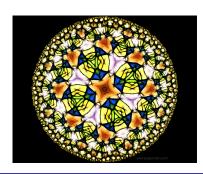
Symplectic geometry of the moduli space of hyperbolic 0-metrics

Eckhard Meinrenken (based on work with Anton Alekseev)

Groups in action: in honour of Michèle Vergne September 5, 2023

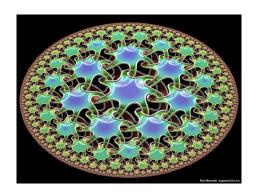


Based on:

A. Alekseev, E.M.: On the coadjoint Virasoro action (Preprint, arXiv:2211.06216)

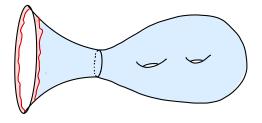
A. Alekseev, E.M.: Symplectic geometry of the moduli space of hyperbolic 0-metrics (in preparation)

1. Motivation



Motivation from physics: JT gravity.

Moduli spaces of Riemann surfaces with wiggly boundary



arising in JT gravity (Maldacena-Stanford-Yang 2016, Saad-Shenker-Stanford 2019, Stanford-Witten 2019, and others).

→ Schwarzian derivative, Virasoro algebra, DH measures, Mirzakhani recursion formulas etc.

Motivation from physics: JT gravity.

Our take on it:

There is an ∞-dimensional Teichmüller space

$$\mathcal{T}(\Sigma) = \frac{\text{hyperbolic 0-metrics on }\Sigma}{\mathsf{Diff}_o(\Sigma,\partial\Sigma)}$$

which is a Hamiltonian space, with momentum map taking values in $\text{vir}_1^*(\partial \Sigma)$.

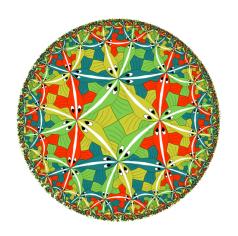
A 0-metric is a metric on the Mazzeo-Melrose 0-tangent bundle

$$^0T\Sigma\to\Sigma$$

(sections are vector fields vanishing at boundary).

Equivalently, 0-metric means boundary behaviour $\sim \rho^{-2}$.

2. Hyperbolic structures



Hyperbolic structures

Notation.

- $\mathbb{D} \subset \mathbb{C}$ Poincaré disk with standard hyperbolic metric,
- $G = \mathsf{Iso}_+(\mathbb{D})$ isometry group
- $K \subset G$ stabilizer of $(0,0) \in \mathbb{D}$.

Thus

$$G = \mathsf{PSU}(1,1) \cong \mathsf{PSL}(2,\mathbb{R}), \quad K \cong \mathsf{U}(1).$$

Hyperbolic structures: $\partial \Sigma = \emptyset$

 Σ compact oriented surface without boundary: $\partial \Sigma = \emptyset$.

Definition

A hyperbolic structure on Σ is an atlas with charts $\phi_{\alpha} \colon U_{\alpha} \to \mathbb{D}$, transition maps in G. Let

$$\mathsf{Hyp}(\Sigma) = \{\mathsf{hyperbolic} \ \mathsf{structures} \ \mathsf{on} \ \Sigma\}$$

and define Teichmüller space

$$\mathsf{Teich}(\Sigma) = \mathsf{Hyp}(\Sigma) / \mathsf{Diff}_o(\Sigma).$$

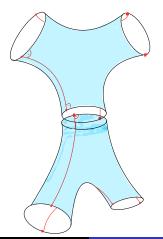
Hyperbolic structure \Leftrightarrow hyperbolic metric g (i.e., $K_g = -1$).

Hyperbolic structures: $\partial \Sigma = \emptyset$

 $\mathsf{Teich}(\Sigma)\cong (\mathbb{R}_{>0}\times\mathbb{R})^{3g-3}$ by Fenchel-Nielsen length and twist parameters

$$\ell_1, t_1, \ldots, \ell_{3g-3}, t_{3g-3}$$

from pants decomposition



Hyperbolic structures: $\partial \Sigma = \emptyset$

- Weil (1958), Ahlfors (1961): Teich(Σ) has a canonical Kähler structure.
- Wolpert (1981): In Fenchel-Nielsen coordinates,

$$\omega = \sum_{i=1}^{3g-3} \mathsf{d} \ell_i \wedge \mathsf{d} t_i.$$

ullet Goldman, Hitchin (1987): Teich(Σ) is a connected component of

$$\operatorname{Hom}(\pi_1(\Sigma), G)/G$$
,

with Atiyah-Bott symplectic structure.

Hyperbolic structures: $\partial \Sigma \neq \emptyset$

Question: How to define $\mathsf{Hyp}(\Sigma)$ if Σ has boundary?

