ASYMPTOTICAL LIMITS OF YANG-MILLS FLOW IN HOLOMORPHIC VECTOR BUNDLES ON COMPACT KÄHLER MANIFOLDS

MIN-CHUN HONG

Department of Mathematics,
The University of Queensland,
Brisbane, QLD 4072, Australia

Typeset by AMS-TEX
1. Introduction

Let X be a Kähler manifold of complex dimension m and let E be a holomorphic vector bundle over X. Let $\Omega^0(E) = \Gamma(E)$ denote the set of all smooth sections of E and let \mathcal{A} denote the set of all connections on E which are unitary with respect to its structure.

For each connection D_A, the Yang-Mills functional is defined by

\begin{equation}
YM(A; X) = \int_X |F_A|^2 \, dV_g,
\end{equation}

where F_A is the curvature of D_A. In local trivialization, we can express D_A as $d + A$, where $A \in \Gamma(\text{End}E \otimes T^*X)$ is the connection matrix.

We say that a connection D_A in a (holomorphic) vector bundle E over X is a Hermitian Yang-Mills connection if A satisfies the Yang-Mills equation

\begin{equation}
D_A^* F_A = 0.
\end{equation}
It is of great interests to establish relations between the stability of bundles and the existence of Hermitian-Einstein metrics in a holomorphic vector bundle E over a Kähler manifold X.

- $m = 1$. Narasimhan-Seshadri (1965) first proved existence theorem of Hermitian-Einstein metrics for stable bundles over a compact Riemann surface.

- $m = 2$. Donaldson (1985) proved that an irreducible holomorphic vector bundle E over a compact Kähler surface X admits a unique Hermitian-Einstein connection if and only if it is stable.

- $m \geq 2$. Uhlenbeck-Yau (1986) established that an irreducible holomorphic vector bundle E over a compact Kähler manifold X admits a unique Hermitian-Einstein connection if and only if it is stable. Donaldson (1987) also proved this result in the case of algebraic manifolds.
Heat flow for the Yang-Mills equations, suggested by Atiyah and Bott, has played an important role in the Yang-Mills theory.

The Yang-Mills flow is

$$\frac{\partial A}{\partial t} = -D^*_A F_A$$

with initial value $A(0) = A_0$, where A_0 is a connection corresponding to a Hermitian metric H_0 in E.

The first contribution of Yang-Mills flow was made by Donaldson [D1] in the case of a holomorphic vector bundle by using it to establish an important relationship between the Hermitian Yang-Mills connection and stable holomorphic vector bundles.

When the bundle over X is stable, it is can be proved that as $t \to \infty$, the solution $A(t)$ of (1.3) converges to a Hermitian-Einstein connection.
In 1994, Bando and Siu proved that a reflexive sheaf on an m-dimensional compact manifold has an admissible Hermitian-Einstein metric if and only if the sheaf is polystable.

When the bundle E over X is unstable, for a given initial connection A_0, there is a global smooth solution $A(t)$ of Yang-Mills flow (1.3) over X by the Donaldson result, but we can not expect that $A(t)$ converges to the unique Hermitian-Einstein connection since there is no Hermitian-Einstein connection in E over X by the Donaldson-Uhlenbeck-Yau theorem (also Bando-Siu).

Bando and Siu conjectured about the relation between the breaks up into a direct sum of Hermitian-Einstein via Yang-Mills flow and the Harder-Narashimhan filtration on Kähler manifolds.
By analyzing asymptotical limits of Yang-Mills flow, jointed with Tian, we proved the existence of a singular Hermitian Yang-Mills connection in a holomorphic vector bundle E over a Kähler manifold X, where the Hermitian Yang-Mills connection is smooth away from a singular set Σ of complex codimension 2. More precisely, for any sequence $t \to \infty$, there exists a subsequence t_k such that as $t_k \to \infty$, $A(t_k)$ converges to a singular Yang-Mills connection A_∞ with the blow-up locus (Σ, Θ).

In order to settle the conjecture of Bando and Siu, there is an open question concerning the uniqueness of a limiting connection A_∞ of the Yang-Mills heat flow and whether the blow-up locus (Σ, Θ) is unique.

