for 0 ≤ j ≤ l.

5.4. Final remarks

1. Theorem 3.10 gives an explicit formula for the orbital integrals for the heat kernel
of the Casimir operator and it holds for any semisimple element γ ∈ G. A natural
question is how to evaluate or define the weighted orbital integrals that appear in
Selberg trace formula for a discrete subgroup Γ ⊂ G such that Γ\G has a finite
volume.

2. Bismut-Goette [19] introduced a local topological invariant for compact mani-
folds with a compact Lie group action: the V -invariant. It appears as an exotic term
in the difference between two natural versions of equivariant analytic torsion. The
V -invariant shares formally many similarities with the analytic torsion, and if we ap-
ply formally the construction of the V -invariant to the associated loop space equipped
with its natural S1 action, then we get the analytic torsion.
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In Shen’s proof of Fried’s conjecture for locally symmetric spaces, Shen observed
that the V -invariant for the S1-action on B[γ] is exactly

−
χorb(S1\B[γ])

2n[γ]
.(5.43)

This suggests a general definition of the Ruelle dynamical zeta function for any com-
pact manifold by replacing −χorb(S1\B[γ])

2n[γ]
in Definition 5.9 by the associated V -invari-

ant. One could then compare it with the analytic torsion, and obtain a generalized
version of Fried’s conjecture for any manifold with non positive curvature. Note that
for a strictly negative curvature manifold, B[γ] is a circle and the V -invariant is − 1

2n[γ]
.

Recently, Giulietti-Liverani-Pollicott [32], Dyatlov-Zworski [26], Faure-Tsujii [28] es-
tablished that for the trivial representation of π1(Z), and when Z has strictly negative
curvature, the Ruelle dynamical zeta function is a well-defined meromorphic function
on C.
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