Answer: Replace \mathbb{D} with $\overline{\mathbb{D}}$.

Hyperbolic structures: $\partial \Sigma \neq \emptyset$

 Σ compact oriented surface (possibly) with boundary $\partial \Sigma \neq \emptyset$.

Definition

A hyperbolic structure on Σ is an atlas with charts $\phi_{\alpha} \colon U_{\alpha} \to \overline{\mathbb{D}}$, transition maps in G. Let

$$\mathsf{Hyp}(\Sigma) = \{\mathsf{hyperbolic} \ \mathsf{structures} \ \mathsf{on} \ \Sigma\}$$

and define Teichmüller space

$$\mathsf{Teich}(\Sigma) = \mathsf{Hyp}(\Sigma)/\ ^0 \, \mathsf{Diff}_o(\Sigma).$$

Hyperbolic structure ⇔ hyperbolic 0-metric g.

Hyperbolic structures: $\partial \Sigma \neq \emptyset$

Example

For $\Sigma = \overline{\mathbb{D}}$, with standard 0-metric

$$g = 4\frac{dr^2 + r^2d\theta^2}{(1 - r^2)^2}$$

we obtain (a version of) universal Teichmüller space

$$\mathsf{Teich}(\overline{\mathbb{D}}) = \mathsf{Diff}_+(\partial \mathbb{D})/G.$$

Example

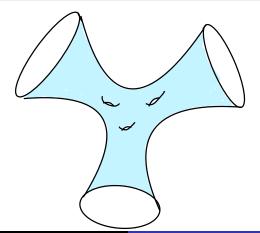
For cylinder $\Sigma = [-1,1] \times S^1$, obtain

$$\mathsf{Teich}(\Sigma) = (\widetilde{\mathsf{Diff}}_+(S^1) \times \widetilde{\mathsf{Diff}}_+(S^1))/\mathbb{R}.$$

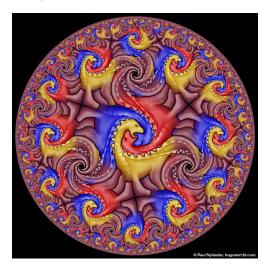
Example

For $\chi(\Sigma) = 2 - 2g - r < 0$, have Fenchel-Nielsen parameters

$$\mathsf{Teich}(\Sigma) = (\mathbb{R}_{>0} imes \mathbb{R})^{3g-3+r} imes \prod_{i=1}^r (\mathbb{R}_{>0} imes \widetilde{\mathsf{Diff}}_+(S^1)).$$



3. Symplectic structure



Back to case $\partial \Sigma = \emptyset$. Principal G-bundles $P \to \Sigma$ classified by $\operatorname{e}(P) \in \pi_1(G) = \mathbb{Z}$.

Fix

$$P \xrightarrow{\sigma} \mathbb{D}$$

$$\downarrow^{\pi}$$

$$\Sigma$$

where

- $\pi: P \to \Sigma$ principal bundle with $e(P) = \chi(\Sigma)$
- $\sigma \colon P \to \mathbb{D}$ a G-map.

Since $\mathbb{D} = G/K$, choice of σ gives reduction of structure group $P_K = \sigma^{-1}(0)$. The choice of (P, σ) is unique up to isomorphism.

$P \xrightarrow{\sigma} \mathbb{D} \qquad \theta \in \mathcal{A}(P) \text{ is positive if the composition}$ Σ

$$\pi^* T \Sigma \xrightarrow{j^{\theta}} TP \xrightarrow{T\sigma} T \mathbb{D}$$

is an oriented isomorphism.

In this case, $T\Sigma$ inherits a metric.

In local trivialization $(P_K|_U \cong U \times K)$, θ has connection 1-form

$$A = \frac{1}{2} \left(\begin{array}{cc} \alpha_2 & \alpha_1 - \kappa \\ \alpha_1 + \kappa & -\alpha_2 \end{array} \right)$$

Positivity means that α_1, α_2 is oriented coframe.

Proposition

- **1** If $\theta \in A^{pos}(P)$ is flat, then g is hyperbolic.
- **2** Every hyperbolic metric g arises from flat, positive connection, unique up to $Gau(P, \sigma)$.

Thus:

$$\mathsf{Hyp}(\Sigma) = \mathcal{A}^\mathsf{pos}_\mathsf{flat}(P) / \, \mathsf{Gau}(P, \sigma)$$

and consequently

$$\mathsf{Teich}(\Sigma) = \mathcal{A}^{\mathsf{pos}}_{\mathsf{flat}}(P) / \mathsf{Aut}_{\mathsf{o}}(P, \sigma)$$

where $\operatorname{Aut}_{o}(P,\sigma)$ are automorphisms preserving σ and with base map in $\operatorname{Diff}_{o}(\Sigma)$.

