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e (M,w) compact symplectic manifold, dim M = 2n.
o (L, ht) Hermitian line bundle over M with Hermitian connection V*
satisfying the prequantization condition

i
- Rt
YTt
where Rt € Q?(M, C) curvature of V£,
@ G compact Lie group acting on (L, ht, V%) over (M,w), g := Lie(G).
@ Then the action of G on (M, w) is Hamiltonian : there is a
G-equivariant i : M — g*, called moment map, satisfying

d{p, X) = 13w.

for all X € g inducing X € C®(M, TM).
@ i : M — g* is defined by the Kostant formula

(1. X) = 5V~ Lx).
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e Assume (M,w) admits a G-invariant compatible complex structure.
@ Then G acts holomorphically on (M,w) compact Kahler manifold.

o (L, ht) admits a unique holomorphic structure for which V' is the
Chern connection, and G acts holomorphically on L over M.

Classical mechanics Quantum mechanics
classical phase space : space of quantum states :
(M, w) symplectic manifold H°(M., L) holomorphic sections of L
classical symmetries : quantum symmetries :
Hamiltonian action of G on (M, w) Unitary action of G on HO(X, L)
classical reduction : quantum reduction :
Mo := u~1(0)/G HO(M, L)¢ G-invariant hol. sections
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e Assume 0 regular value of p: M — g* and G acts freely on 1 =1(0).

Definition (Marsden-Weinstein)

The symplectic reduction is the smooth manifold My := 1 ~1(0)/G
endowed with the unique symplectic form wq satisfying

%
ToWo = w‘u—l(o) 0

where 7o : 1~1(0) — My quotient map.

.

@ (Mp,wp) is prequantized by the line bundle Ly caracterized by
C* (Mo, Lo) ~ C*(u=(0), L|,-1(0))©

with induced Hermitian metric and connection.

e If (M,w) admits a G-invariant compatible complex structure, then
Lo holomorphic line bundle over (My,wp) Kahler.



Quantization commutes with Reduction

Theorem ([Q,R]=0, Guillemin-Sternberg,'82)

Let G be a compact Lie group acting holomorphically on a holomorphic
Hermitian line bundle (L, h%) prequantizing a compact Kahler manifold
(M,w), and assume that G acts freely on ;1 ~1(0). Then the natural map

HO(M, L) — H%(My, Lo)

S+ S|“—1(0) 9

is an isomorphism.




Quantization commutes with Reduction

Theorem ([Q,R]=0, Guillemin-Sternberg,'82)
Let G be a compact Lie group acting holomorphically on a holomorphic
Hermitian line bundle (L, h%) prequantizing a compact Kahler manifold
(M,w), and assume that G acts freely on ;1 ~1(0). Then the natural map
HO(M, L)€ — H°(Mo, Lo)
S +— S|“—1(0) 9

is an isomorphism.

@ Teleman, Braverman, Zhang,'00 : For all j > 0,
dim H/ (M, 1)® = dim H/ (Mo, Lo) ,
where H/(M, L) is the j-th Dolbeault cohomology group of L.



Quantization commutes with Reduction

Theorem ([Q,R]=0, Guillemin-Sternberg,'82)
Let G be a compact Lie group acting holomorphically on a holomorphic
Hermitian line bundle (L, h%) prequantizing a compact Kahler manifold
(M,w), and assume that G acts freely on ;1 ~1(0). Then the natural map
HO(M, L)€ — H°(Mo, Lo)
S +— 5|H_1(0) 9

is an isomorphism.

@ Teleman, Braverman, Zhang,'00 : For all j > 0,
dim H/ (M, 1)® = dim H/ (Mo, Lo) ,

where H/(M, L) is the j-th Dolbeault cohomology group of L.
e Setting RRC(M, L) := Z}’:O(—l)f dim H/(M, L)®, this implies

RRC®(M, L) = RR(My, L)
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This last statement extends to the symplectic case :
RR®(M, L) = dim(KerD; )¢ — dim(CokerD; )¢,

where D : Q%+ (M, L) — Q% (M, L) spin® Dirac operator induced by a
G-invariant almost complex structure J € End(TM) compatible with w.