In this talk, we will outline the approach of the above results.
Geometric setting

For a connection D_A, we mark up $D_A = \partial_A + \bar{\partial}_A$ with

$$\partial_A : \Omega^0(E) \to \Omega^{1,0}(E),$$

$$\bar{\partial}_A : \Omega^0(E) \to \Omega^{0,1}(E).$$

For a Hermitian metric H in a holomorphic vector bundle E, there is a unique Hermitian connection $D_A : \Omega^0(E) \to \Omega^1(E)$ characterized by

$$d \langle \sigma, \tau \rangle_H = \langle D_A \sigma, \tau \rangle_H + \langle \sigma, D_A \tau \rangle_H, \quad \forall \sigma, \tau \in \Omega^0(\text{End} E)$$

and

$$\bar{\partial}_A s = \bar{\partial}_E s, \quad \forall s \in \Omega^0(\text{End} E)$$

where $\bar{\partial}_A$ is the $(0, 1)$ component of the connection D_A.
For the Kähler metric on X, we define the Kähler form ω as

$$\omega = i \sum g_{k\bar{j}} dz_i \wedge d\bar{z}_j; \quad i = \sqrt{-1}.$$

Using Kähler form ω we define the contraction Λ on $(1,1)$-forms by

$$\Lambda \eta = \langle \eta, \omega \rangle$$

where \langle , \rangle denotes the pointwise inner product on $(1,1)$-forms by the Kähler metric on X.

If F_A is of the form $(1,1)$, then the Yang-Mills equation $D_A^* F_A = 0$ with $D_A F_A = 0$ yields

$$\nabla_A (\Lambda F_A) = 0$$

This implies ΛF_A has constant eigenvalues.
Relation between stable bundles and Hermitian-Einstein metric

Donaldson-Uhlenbeck-Yau Theorem.

An irreducible holomorphic vector bundle admits a unique Hermitian-Einstein connection if and only if it is stable.

A metric H on E is called “Hermitian-Einstein” if the corresponding connection satisfies

$$\Lambda F_H = \lambda I,$$

where

$$i\lambda = \frac{2\pi}{\text{vol } X} \frac{\deg E}{\text{rank } E}.$$

The degree of E is

$$\deg E = \int_X C_1(E) \wedge *\omega = \int_X C_1(E) \wedge \frac{\omega^{m-1}}{(m-1)!}.$$

where $C_1(E) = \frac{\sqrt{-1}}{2\pi} \text{tr}(F_A)$ is the first Chern form.
A holomorphic vector bundle E over X is stable if for every proper subsheaf $V \subset E$,

$$\frac{\deg(V)}{\text{rk}(V)} < \frac{\deg(E)}{\text{rk}(E)}.$$

Some generalizations of the Donaldson-Uhlenbeck-Yau Theorem:

- In 1988 C. Simpson generalized the Donaldson-Uhlenbeck-Yau theorem in holomorphic bundles E over some non-compact Kähler manifolds X.

- In 1991, Bradlow generalized the result for Yang-Mills-Higgs field. (In 2001, I gave a different proof by the Yang-Mill-Higgs flow.)

- In 1996 P. De Bartolomeis and G. Tian generalized the result in a complex vector bundle over a compact almost Hermitian regularized manifolds

When the bundle E over X is unstable, there is no Hermitian-Einstein connection by using the Donaldson-Uhlenbeck-Yau theorem.
Singular admissible connections

Given a sequence of smooth Yang-Mills connections \(\{A_i\} \) with uniformly \(L^2 \)-bounded curvatures, by taking a subsequence if necessary, \(A_i \) converges, modulo gauge transformations, to a Yang-Mills connection \(A \) outside a closed subset \(\Sigma \) of Hausdorff real codimension 4, moreover, the set \(\Sigma \) (blow-up locus) is rectifiable.

Tian also studied admissible (singular) connections \(A \) which are smooth over \(M \setminus S(A) \) for a closed subset \(S(A) \) of Hausdorff dimension \(n - 4 \) and the compactification of the moduli space \(M_{\Omega,E} \) of \(\Omega \)-anti-self-dual instantons of \(E \).

