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N
Abstract

e Hyperlogarithm (HL) functions: a class of functions on the punctured
complex plane, motivated by monodromy computations (Poincaré,
Lappo-Danilevskii).

e recent applications: (a) identification of multiple zeta values with certain
classes of periods (Goncharov-Manin conj.)(Brown) // (b) Feynman
integral computations in QFT (Brown, Panzer)

e Elliptic analogues of the HL functions were also introduced and applied
to QFT computations (Brown-Levin, Broedel-Duhr-Dulat-Tancredi).

e goals of lecture : (a) introduce and study analogues of the algebra of HL
functions for an arbitrary affine complex curve // (b) explain relation with
the construction of an alternative analogue of the algebra of HL functions
(d'Hoker-Hidding-Schlotterer)

e joint work w. F. Zerbini.
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|
Plan (21 pp)

e A. Hyperlogarithm (HL) functions on P! (3pp)

e B. Minimal stable algebra of multivalued functions on C and algebraic
Maurer-Cartan (MC) elements (6pp)

e C. Filtrations of the algebra of multivalued functions (3pp)
e D. Ideas of the proofs (6pp)

e E. Relation w. d'Hoker-Hidding-Schlotterer (DHS) approach to HL
functions on C (3pp)
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A. HL functions on P!

A. HL functions on P!
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Al. HL functions is genus 0: basics

e S C Cis a finite subset, Cs := C \. S.

e S is S viewed as abstract set, S* := LIp>0S" is the set of words in S, so
§1 .. .§n E i*
e map S* — Oho/(@s) w — L, defined by Ly :=1,

Lws(2) := [* Lw(t)dIn(t — s).
e generating series : L(z) := 3, Lu(2)w* in Opo(Cs)((S)) satisfies
dL=L-Jwhere J:=3_s-d(z—s)and L(z) ~ 2255 as z — oo.

e the functions (L, ) are the hyperlogarithm (HL) functions (Poincaré
1884, Lappo-Danilesvkii 1953) (also called " Goncharov polylogarithms” by
physicists)
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A. HL functions on P!

A2. HL functions in genus 0: motivation

e original motivation: monodromy computations/Riemann-Hilbert
problem.

e HL functions are applied to identification of set of periods arising from
moduli space of marked stable genus-zero curves with set of MZVs
(solution of Goncharov-Manin conjecture, Brown 2009)

e a large class of Feynman integrals computing scattering amplitudes in
QFT can be expressed in terms of HLs (Brown 2009, Panzer 2015)

e genus 1 analogues were introduced and applied to scattering amplitude
computations (Broedel, Duhr, Dulat, Tancredi 2018)

e this lecture: construct analogues of HL functions for an arbitrary
complex curve
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A3. Properties of HL functions in genus 0 (Brown 09)

e set 7 := Spang(Ly, w € §*) € Opoi(Cs).

e then H is a subalgebra, and Sh(CS) — H, w +— L, is an algebra iso
(Sh(V) : shuffle algebra over a vector space V)

e O(Cs) :=C|z,1/(z—5)|s € 5]

e the family (Ly)w is O(Cs)-free, i.e. the algebra morphism
O(Cs) RH — Oho/(Cs) is injective

e let Ac, be its image, then Ac, C (’)ho/((fls) is a subalgebra, stable under
all the endos int,, 5, : f = [z = [ fw] for w € O(Cs)dz = Q(Cs)
(regular differentials on Cs) and z5 € Cs

e Ac, is the minimal subalgebra of (’)ho/(@s) with this property
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B. Minimal stable alg. of multivalued funs on C and MC elts

B. Minimal stable algebra

of multivalued funs on C
and alg. MC elts
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B1. The minimal stable algebra A¢ of C

e C: affine complex curve
e p: C — C auniversal cover // ¢ := Aut(C/C)

e O(C): the algebra of regular functions on C // Ohot(€): the algebra of
holomorphic functions on C

e Q(C): the O(C)-module of regular differentials on C

e | there exists a minimal subalgebra Ac C Opo(C), stable under

all the endos int,, 5, : f = [z [ fw] for w € Q(C) and z € C
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B. Minimal stable alg. of multivalued funs on C and MC elts

B2. Maurer-Cartan elements for C

e He := Q(C)/dO(C) (= HIR(C) as C is affine)

o g :=L(H{) (free Lie alg. gen. by H}-), g:=degree completion
Definition

(a) an alg. Maurer-Cartan (MC) element for C: an elt J € Q(C)®g

(b) J is non-degenerate iff im(J € Q(C)&§ — He @ HE) = id.
(c) MC,4(C) := {non-deg. MC elts for C}

Definition

(a) ¢ is the set of sections o : He — Q(C) of can. projection.

