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The problem

Let P ⊂ Rn be a polyhedron defined by the system of linear
equations Ax = b and inequalities x ≥ 0. Here A is an m × n
matrix with rankA = m < n.

Suppose that P is bounded and has a non-empty relative interior,
that is, contains a point x = (x1, . . . , xn) where xj > 0 for
j = 1, . . . , n.

Our goal is to estimate quickly vol P, the (n −m)-dimensional
volume of P. When A and b are integer, we also want to estimate
quickly |P ∩ Zn|, the number of integer points in P.
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The entropy maximization problem

We define f : Rn
+ −→ R by

f (x) = n +
n∑

j=1

ln xj where x = (x1, . . . , xn)

and find the necessarily unique z ∈ P, z = (z1, . . . , zn), such that

f (z) = max
x∈P

f (x).

The point z is called the analytic center of P. Since relintP 6= ∅,
we have zj > 0 for j = 1, . . . , n.
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The formula

Given a bounded polyhedron P defined by the system Ax = b,
x ≥ 0, we compute its analytic center z = (z1, . . . , zn). Let B be
the m × n matrix obtained by multiplying the j-th column of A by
zj for j = 1, . . . , n. Then

E(A, b) = ef (z)
√

detAAT

√
detBBT

= enz1 · · · zn

√
detAAT

√
detBBT

approximates volP within a multiplicative factor of γm, where
γ > 0 is an absolute constant.

Note that it scales correctly:

E(A, τb) = τn−mE(A, b) for τ > 0.
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Example: simplex

Example

Suppose that P is defined by

n∑
j=1

ajxj = n and xj ≥ 0 for j = 1, . . . , n.

We must have aj > 0 for j = 1, . . . , n. Then

z =

(
1

a1
, . . . ,

1

an

)
and E(A, b) =

en

a1 · · · an

√
a21 + . . .+ a2n
√
n

.

On the other hand,

vol P =
nn

n!a1 · · · an

√
a21 + . . .+ a2n.
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Example: simplex

Example

3

n/a

n/a

n/a

1

2

Since
n! =

√
2πne−nnn (1 + o(1)) as n −→ +∞,

we get

vol P =
1√
2π
E(A, b) (1 + o(1)) as n −→ +∞.
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Example: doubly stochastic matrices

Example

Consider the polytope Pr of r × r doubly stochastic matrices
X = (xij):

r∑
j=1

xij = 1 for i = 1, . . . , r ,
r∑

i=1

xij = 1 for j = 1, . . . , r

and xij ≥ 0 for i , j = 1, . . . , r .

*

* * * *

* * * *

****

***
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Example: doubly stochastic matrices

Example

We have dimPr = (r − 1)2. By symmetry, the analytic center is

zij =
1

r
for i , j = 1, . . . , r and hence E(A, b) =

er
2

r (r−1)2
.

Canfield and McKay (2009) proved that

volPr = e1/3
er

2

(
√

2π)2r−1r (r−1)2
(1 + o(1)) as r −→ +∞.

In Barvinok and Hartigan (2010), we called

volP ≈ E(A, b)

(2π)m/2

Gaussian approximation and showed that it holds under some
conditions (more on this later).
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Example: 3-way planar transportation polytopes

Example

Consider the polytope Pr of r × r × r arrays (tensors) X = (xijk)
such that

r∑
i=1

xijk = 1 for j , k = 1, . . . , r ,

r∑
j=1

xijk = 1 for i , k = 1, . . . , r ,

r∑
k=1

xijk = 1 for i , j = 1, . . . , r and

xijk ≥ 0 for i , j , k = 1, . . . , r .