In this talk, we discuss the asymptotical limits of Yang-Mills flow, which yields the existence of singular Hermitian Yang-Mills connection in a holomorphic bundles over a Kähler manifold.
Limiting connections of Yang-Mills flow

Hong-Tian.

Let $A(x,t)$ be a global smooth solution of the Yang-Mills flow in a holomorphic vector bundle E. For any sequence $t_k \to \infty$, $A(t_k)$ converges (up-to a subsequence)to a singular Hermitian Yang-Mills connection A_∞ having curvature of type $(1,1)$ with the blow-up locus (Σ, Θ), such that $\Sigma = \bigcup_\alpha \Sigma_\alpha$ and $\Theta|_{\Sigma_\alpha} = 8\pi^2 m_\alpha$, where Σ_α are holomorphic subvarieties of complex codimension two in X and m_α are positive integers.

The above limiting connection A_∞ can be uniquely extended in a Hermitian Yang-Mills connection in a reflexive sheaf \mathcal{E} over X such that A is smooth outside a closed set $\tilde{\Sigma}$ of complex codimension three in X, where \mathcal{E} is local free on $X\setminus \tilde{\Sigma}$.

2008. For each subsequence $t \to \infty$, the limiting connection A_∞ is unique up to a bundle isomorphism.
Outline proof

- The global existence of the solution of Yang-Mills heat flow for all $t > 0$.
- The asymptotical behavior of the solution of flow (1.3) as $t \to \infty$, by establishing a local monotonicity for Yang-Mills flow.
- Following Tian’s result on blow-up loci of a sequence of smooth Yang-Mills connections, we get a similar result on blow-up loci of a sequence connections from Yang-Mills flow, involving a result of King (or R. Harvey and B. Shiffmann) on holomorphic subvarieties Σ_α.
Global existence of Yang-Mills heat flow

We consider the Yang-Mills flow

(2.1) \[\frac{\partial A}{\partial t} = -D^*_A F_A \]

with initial value \(A(0) = A_0 \), where \(A_0 \) is a connection corresponding to a Hermitian metric \(K \) in \(E \).

For the initial metric \(K \) in \(E \), set \(H(t) = K h(t) \). If \(K = \langle \cdot, \cdot \rangle_K \) and \(H = \langle \cdot, \cdot \rangle_H \) are two Hermitian metrics with \(\langle s, t \rangle_H = \langle hs, t \rangle_K \) for a \(h = K^{-1}H \in \text{End}E \). Then the corresponding connections satisfy

(2.2) \[\bar{\partial}_H = \bar{\partial}_K, \quad \partial_H = h^{-1} \circ \partial_K \circ h = \partial_K + h^{-1} \partial_K h \]

and the associated curvatures \(F_H \) and \(F_K \in \Omega^{1,1}(\text{End}E) \) by

(2.3) \[F_H = F_K + \bar{\partial}_K (h^{-1} \partial_K h). \]
For the initial metric K, set $H(t) = K \ h(t)$ the metric corresponding the connection A. We consider a flow of complex gauge transformations:

\[
(2.6) \quad \frac{\partial h}{\partial t} = -2i h [\Lambda F_H - \lambda I]
\]

with initial value

\[h(0) = I. \]

Proposition 1. Let E be a holomorphic bundle over a compact Kähler manifold X. Then there exists a global solution H to (2.6).

Through an unitary gauge transformation, we prove the global existence of the YM flow (2.1).
Let A_0 be the unitary connection on E with curvature $F_{A_0} = F_K$ of type $(1, 1)$ corresponding to the Hermitian metric K. The complex gauge group $\mathcal{G}^\mathbb{C}$ of general linear automorphism acts on the space $\mathcal{A}^{1,1}$ of connections with curvature of type $(1, 1)$ by

\begin{align}
\bar{\partial}_g^*(A_0) &= g \circ \bar{\partial}_{A_0} \circ g^{-1}, \\
\partial_g^*(A_0) &= \bar{g}^{t-1} \circ \partial_{A_0} \circ \bar{g}^t,
\end{align}

that is,

\begin{equation}
g^{-1} \circ D_g^*(A_0) \circ g = \bar{\partial}_{A_0} + h^{-1} \partial_{A_0} h,
\end{equation}

and the curvature transforms by

\begin{equation}
g^{-1} F_g^*(A_0) g = F_{A_0} + \bar{\partial}_{A_0} (h^{-1} \partial_{A_0} h)
\end{equation}

where $h = \bar{g}^t g$.
Theorem 2. Let A_0 be a given smooth unitary connection on E with curvature F_{A_0} of type $(1,1)$. Then for any $T > 0$ there exists a smooth solution $A(t)$ of the Yang-Mills flow (1.3) in $X \times [0,T)$ with initial values $A(0) = A_0$ on X.