(b) maps Y¢S MC,,d(C), o= Jy = Zi U(h,’) ® h' with (h,’),‘, (hi),' dual
bases of He and Hi and J — o such that J = J,, mod Q(C)&F>2.

Then o, =o0.
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B3. Algebra morphisms attached to a MC element

to (J, z0) with J=MC elt and z € C, attach:

e the function g, : C — exp(§) = G((Ug)") (G : group-like elements)
such that dg = gJ and g(zp) = 1; it is holomorphic;

e the map £y, : Sh(Hc¢) = Opoi(C), € = [z = £(gJ.5(2))] based on
Sh(Hc) = ®n>0(Ug)[n]* — ([1,50 Usln])* = ((Ug)")*.

Lemma

(a) The map f; 5, : Sh(Hc¢) — Opo(C) is a morphism of algebras.
(b) IfoeXc, fJU,zo([hﬂ - ‘hk]) = (Z — ZT) O'(hl) o-- -O'(hk)) where
[z o(h)o---o(hk)=iterated integral.
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B4. Algebra isos attached to a MC element

Theorem A

Let J non-degenerate MC element and zy € C.

(a) im(ﬂzO : Sh(H¢) — (’)ho/(é)) is independent of zy, denoted Hc(J).
(b) The map f;,, : O(C) @ Sh(H¢) — Opoi(C), f @ a s p*(f) - f1(a) is
an injective alg. morphism.

(c) im(fy 5,) = Ac (independent of (J, z))

(d) hence alg. iso. f; 5 : O(C) ® Sh(H¢) — Ac.

o If C =Cg, then Hec ~ CS, and
Yc200:=[CS>s—dn(z—5) € QCs)]. Then H = He(Joy)-
Hence H ¢(J)=analogue of alg. of HL functions

e whereas H (J) varies with J, the product O(C) - H(J) does not and
~ Ac.
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B5. Group aspects of alg. isos attached to a MC element

‘Group actions on algebras‘

e to n nilpotent Lie algebra, attach 1-connected complex alg. group
exp(n) = G((Un)"). Then alg. of reg. funs on exp(n) given by
O(exp(n)) = (Un) = Up>o((Un)7)* C (Un)*. Right regular action of
exp(n) on O(exp(n)).

e right regular action of exp(§) = G((Ug)") = G(T(H})) on
O(exp(g§)) = T(HE) = Sh(Hc), hence on O(C) ® Sh(Hc).

e right regular action of I'c on Oy (C) by (fiy)(2) := f(72), hence of

Cr ¢; restricts to action on Ac C Ope(C).

e action of CI'¢ on A extends to action of
(Cre)h = Limn((Crc)/((Cl'c)i, which restricts to action of prounipotent
completion I'¢(C) = G((Cr¢)™) on Ac.
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B6. Group aspects of alg. isos (cont'd)

Theorem B
(a) For J non-deg. MC elt and zy € C, the map

Crc¢ ®Sh(He) = C, @& &(g1,2(v20))

is a Hopf algebra pairing. It induces an iso iy, : [ c(C) — exp(g) of
prounipotent groups.

(b) The alg. iso. f; 5, : O(C) ® Sh(Hc) — Ac is compatible with iy 5, and
the action of its source and target on the target and source of f; 4.

v
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C. Filtrations of the algebra of multivalued funs on C

C. Filtrations of the algebra
of multivalued funs on C

B. Enriquez (coll. F. Zerbini) Hyperlogarithm functions for complex curves September 7, 2023 16 /33



C. Filtrations of the algebra of multivalued funs on C

C1. Group-action induced filtrations

Definition

Omod(C) C Opoi(C) is the subalgebra of functions with moderate growth
at the cusps of C.

The action of T'¢ on Opo(C) restricts to an action on Opmoq(C).
Definition
Forn>0, FEPOpmea(C) := {f € Omod(c"?)yf'(crc)fl =0}.

Lemma

FE O mod(C) is an increasing algebra filtration of Opo(C) with
F§P = O(C) C F§? C ---, stable under action of T c.
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C2. Differential filtrations

Definition

(a) F§Ohai(C) := )
(b) for n >0, F? 1C’)ho( C) = {f € Ono(C)|d(f) € QC) - FYOmat(C)}
(C) for n >0, F“Oho/( ) ( ) = Oho/(C)

Definitions inspired by (Chen 1977).