Alexander Barvinok, based joint works with J.A. Hartigan and Mark RudelsonSome quick formulas for the volumes of and the number of integer points in higher-dimensional polyhedra



Example: 3-way planar transportation polytopes

Example

Then dimPr = (r − 1)3. By symmetry,

zijk =
1

r
for i , j , k = 1, . . . , r and hence E(A, b) =

er
3

r (r−1)3

approximates volPr within a factor of eO(r2) as r −→ +∞.
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The main theorem (with M. Rudelson)

Theorem

Let α0 ≈ 1.398863726 be the necessarily unique number in
the interval (1,+∞) satisfying

1

2π

∫ +∞

−∞
(1 + s2)−α0/2 ds = 1.

Then

volP ≤ α
m/2
0 E(A, b) ≤ (1.183)mE(A, b).

We have

volP ≥
2Γ
(
m+2
2

)
πm/2e(m+2)/2(m + 2)m/2

E(A, b)

≈
(

1

e
√

2π

)m

≈ (0.14)mE(a, b).
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The main theorem

In fact, we can prove

volP ≥ γmE(A, b)

for any

γ <
1√
2πe

≈ 0.24

and sufficiently large m. The proof requires thin shell estimates
(Klartag 2007, Chen 2021, Klartag and Lehec 2022), although
pretty much any non-trivial estimate will do.
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Ideas of the proof: the maximum entropy distribution

Recall that a random variable X is standard exponential, if its
density is

pX (t) =

{
e−t if t > 0

0 if t ≤ 0.

The following lemma was proved in Barvinok and Hartigan (2010):

Lemma

Let X1, . . . ,Xn be independent standard exponential random
variables and let z = (z1, . . . , zn) be the analytic center of P. Then
the density of the random vector (z1X1, . . . , znXn) is constant on
P and equal to

e−f (z) =
e−n

z1 · · · zn
.
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Ideas of the proof: the maximum entropy distribution

The proof is an exercise with Lagrange multipliers. A “deeper”
reason why it works is that the distribution of (z1X1, . . . , znXn) is
the maximum entropy distribution among all distributions
supported on Rn

+ and with expectation in the affine subspace
Ax = b.

Corollary

Let a1, . . . , an be the columns of A, so A = [a1, . . . , an] and let

Y =
n∑

j=1

zjXjaj =
n∑

j=1

Xjbj where B = [b1, . . . , bn].

Then
volP = ef (z)

√
detAATpY (b),

where p is the density of Y .

Note that
EY = b and CovY = BBT .
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Example: Simplex

Example

Suppose that P is defined by

n∑
j=1

ajxj = n and xj ≥ 0 for j = 1, . . . , n.

We have zj =
1

aj
for j = 1, . . . , n and Y =

n∑
j=1

Xj .

Hence

pY (t) =

{
tn

n!e
−t if t > 0

0 if t ≤ 0.

Then

ef (z)
√

detAATpY (b) =
nn

n!a1 · · · an

√
a21 + . . .+ a2n = vol P.
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Ideas of the proof: log-concave isotropic densities

The density pY of Y is log-concave, and we are interested in pY (b)
where EY = b. Furthermore, there is some freedom in choosing A:

A 7−→WA, b 7−→Wb and B 7−→WB,

where W is an m ×m invertible matrix. Then

AAT 7−→W (AAT )W T , B 7−→W (BBT )W T

and √
detAAT

√
detBBT

does not change. Hence we can assume that BBT = I and

CovY = I .
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Ideas of the proof: log-concave isotropic densities

The proof for the lower bound of pY (b): applies to all log-concave
isotropic densities.
The proof for the upper upper bound of pY (b) uses the formula for
the characteristic function of Y :

φY (t) =
n∏

j=1

1

1−
√
−1〈bj , t〉

and is inspired by the proof of Ball (1989) of the upper bound for
the volume of a section of the cube (but easier).
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The Gaussian formula

Recall the corollary: if X1, . . . ,Xn are independent standard
exponential,

Y =
n∑

j=1

zjXjaj =
n∑

j=1

Xjbj ,

then vol P = ef (z)
√

detAATpY (b). In addition,

EY = b and CovY = BBT .