This is a symplectic quotient.

Recall Atiyah-Bott form on A(P)

$$\omega(a,b) = \int_{\Sigma} a \dot{\wedge} b,$$

for $a,b\in T_{\theta}\mathcal{A}(P)=\Omega^1(\Sigma,\mathfrak{g}(P))$. We have:

$$\mathsf{Teich}(\Sigma) = \mathcal{A}^{\mathsf{pos}}(P) /\!\!/ \, \mathsf{Aut}_{\mathsf{o}}(P, \sigma).$$

One can verify that this symplectic form on $\mathsf{Teich}(\Sigma)$ gives Wolpert's formula.

Question: How to define symplectic structure if Σ has boundary?

Answer: Replace \mathbb{D} with $\overline{\mathbb{D}}$.

For Σ with boundary, consider

$$P \xrightarrow{\sigma} \overline{\mathbb{D}}$$

$$\downarrow^{\pi}$$

$$\Sigma$$

- $\pi: P \to \Sigma$ a *G*-bundle,
- $\sigma \colon P \to \overline{\mathbb{D}}$ a *G*-equivariant morphism of manifolds with boundary.

ullet Over interior, get reduction of structure group to $K\cong \mathsf{U}(1)$

$$P_{\mathcal{K}} = \sigma^{-1}(0) \subset P|_{\mathsf{int}(\Sigma)}$$

• At boundary, get reduction of structure group to $B \cong \mathbb{R} \rtimes \mathbb{R}_{>0}$

$$P_B = \sigma^{-1}(i) \subset P|_{\partial \Sigma}$$

B contractible \leadsto trivializations of $P|_{\partial\Sigma} \leadsto \operatorname{e}(P,\sigma) \in \pi_1(G) = \mathbb{Z}$.

Fix
$$(P, \sigma)$$
 with $e(P, \sigma) = \chi(\Sigma)$.

Definition

 $\theta \in \mathcal{A}(P)$ is positive if the composition

$$\pi^*T\Sigma \xrightarrow{j^\theta} TP \xrightarrow{T\sigma} T\overline{\mathbb{D}}$$

is an oriented isomorphism.

In this case, $T\Sigma$ inherits a 0-metric from that on $T\overline{\mathbb{D}}$.

Proposition

Let $\theta \in A^{pos}(P)$ be a positive connection.

- **1** If θ is flat, then g is a hyperbolic 0-metric.
- **2** Every hyperbolic 0-metric g arises from flat, positive connection, unique up to $Gau(P, \sigma)$.

Thus:

$$\mathsf{Hyp}(\Sigma) = \mathcal{A}^\mathsf{pos}_\mathsf{flat}(P) / \, \mathsf{Gau}(P, \sigma)$$

and consequently

$$\mathsf{Teich}(\Sigma) = \mathcal{A}^{\mathsf{pos}}_{\mathsf{flat}}(P) / {}^{\mathsf{0}}\,\mathsf{Aut}_{\mathsf{o}}(P,\sigma)$$

where 0 Aut_o (P, σ) are automorphisms preserving σ and with base map in 0 Diff_o (Σ) .

This is not (quite) a symplectic quotient

Let $\partial\sigma\colon\partial P\to\partial\mathbb{D}$ restriction to the boundary. Have surjective map

⁰
$$\operatorname{\mathsf{Aut}}_{\mathsf{o}}(P,\sigma) \to \operatorname{\mathsf{Gau}}(\partial P,\partial \sigma).$$

Let 0 Aut_o $(P, \partial P, \sigma)$ be its kernel, and put

$$\widehat{\mathsf{Teich}}(\Sigma) = \mathcal{A}^{\mathsf{pos}}_{\mathsf{flat}}(P) / \,\,^{\mathsf{0}}\,\mathsf{Aut}_{\mathsf{o}}(P,\partial P,\sigma)$$

Lemma

This is a symplectic quotient:

$$\widehat{\mathsf{Teich}}(\Sigma) = \mathcal{A}^{\mathsf{pos}}(P) /\!\!/ \, {}^{\mathsf{0}} \, \mathsf{Aut}_{\mathsf{o}}(P, \partial P, \sigma)$$

Lemma

The residual action of $\operatorname{Gau}(\partial P,\partial\sigma)$ on $\widetilde{\operatorname{Teich}}(\Sigma)$ has an affine moment map taking values in a single coadjoint orbit

$$\mathcal{O}\subset\widehat{\mathfrak{gau}}_1^*(\partial P,\partial\sigma).$$

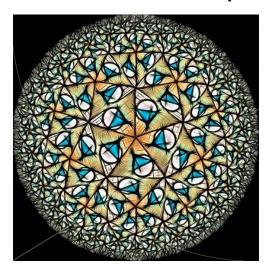
Therefore:

$$\mathsf{Teich}(\Sigma) = (\widehat{\mathsf{Teich}}(\Sigma) \times \mathcal{O}^-) /\!\!/ \mathsf{Gau}(\partial P, \partial \sigma)$$

acquires a symplectic structure.