Lemma

(a) FS and F are increasing algebra filtrations of Ope(C).
(b)) F§ CFY cFl cFl'c
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C3. Filtrations induced by iterated integration

Lemma

For zy € C, the map I, : Sh(Q(C)) — Ohoi(C) given by

[wi] -+ |wn] = [z [ w10 0wn] is an algebra morphism.
Definition

For n >0, set F,Sh(V) := @x<,Shp(V).

v

Then F,Sh(V) is an algebra filtration of Sh(V') and I, (FeSh(2(C))) is an
algebra filtration of Opo(C), which is independent of z.
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C. Filtrations of the algebra of multivalued funs on C

C4. Comparison of filtrations

Theorem C
(a) For any (J, 25) € MCpy(C) x C, equalities

FE O mod(C) = FLO(C) = 1,,(O(C) @ FoSh(Hc))
and
I (FeSh(Q(C))) = FLO(C) = f5,5(C® FSh(Hc) + O(C) ® Fo_1Sh(Hc))

of algebra filtrations of Ope(C).
(b) Equality

F& Omod(C) = FLO(C) = £1,5(0(C) ® Sh(Hc)) = 5 (Sh(€(C)))
= FLO(C) = Ac

of subalgebras of O(C).
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D. Ideas of the proofs

D. |deas of the proofs
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D1. Easy statements

Thm. A: Let J non-degenerate MC element and z € C.

(a) im(fy , : Sh(Hc¢) — Opoi(C)) is independent of zy, denoted Hc(J).
(b) The map £y, : O(C) @ Sh(H¢) — Opoi(C), f @ a s p*(f) - f1,(a) is
an alg. morphism.

Thm. B: (a) For J non-deg. MC elt and zy € C, the map

Crc®Sh(Hc) = C, v®¢& = &(81.2(720))

is a Hopf algebra pairing. It induces an iso iy, : ['c(C) — exp(g) of
prounipotent groups [based on freeness of '¢].

(b) The alg. morphism f; ,, : O(C) ® Sh(H¢) — Ac is compatible with
i),z and the action of its source and target on the target and source of
f).2-
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D. Ideas of the proofs

D2. Statements based on iterated integrals
Thm. C: For any (J, z) € MC,4(C) x C, equalities

Iy (FeSh(Q(C))) = F2O(C) = f1,(C® FoSh(Hc) 4+ O(C) @ Fo_1Sh(Hc))
of filtrations of Opo(C) and

I, (Sh(€(C))) = Ac

of subalgebras of Opo(C) based on study of iterated integrals. Therefore

FeO(C) = £5,6(0(C) @ FoSh(Hc))
(multiplying by O(C)) and

Ac = FLO(C) = FILO(C) = f14(O(C) ® Sh(Hc))

(2nd eq. due to relations FL'/F?, 3rd eq. to relations between
C ® FuSh(H¢) + O(C) ® Fa_1Sh(Hc) and O(C) ® FuSh(Hc)).
Hyperlogarithm functions for complex curves
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D. Ideas of the proofs

D3. Remaining statements

e Remaining statements:
Thm. C: | FEPOpmod(C) = £1.,(O(C) ® FoSh(Hc))
Thm. A: |, is an algebra iso O(C) ® Sh(H¢) — Ac.

e Since Ac = £} ,,(O(C) ® Sh(Hc)), both are consequences of:
f1.z : O(C) @ FoSh(Hc) — FEPOpmoq(C) is an iso of filtrations.

B. Enriquez (coll. F. Zerbini) Hyperlogarithm functions for complex curves September 7, 2023 24 /33



D4. Hopf algebras w. a comodule algebra (HACASs)

e A Hopf algebra w. comodule algebra (HACA) is a pair (O, A) where O
is a Hopf algebra and A is an algebra, equipped with a left coaction of O.

e For O Hopf algebra, set F,0 := Ker(O — 0®" — (0/C)®").

e F,O is an increasing Hopf algebra filtration (F, - Fp C Fayp,
A(Fa) €Y yyar—y Fo @ Far). Then gr(O) a graded Hopf algebra.

e For (O, A) a HACA, set F,A :=preimage of F,O ® A under
Ap:A— O®A. One has FpO = C, FpA = A°.