Proof. We take any $g \in G^C$ with $\bar{g}^t g = h$ (for example, $g = h^{1/2}$.) Since h solves (2.6), we have

$$\frac{\partial g}{\partial t} = -i \left[\Lambda F_{g^*(A_0)} - \lambda I \right] g$$

with initial value $g(0) = I$. Let $g(t) = h^{1/2}(t)$ be a solution of (2.8). Then the connection $A(t) = g^*(A_0)$ a solution to

$$\frac{\partial A}{\partial t} = \partial_A (g^{t^{-1}} \partial_t \bar{g}^t) - \tilde{\partial}_A (\partial_t gg^{-1})$$

$$= -D^*_A F_A + D_A(\alpha(t)),$$

where $\alpha(t) = \frac{1}{2} (\bar{g}^{t^{-1}} \partial_t \bar{g}^t - \partial_t gg^{-1}) \in \Omega^0(\text{Ad}E)$ since $\tilde{\alpha}^t = -\alpha$. (2.9) is equivalent to the Yang-Mills flow (1.3).
3. Asymptotical behavior of Yang-Mills flow

Lemma 3. (Energy inequality) Let A be a smooth solution to the Yang-Mills flow (1.3) in $X \times [0, \infty)$ with initial value A_0. Then, for any $t < \infty$, we have

$$
\int_X |F_{A(t)}|^2 \, dV_g + 2 \int_0^t \int_X \left| \frac{\partial A}{\partial s} \right|^2 \, dV_g \, ds \leq \int_X |F_{A_0}|^2 \, dV_g.
$$

Theorem 4. Let A be a global smooth solution of the Yang-Mills flow equation (1.3) in $X \times [0, \infty)$ with initial value A_0. For any a sequence $\{t_k\}$, there is a subsequence, still denoted by $\{t_k\}$, such that as $t_k \to \infty$, $A(x, t_k)$ converges in $C^\infty(X \setminus \Sigma)$ to a solution A_∞ of the Yang-Mills equation (1.2), where Σ is a closed set in X. Moreover $\mathcal{H}^{2m-4}(\Sigma)$ is finite with

(2.9)

$$
\Sigma = \bigcap_{\varepsilon_0 > r > 0} \left\{ x \in X : \liminf_{k \to \infty} r^{4-n} \int_{B_r(x)} |F_A|^2(\cdot, t_k)^2 \, dV_g \geq \varepsilon_1 \right\},
$$

where ε_1 is a positive constant.
Let $z = (x, t)$ be points in $X \times \mathbb{R}$. For a fixed point $z_0 = (x_0, t_0) \in X \times \mathbb{R}_+$, we write

$$T_R(t_0) = \{ z = (x, t) : t_0 - 4R^2 < t < t_0 - R^2, x \in X \} ,$$

and

$$P_R(z_0) = B_R(x_0) \times [t_0 - R^2, t_0 + R^2].$$

The fundamental solution is

$$G_{z_0}(z) = \frac{1}{(4\pi(t_0 - t))^{n/2}} \exp \left(-\frac{(x - x_0)^2}{4(t_0 - t)} \right), \quad t < t_0$$

for the (backward) heat equation with singularity at z_0.
Theorem 5. (Local monotonicity) Let $\phi \in C^\infty_0(B_R(x_0))$ be a cut-off function such that $\phi \equiv 1$ on $B_{R/2}$, $|\phi| \leq 1$ and $|\nabla \phi| \leq \frac{C}{R}$ in $B_R \setminus B_{R/2}$. Then for $z_0 = (x_0, t_0) \in M \times (0, \infty)$ and for two real numbers R_1, R_2 with $0 < R_1 \leq R_2 \leq R$, we have

$$\int_{T_{R_1}(z_0)} R_1^2 |F_A|^2(x, t) \phi^2 G_{z_0} \ dV_g \ dt \\ \leq C \exp(C(R_2 - R_1)) \int_{T_{R_2}(z_0)} R_2^2 |F_A|^2(x, t) \phi^2 G_{z_0} \ dV_g \ dt \\ + C(R_2 - R_1) YM(A_0) + CR^{2-n} \int_{P_{R}(z_0)} |F_A|^2(x, t) \ dV_g \ dt .$$