Theorem ([Q,R]=0 in the symplectic case)

Assume that 0 is a regular value of u. Then

RRC(M, L) = RR(My, Lo) .

By the Hirzebruch-Riemann-Roch formula (HRR), this implies

RRC(M, L) = j e“° Td(Mp),
Mo

where [Td(Mp)] € H(My, R) symplectic invariant.
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[Q,R]=0 in the symplectic case : a short history
@ For G torus : Vergne,'96, Meinrenken,’96.
@ For general G : Meinrenken,’98, then Tian-Zhang,'98.

@ For 0 singular value of u : Meinrenken-Sjamaar,’99, then Zhang,'99,
Paradan,’99.

@ For M # 0 : Tian-Zhang,'99.

e For M non-compact and p proper : Paradan,'03 (for coadjoint orbits),
general case conjectured in Vergne's ICM 2006 plenary talk, solved by
Ma-Zhang,'14, then Paradan,'11.

@ For CR-manifolds : Hsiao-Ma-Marinescu,'19.
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@ For 0 singular value of u, the results of Meinrenken-Sjamaar, Zhang
and Paradan establish

RRC(M, L) = RR(M., L.),

for various desingularizations (M., &) of (Mg, wo), depending on the
choice of € > 0.

@ In particular, this gives

RRC(M, L) = ﬁ e Td(M.).

€

Question (Sjamaar,'95)

Can the right-hand side be expressed purely in terms of symplectic
invariants of My as a stratified symplectic space ?
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Theorem (Delarue-1.-Ramacher,'23)

Explicit Riemann-Roch type formula for RR®(M, L) when G = S and 0

singular value of i, expressed purely in terms of symplectic invariants of
My as a stratified symplectic space.




Description of the Main result

@ Description of the Main result



Description of the Main result

@ M smooth manifold endowed with an action of G = SI.



Description of the Main result

@ M smooth manifold endowed with an action of G = SI.

@ S(g*) := {entire analytic series on g := Lie G}.



Description of the Main result

@ M smooth manifold endowed with an action of G = SI.

@ S(g*) := {entire analytic series on g := Lie G}.

Definition (Cartan)

The equivariant cohomology Hg(M,C) := H(Q26(M), dy) of G acting
on M is the cohomology of

Q6(M) := Q(M,C)° ® S(g*),
endowed with the differential

(dga)(X) := da(X) + 2im tza(X).

for all & € Q¢(M) and X € g inducing X € C*(M, TM).

.




Description of the Main result

@ M smooth manifold endowed with an action of G = SI.

@ S(g*) := {entire analytic series on g := Lie G}.

Definition (Cartan)

The equivariant cohomology Hg(M,C) := H(Q26(M), dy) of G acting
on M is the cohomology of

QG(M) = Q(Mv(C>G ® 5(9*) y
endowed with the differential

(dga)(X) := da(X) + 2im tza(X).

for all & € Q¢(M) and X € g inducing X € C*(M, TM).

Proposition
If G acts freely M, then Hg(M) ~ H(M/G).
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Consider now the Hamiltonian action of G = S* on (M,w), with moment
map u: M — g*.

Definition

For G acting freely on 1 ~1(0), the Kirwan map « : Hg(M) — H(My, C)
is given by

K+ He(M) <% Hg(u2(0),C) ~ H(Mo,C).

Proposition
The Kirwan map is characterized for all @ € Qg (M) and 3 € Q(Mp, C) by

i
ﬁ/\I{a:j moB A a(=—df) A0,
Mo (@) 1=1(0) ° (27T )

where 0 € Q'(171(0),R) is a connection over the S-principal bundle
mo : p1(0) S Mo, so that 8(X) = x for all X € g identified with x € RR.

v
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Definition (Berline-Vergne)

E complex vector bundle over M with G-invariant Hermitian connection
VE, the equivariant curvature is

RE := RE + 2im puF € Q*(M,End(E))° ® S(g%)

where uE(X) == Lx — Vg for all X € g inducing X € C*(M, TM).

Let E = (TM, J) be equipped with the Chern connection VM.