Next, we want to show it's a Hamiltonian Virasoro space.

4. Moment map



Central extensions

Principle: Given an affine action

$$H \circlearrowleft \mathcal{E}$$

with underlying linear action Ad: $H \circlearrowright \mathfrak{h}^*$, get central extension

$$0\to\mathbb{R}\to\widehat{\mathfrak{h}}\to\mathfrak{h}\to0$$

such that $\mathcal{E} \cong \widehat{\mathfrak{h}}_1^*$, the affine hyperplane at level 1.

In fact,
$$\widehat{\mathfrak{h}} = \mathsf{Hom}_{\mathsf{aff}}(\mathcal{E}, \mathbb{R}), \qquad [\widehat{X}, \widehat{Y}](\mu) = \langle X, Y \cdot \mu \rangle.$$

Example

 $P \to C$ principal *G*-bundle over oriented circle, $Gau(P) \circlearrowleft \mathcal{A}(P)$ defines $\widehat{\mathfrak{gau}}(P)$.

Virasoro Lie algebra

Here $H = Diff_+(C)$ with C = oriented circle. Have

$$\mathfrak{h}=\mathsf{Vect}(\mathsf{C})=|\Omega|_\mathsf{C}^{-1},\ \ \mathfrak{h}^*=|\Omega|_\mathsf{C}^2$$
 (quadratic differentials)

Definition

A Hill operator is a 2nd order linear differential operator

$$L\colon |\Omega|_{\mathsf{C}}^{-\frac{1}{2}} \to |\Omega|_{\mathsf{C}}^{\frac{3}{2}}$$

such that $L^* = L$, $\sigma(L) = 1$.

 $\mathsf{Diff}_+(\mathsf{C}) \circlearrowright \mathsf{Hill}(\mathsf{C});$ linear action the coadjoint action on $\mathsf{Vect}(\mathsf{C})^*.$

Definition

 $vir(C) = \widehat{Vect}(C)$ is the Virasoro Lie algebra.

Virasoro Lie algebra

In coordinates $C = S^1$:

• Hill operators:

$$Lu = u'' + \mathcal{T}u$$
,

with Hill potential $T \in |\Omega|_{S^1}^2 \cong C^{\infty}(S^1)$.

• $Diff_+(S^1)$ -action

$$(\mathsf{F}^{-1}\cdot\mathcal{T})=(\mathsf{F}')^2\;(\mathsf{F}^*\mathcal{T})+\frac{1}{2}\mathcal{S}(\mathsf{F}).$$

Here

$$S(F) = \frac{F'''}{F'} - \frac{3}{2} (\frac{F''}{F'})^2.$$

is the Schwarzian derivative.

The moment map

The moment map

$$\Phi \colon \operatorname{\mathsf{Teich}}(\Sigma) \to \operatorname{\mathsf{Hill}}(\partial \Sigma), \ [\mathsf{g}] \mapsto \Phi([\mathsf{g}]) = \mathcal{T}$$

has the following description. Choose adapted coordinates x, y near boundary, write

$$\mathsf{dvol} = \frac{\mathsf{a}(x)}{\mathsf{y}^2} \mathsf{d} x \wedge \mathsf{d} y + \dots$$

Let $\kappa(x,y)$ be the geodesic curvature of $t \mapsto (x+t,y)$.

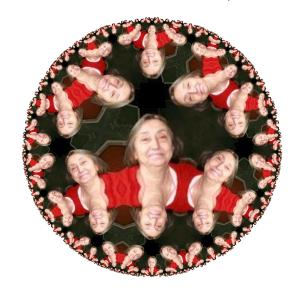
Theorem (Alekseev-M)

$$\mathcal{T}(x) = \frac{1}{2} \left(\frac{a''}{a} - \frac{3}{2} \left(\frac{a'}{a} \right)^2 \right) + \frac{a^2}{2} \lim_{y \to 0} \frac{\kappa(x, y) - 1}{y^2}.$$

(Cf. Maldacena-Stanford-Yang 2016.)

5. Conclusion

JOUYEUX ANNIVERSAIRE, MICHÈLE!



<u>Picture credits:</u> The artwork (other than the primitive ones drawn by me) was taken from various sources of the world wide web.

They include a picture by M.C.Escher, and two pictures by Paul Nylander

http://bugman123.com/Hyperbolic/index.html

The last picture was created using http://www.malinc.se/m/ImageTiling.php