The well-known Weitzenböck formula:

$$\nabla_A^\ast \nabla_A \phi = \triangle_A \phi + R_X \# \phi + F_A \# \phi ,$$

where $\phi \in \Omega^p(E)$, R_X is the curvature of X and $\#$ denotes a multi-linear map with smooth coefficients.

We derive a Bochner type inequality in the following:
Proposition 6. Let A be a regular solution of the heat flow equation (2.1) with initial values A_0. Then

$$\left(\frac{\partial}{\partial t} - \triangle_X\right)(|F_A|^2) \leq C(|F_A| + |R_X|)|F_A|^2,$$

where C is a constant independent of u and A, R_X is the Riemannian curvature of X.

Theorem 7. Suppose that A is a solution of the Yang-Mills heat flow (2.1) in $X \times [0, \infty)$ with initial value A_0. There exists a positive constant $\varepsilon_0 < i(M)$ such that if, for some R with $0 < R < \min\{\varepsilon_0, \frac{t_1}{2}\}$, the inequality

$$R^{2-2m} \int_{P_R(x_0,t_0)} |F_A|^2 \, dx \, dt \leq \varepsilon_0$$

holds, then we have

$$\sup_{P_{\delta R}(x_0,t_0)} |F_A|^2 \leq C(\delta R)^{-4},$$

where C is a constant depending on M, $\delta > 0$, $YM(A_0)$ and R.
4. Limiting connections of Yang-Mills flow

Proposition 8. Let A be a smooth solution of Yang-Mills flow. Then there exists a nonnegative constant a such that for $0 < \sigma \leq \rho < r_p$ and for each $t \in (0, \infty)$,

$$\pm \rho^{4-m}e^{\pm a \rho^2} \int_{B_\rho} \phi |F_A|^2(\cdot, t) \, dV_g \pm \sigma^{4-m}e^{\pm a \sigma^2} \int_{B_\sigma} \phi |F_A|^2(\cdot, t) \, dV_g$$

$$\mp 4 \int_{B_\rho \backslash B_\sigma} r^{4-m}e^{\pm ar^2} \phi |F_A|_{\frac{\partial}{\partial r}}^2(\cdot, t) \, dV_g$$

$$\geq -2 \int_{\sigma}^{\rho} r^{4-m}e^{\pm ar^2} dr \int_{B_{r(p)}} 2 |F_A|_{\frac{\partial}{\partial r}} \left| F_A \nabla \phi \right|(\cdot, t) \, dV_g.$$

Proposition 9. Let A be a solution of the Yang-Mills heat flow (1.3) in $X \times (0, \infty)$ with $F_A \in \Omega^{1,1}$. Then $\int_X \left| \frac{dA}{dt} \right|^2 \, dV_g$ tends to 0 as t tends to infinity.
Let A_0 be a given smooth unitary connection on E over X with curvature F_{A_0} of type $(1, 1)$. Let A solve the Yang-Mills flow (1.3) in $X \times [0, T)$ with initial values $A(0) = A_0$ on X. Then, for a sequence $t \to \infty$, there exists a sequence $\{t_k\}$ such that $A(t_k)$ converges, modulo gauge transformation, to A_∞ smoothly except for a closed singular set $\Sigma(\{A_{t_k}\}_{k=1}^{\infty})$ as $t_k \to \infty$.