e then F,A is an algebra filtration, and Aa : FoA — Fo(O ® A)

e get an associated graded HACA (grO, grA), hence
Agrp : grA — grO @ grA.

e the map grA — grO ® gryA = grO ® A9 is injective.
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D5. Examples of HACAs

o if Ais equipped w. right action of a group ', set
F,A={ae A|a|((c|-)n++1 = 0}, then F,A is an algebra filtration of A

o if [is fin. gen., then (CT)' = U,>o((C)}1)+ C (Cr)* is a Hopf
algebra, and (FA, (Cr)’) is a HACA (*)

e associated HACA filtration : F,A and F,(CI) = ((Cr)ffl)L

e the map F,A® (CMN)7T — AT, a@ x — ajx induces left nondeg. pairing
gr,A® ((CF)'}F/(CF)'}rJrl — AT, hence injection gr,A < (...)* ® A",

e example of construction (*): A = On0q(C), I =T¢, then get a HACA

(Fooomod(c)’ ((CI_C)/)

e another example of HACA: Sh(H¢) is a HA, hence
(O(C) ® Sh(Hc), Sh(Hc)) is a HACA
o FIP'Sh(H¢) = F,Sh(Hc), hence associated filtration given by
O(C) ® FSh(H¢) and F,Sh(H).
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D. Ideas of the proofs

D6. Proof of remaining statement: a HACA morphism and
its associated graded morphism

® i, :Sh(Hc) — (Cl¢) is a Hopf algebra iso (already seen) therefore
induces iso of graded Hopf algebras gr(i 5 ) : Sh(H¢)) — gr(Cr¢)’

o (f12,112): (O(C)®Sh(Hc¢),Sh(Hc¢)) — (Fgf@mod(f), (Cre))is a
HACA morphism.

e induces sequence of graded algebra morphisms

grfy 2
)

O(C) ® Sh(He) © = g8 0 pmog(€) — O(C) @ gr(Cr ¢’

e which coincides with id ® gr(iy ) therefore is an iso of graded algebras

o therefore ), : O(C) @ FoSh(H¢) — FEPOmoq(C) is an iso of filtrations.
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E. Relation w. the DHS approach to HL functions

E. Relation w. the DHS approach
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E1l. The DHS construction

e let ¥ be a Riemann surface, p € ¥, let h :=genus(X).

e Hi(X) := Hi(X,C) is a symplectic 2h-dimensional vector space,
w € N2(H;(X)) the elt induced by sympl. form

e fix a decomposition H;(X) = L, ® Ly, as a sum of Lagrangian subspaces
o (X, Q%) is a h-dimensional vector space

. mtegratlon is a perfect pairing I'po/(Z, Q%) ® Ly, — C, hence dual
element jDHS = Z b; Ruw e Lp® Fho,( Y. Q0% 1)

o (X, QY%(p)) is the space of sections of Q1'9, smooth outside p, with
local expansion a - dz/z+bounded at p; then a is called the residue at p

e the Lie algebra g := IL(H1(X)) is graded: deg(L) =0, deg(L,) =1
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E2. The DHS construction (cont'd)

. there exists unique j]%l({)s € g[1]&r (%, Q1(p)), such that

DHS =[] HS’jDHS] (equality in g[1]® (X, Q%!(p))) and
reSP(jDHS) =weN(Hi(T)) Cg

e set Jpus = jI%ﬁS + j]gﬁs, then Jpus is a MC elt, so d — Jpps is a
flat connection

e Jpus can be expressed explicitly in terms of the Arakelov Green function
(element of C*°(X X X — X gjag)/C, independent on choice of L, Lp).

e the flat connection d — Jpus gives rise to an alg. morphism
Sh(H1(X)*) — C*°(Xp), where X, := X \ p.
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E3. HL functions attached to the DHS element

e define Hc(JIpus) = im(Sh(Hy(X)*) — C®(5,)).
o for J € MCpg(Tp), there exists a : L(Hz ) — L(H1(T)) and

~

g € C®(Xp, exp(L(HE))) such that

e therefore

d — Jpus = a(g(d — J)g™t).

Hc(Tpus) - C(Ep) = He(J) - C(Xp)

e therefore also equal to Ac - C*(X,)

o for J,J' € MCp4(Xp), there exists & aut. of ﬁ(H*zP) and
g € C(X,, exp(L(HE))) with d — J = &.(§(d — J)g~1).

e therefore

Ac - C™(%p) = Ac- C>(%p)
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E. Relation w. the DHS approach to HL functions

Thanks for your attention!
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