It stands to reason that, being a sum of independent random
variables, Y is close to Gaussian, and hence

pY (b) ≈ 1

(2π)m/2
√

detBBT
and volP ≈ ef (z)

√
detAAT

(2π)m/2
√

detBBT
.

Barvinok and Hartigan (2010, 2012) showed that this indeed holds
asymptotically for some families of polyhedra, sometimes with the
“Edgeworth correction” factor (like e1/3 for the polytope of doubly
stochastic matrices).
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Counting integer points: the Gaussian formula

Suppose we want to count integer points in P = {x ≥ 0 : Ax = b}
(assume that A and b are integer). Consider the function

g(x) = (x + 1) ln(x + 1)− x ln x for x ≥ 0.

0

1

2

3

2 4 6 8 10x

Remark: g(x) is the maximum entropy of a probability distribution
(necessarily geometric) on Z+ with expectation x :

P(X = k) = pqk for k = 0, 1, . . . ;

EX =
q

p
:= x , varX =

q

p2
= x + x2.

Alexander Barvinok, based joint works with J.A. Hartigan and Mark RudelsonSome quick formulas for the volumes of and the number of integer points in higher-dimensional polyhedra



Counting integer points: the Gaussian formula

In Barvinok and Hartigan (2010), we prove:

Lemma

Let z = (z1, . . . , zn) be the necessarily unique point where the
concave function

g(x) =
n∑

j=1

g(xj) for x = (x1, . . . , xn)

attains its maximum on P. Let X = (X1, . . . ,Xn) be the vector of
independent geometric random variables with

E(Xj) = zj for j = 1, . . . , n.

Then the probability mass function of X is constant on the points
P ∩ Zn and equal to e−g(z).
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Counting integer points: the Gaussian formula

The distribution of X is the maximum entropy distribution
supported on Zn

+ and with expectation in the affine subspace
Ax = b.
Let a1, . . . , an be the columns of A. We let

Y =
n∑

j=1

Xjaj

and conclude that

|P ∩ Zn| = eg(z)P(Y = b).

Given an m × n matrix A = (aij) with rank A = m < n, we
compute the m ×m matrix B = (bij) by

bij =
n∑

k=1

aikajk
(
zk + z2k

)
,

so that EY = b and CovY = B.
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Counting integer points: the Gaussian formula

Assuming that Y is close to Gaussian, we get the following
estimate for |P ∩ Zn|, where P = {x ≥ 0 : Ax = b}:

EI =
eg(z) det Λ

(2π)m/2
√

detB
,

where Λ ⊂ Zm is the lattice generated by the columns of A.
In a similar way, we can get an estimate for the number of 0-1
points in P. The function g is replaced by

h(x) = x ln
1

x
+ (1− x) ln

1

1− x
for 0 ≤ x ≤ 1

and B is computed as follows:

bij =
n∑

k=1

aikajk
(
zk − z2k

)
.

Alexander Barvinok, based joint works with J.A. Hartigan and Mark RudelsonSome quick formulas for the volumes of and the number of integer points in higher-dimensional polyhedra



The Gaussian formula for integer points: example

Example

The number of 4× 4 non-negative integer matrices with row sums
[220, 215, 93, 64] and column sums [108, 286, 71, 127] is
1, 225, 914, 276, 768, 514 ≈ 1.2× 1015 (Diaconis and Efron, 1985).
The value of EI (A, b) approximates it within relative error of 0.06
(De Loera, 2009).

64

* * **

**

* ***

**

* * * *

12771286108

220

215

93

Here Y is a sum of 16 independent 7-vectors.
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The Gaussian formula for integer points: example

Example

The number of 3× 3× 3 non-negative integer arrays with slice
sums [31, 22, 87], [50, 13, 77] and [42, 97, 11] is
8, 846, 838, 772, 161, 591 ≈ 8.8× 1015. The value of EI (A, b)
approximates it within relative error 0.002 (De Loera 2009).

42

50

13

77

31

22

87

11
87

Here Y is the sum of 27 independent 7-vectors.
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