Let μ be the limit Radon measure of $\mu_k = |F_{A(t_k)}|^2 dV_g$; i.e., for any continuous function ϕ with compact support in X,

$$\lim_{k \to \infty} \mu_k(\phi) = \lim_{k \to \infty} \int_X \phi |F_{A(t_k)}|^2 dV_g = \int_X \phi d\mu = \mu(\phi).$$

For $x \in X$, $e^{ar^2} r^{4-2m} \mu(B(x))$ is a nondecreasing in r. Then the density

$$\Theta(\mu, x) = \lim_{r \to 0} r^{4-2m} \mu(B_r(x))$$

exists for every $x \in X$ and $x \in \Sigma(\{A_{t_k}\}_{k=1}^{\infty})$ if and only if $\Theta(\mu, x) \geq \varepsilon_1 > 0$.
By Fatou’s lemma, there is a nonnegative Radon measure ν on X such that
\[
\mu = |F_{A_\infty}|^2 dV_g + \nu.
\]
Then it follows from [T] that $\nu(x) = \Theta(\mu, x)H^{2m-4} \sum \{A_{t_k}\}_{k=1}^\infty$ for H^{2m-4}-a.e. $x \in \Sigma(\{A_{t_k}\})$. Moreover, $\Sigma(\{A_{t_k}\}_{k=1}^\infty) = \Sigma(A) \cup \Sigma$, where

\[
\Sigma = \{x \in \Sigma(\{A_{t_k}\}_{k=1}^\infty) : \Theta(\mu, x) > 0, \lim_{r \to 0} r^{4-2m} \int_{B_r(x)} |F_{A_\infty}|^2 dV_g = 0\}
\]

We call (Σ, Θ) the blow-up locus of the convergent sequence $\{A(t_k)\}_{k=1}^\infty$.

For any $x \in X$ and sufficiently small λ, we define the scaled measure $\mu_{x,\lambda}$ as follows: for any $E \in T_xX$,
\[
\mu_{x,\lambda}(E) = \lambda^{4-2m} \mu(\exp_x(\lambda E)),
\]
where $\exp_x : T_xX \to X$ is the exponential map of the metric g and
\[
\lambda E = \{y \in T_xX : \lambda^{-1}y \in E\}.
\]
For simplicity, we denote by A_k the connection $A(x, t_k)$. Let $A_{k,x,\lambda}$ be the scaled connection on $T_x X$ defined by

$$A_{k,x,\lambda} = \tau_\lambda^* \exp_x^* A_k,$$

where $\tau_\lambda(v) = \lambda v$ for any $v \in T_x X$.

As $\lambda \to 0$, $\mu_{x,\lambda}$ converges weakly to $\Theta(\mu, x) H^{2m-4} \mu V$ weakly. Similarly, as $k \to \infty$, $|F_{A_k, x, \lambda}|^2 dV_{x, \lambda}$ converges to $\mu_{x, \lambda}$.

Let $\{\lambda_k\}$ be a sequence with $\lim_{k \to \infty} \lambda_k = 0$ and

$$\lim_{k \to \infty} \lambda_k^{4-2m} \int_M |\frac{\partial A}{\partial t}|^2 (\cdot, t_k) \, dV_g = 0.$$

Using Propositions 9 and 10, it follows from an argument similar to that in [T] and [HT] that there is a subsequence sequence λ_k such that, as $\lambda_k \to 0$, the Radon measure $|F_{A_k, x, \lambda_k}|^2 dV_{x, \lambda_k}$ converges to $\Theta(\mu, x) H^{2m-4} \mu V$,

$$\Theta(\mu, x) = \lim_{k \to \infty} \int_{B_1(0, g_x, 0)} |F_{A_k, x, \lambda_k}|^2 \, dV_{g_x, \lambda_k}.$$
Moreover, modulo gauge transformations, A_{k, x, λ_k} converges to 0 uniformly on any compact subset in $T_x X \setminus V$ and

$$\lim_{k \to \infty} \left(\sum_{\alpha=1}^{2m-4} \int_{B_2(0, g_x, 0)} |F_{A_{k, x, \lambda_k}} \frac{\partial}{\partial z_\alpha}|^2 dV_{g_x, 0} \right) = 0,$$

where $\{z_1, ..., z_{2m-4}\}$ is an orthogonal coordinate system of V. We set $z = (z', z'') \in T_x X$ with $z' \in V$, $z'' \in V^\perp$.