Proposition (Chern-Weil theory, Berline-Vergne)

The equivariant forms ¢y 4(L) := w + 2im € Q(M) and

R™ /2ir
Tdy(M) := g Qs(M
ehilil) 5= el (eprgTM/2i7r—Id> = i)

are dy-closed and their classes in Hg(M) are independent of J € End(TM)

et
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Theorem (equivariant index formula, Atiyah-Bott-Segal-Singer,'68)

For all g € G, writing M& := {x e M | g.x = x}, we have

e Td(Me)

x(g) = fMg Tr[g_llL]W,

where D8(M/ME) = detpe (Id — g exp(RV*)) € Q*(M, C) with
N& := TM/TM? normal bundle of M& — M.

o For g = eX with X € g, we get Tr[g~1|,] = e2™(X).
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Theorem (Kirillov formula, Berline-Vergne,'82)

For all X € g small enough, we have

x(eX) = JM 2™ X) e Td (M, X) .

Theorem (Meinrenken, 96)
If G = S! acts freely on 1 ~%(0), then

RRC (M, L) :f e k(Tdg(M)) = RR(Mo, Lo) .
Mo

A

Theorem (Duistermaat-Guillemin-Meinrenken-Wu,'96)

If 0 is @ minimum/maximum of the moment map, then

SMO z71ewo Td(Myp)

T RR(Mo, Lo) .

RRC(M, L) = Res,_q/s,
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@ Assume 0 singular value of 1 : M — g*, not extremal.

o To simplify : F:= ~%(0) n MC is reduced to one point.

Proposition (local normal form, Guillemin-Sternberg,'84)
There exists a chart U < C" around F < M such that for all v e U,

(), X) = x ) klmi(v)P

keZ

for all X € g sent to x € R via G ~ R/Z, and where for any k € Z,

i C" = {veC" | eX.v =e?my},

.

@ In particular,

(171(0) " U\F ~ ST x S™x]0,¢[,

where ST ellipsoids inside the subspaces of + weights inside C".
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Theorem (Delarue-1.-Ramacher,'23)

Assume 0 singular value of x and G acts on p=1(0)\F freely. Then

RRC(M, L) =J

e (Tdg(M)) + f €™ “higxc(Tdg(M))
Mo

Exc
§pzte” Td(F)

Res,_
+ Resz—0,0 DZ(I\/I/F)

o F c p1(0) fixed point set of G inside 1 ~1(0).
e k:Q¢g(M) — Q(My,R) defined using a connection
6 € Q*(1~1(0),R) with normal form around the singularities.

@ Under a natural condition on the weights of the S'-action around F,
k: Hg(M) — H(Mp,C) with 7w : My — My partial resolution of the
singularities.

@ Res,_q  is the average of the residues at 0 and co.
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Theorem (Delarue-l.-Ramacher,’'23)

Assume 0 singular value of p and no orbifold points. Then

RRC(M, L) =f
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Theorem (Delarue-1.-Ramacher,'23)

Assume 0 singular value of p and no orbifold points. Then

RR®(M, L) = f e (Tdg(M)) + J €™ kipye(Tdg (M)
Moy Exc
SF 7—1gw Td(F)
= Reszzowa .

@ The exceptional divisor m|g« : Exc — F of the resolution is an
S+ /St x S=/S-principal bundle.

® Kixe : He(M) — H(Exc, C) is defined for all a € Qg(M) by
3(a(55d07) + al5d07)) — a5 59

HEXC(O[> = do+ — do- 2 2

where 0% € Q(S*,R) connections for the S-actions on S*.
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Elements of proof

o Follows Witten, 92 and Meinrenken,'96.
e Introduce a quantum number m € N with m ~ 1/A, so that
L™ := [®™ prequantizes (M, mw) with moment map mu : M — g*.
o Let ¢ € CX(S) with compact support around e € G.
o To simplify : G = S! acts freely on M\MC.