For any a sequence $\{t_k\}$, there is a subsequence, still denoted by $\{t_k\}$, that as $t_k \to \infty$, $A(t_k)$ converges, modulo gauge transformation, to A_∞ smoothly except for a closed singular set $\Sigma = \Sigma(\{A_k\}_{k=1}^\infty)$ satisfying

\begin{equation}
D_{A_\infty}^* F_{A_\infty} = 0 \quad \text{in} \quad X \setminus \Sigma; \quad \text{then} \quad \nabla_{A_\infty}(\Lambda F_{A_\infty}) = 0 \quad \text{in} \quad X \setminus \Sigma.
\end{equation}

This means that ΛF_A has constant eigenvalues λ_j, $j = 1, .., l$, such that for a.e. $x \in X \setminus \Sigma$, up to a gauge transformation, we can assume

\begin{equation}
\Lambda F_{A_\infty} = \begin{pmatrix}
\lambda_1 I_1 & 0 & \ldots & 0 \\
0 & \lambda_2 I_2 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \lambda_l I_l
\end{pmatrix}
\end{equation}
where each I_j is a unit matrix for each $j = 1, \ldots, l$. Moreover, for all $x \in \Sigma$,

\[(4.4) \quad \Theta(\mu, x) \geq \varepsilon > 0, \quad \lim_{r \to 0} r^{4-2m} \int_{B_r(x)} |F_{A_{\infty}}|^2 \, dy = 0.\]

Using (4.3), the induced bundle E^∞ from A^∞ over $X \setminus \Sigma$ can be split into the sum of holomorphic bundles E_j^∞ over $X \setminus \Sigma$ for $j = 1, \ldots, l$; i.e.

we have

$$E^\infty|_{X \setminus \Sigma} = E_1^\infty|_{X \setminus \Sigma} \oplus \cdots \oplus E_l^\infty|_{X \setminus \Sigma}.$$

For each E_j^∞, there exists an induced Hermitian metric H_j and the corresponding Yang-Mills connection A_{H_j} of E_j^∞ satisfying $\Lambda F_{H_j} = \lambda_j I_j$ in E_j^∞ over $X \setminus \Sigma$. Then

Theorem 10. The holomorphic bundle $E^\infty|_{X \setminus \Sigma}$ extends to a reflexive sheaf \tilde{E}^∞ over X such that the Hermitian Yang-Mills metric H is smooth and extended to $X \setminus \tilde{\Sigma}$ where the reflexive sheaf \tilde{E}^∞ fails to locally free on the closed set $\tilde{\Sigma}$ of complex codimension three.
For the above limiting Hermitian-Yang-Mills connection A_∞ in $X \setminus \Sigma$, the second Chern class C_2 is defined by

$$C_2(A_\infty) = \frac{1}{8\pi^2} [\text{tr}(F_{A_\infty} \wedge F_{A_\infty}) - \text{tr}F_{A_\infty} \wedge \text{tr}F_{A_\infty}].$$

Then, $C_2(A_\infty)$ extends to a closed form on X.

Theorem 11. Let $A(x,t)$ be a solution of the Yang-Mills flow (1.3) in $X \times [0, \infty)$ with curvature F_A of type $(1,1)$. Then, for any sequence $t \to \infty$, there exists a subsequence t_k such that as $t_k \to \infty$, $A(t_k)$ converges to a singular Yang-Mills connection A_∞ except for a singular set Σ. Moreover, there exist holomorphic subvarieties Σ_α and positive integers m_α such that for any smooth ϕ,

$$\lim_{k \to \infty} \int_X \phi \wedge C_2(A(t_k)) = \int_X \phi \wedge C_2(A_\infty) + \sum_\alpha m_\alpha \int_{\Sigma_\alpha} \phi.$$
Theorem 12. Let A be a solution of the Yang-Mills flow equation (1.3) in $X \times (0, \infty)$. Let $\{A(t_k)\}_{k=1}^{\infty}$ be a convergent sequence such that as $t_k \to \infty$, $A(t_k)$ convergent to A_∞ with the blowup locus (Σ, Θ). Let $\{A'(t'_k)\}_{k=1}^{\infty}$ be a convergent sequence such that as $t'_k \to \infty$, $A(t'_k)$ convergent to A'_∞ with the blow-up locus (Σ', Θ'). Then two limiting connection are unique.