RRC(M, L™ :J X" (g) dg
G
_ f ™ (g)6(g) de + j A (g)(1 - é(g)) de
G G
_ f J 2T X) e Td_ (M, X)(eX) dX
gJIM

mw G
JJ Trlg o] Dg(-/\r/(]j/,\,\;c))(l o(g)) dg -

by the Kirillov and equivariant index formulas.
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Elements of proof

e Assume G acts freely on 1~1(0).

o Non-stationary phase lemma : for all ¢ € CX(R) and ¢ € C*(R)
satisfying 1/ > 0, we have as m — +o0,

f ™) (¢) dt — O(m~") .
R

X

o For g = X, we have Tr[g ! m] = €™{X) 5o that

mw G
J JMG Trlg Y| m] Dg(-/\lj/(/\,\jc))(l #(g)) dg = O(m™®).

o For any neighborhood U = M of 11~1(0), we have
f JM 2™ meX) eme Tdy (M, X)p(eX) dX
g

= J J e2imm(nX) eme Td (M, X)p(eX) dX + O(m™>).
gJU
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@ Duistermaat-Heckman,'82 : For U = ,ufl(l) with 0 € | = R small
enough, there is a connection # € Q'(x~1(0), R) such that, in a
trivialization U ~ p~1(0) x / with g € /, we have

w = w110y + d(g).



Elements of proof

o Duistermaat-Heckman,'82 : For U = (/) with 0 € / = R small
enough, there is a connection # € Q'(x~1(0), R) such that, in a
trivialization U ~ p~1(0) x / with g € /, we have

w = w’u—l(o) + d(q&) .

o We get as m — +o0,
J J 2l X) gm Td (M, X)p(X) dX
J f f e2immxr gm(w+d(a9)) Tq (M, x)(x)(q) dx dg

+ O(m™®).



Elements of proof

e stationary phase lemma : for all ¢, p € CX(R),

Gt

m JRQ e2i7rqu1/1(CI)P(X) dx dg = WW(O) oxk (0)

k=0



Elements of proof

e stationary phase lemma : for all ¢, p € CX(R),

2iTtmxq dx d IS ik ak’(/) 0 0
m e maa)px) b 0= X Gy o ©220)

e Taking ¢ € CX(R) with ¢ =1 around 0, we get as m — +0,
RRC(M, L™)
= mf J f e?immxaemwtadf) Tq (M, x) A 6 $(x)B(q) dx dg

+ O(m~®)

mw L —00
J_l(o)e Tdy (M. 5-d6) n 6+ O(m™*)

I

| emen(raym) + o(m~)
= RR(My, Lg") + O(m~®), since k(Tdg(M)) = Td(My) .
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e Recall RR(My, L§") polynomial in m e N by HRR.

Theorem (Meinrenken, 96)

There exists k € N such that for all 0 < j < kK — 1, the functions
m +— RR(M, LX™=J) are polynomials in m e N.

o Uses the equivariant index formula for x(™ and a result of Erhart, 77
on the polynomiality of the number of integer points inside polytopes.
o Then RR®(M,L™) = RR(My, LT) + O(m~*) implies
RRC(M,L™) = RR(Mg, LT) for all me N, and setting m = 1, we get

RRC(M, L) = RR(My, Lo) .
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Elements of proof

@ Assume 0 singular value of u: M — g*.
e Then RR®(M,L™) splits into two terms as before.
o Writing F := M® ~ ;71(0), the term

mw G
JJMGTr g™ i) Dg(Ej/(/C/l/lc))(l—Mg))dg
= [ f s e g 0 o8 e+ 0(m ),

will contribute to the residue term of the Main result.

@ Delarue-1.-Ramacher,’23 : Compute the asymptotics as m — +o0 of
f f 2mmX) eme Tdo (M, X)p(eX) dX
gJIM

= J J e2imm(nX) eme Td (M, X)p(eX) dX + O(m™>),
gJU

using explicit local coordinates for U < M around F.
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@ To simplify : F reduced to one point. We use the coordinates

V: ST x S x]0,e[xR— UcC"

(whr, w7, r,q) — (\/vr4+q2+qW+,\/vr4+q2—qw‘>

@ In these coordinates, the symplectic form becomes

w = wl,-10) + d(qf + (\/r* + ¢ — r?)0),
where 0 := (0" + 6~) connection and § := 1(#* — 6~) basic.
@ The integral picks up a boundary term on S x S~ x {0} due to

Stokes, leading to the two last terms of the Main result.

o As \/r* + ¢2 — r2 229 |q|, the amplitudes of oscillating integrals
contain a factor of |g|, leading to Cauchy principal values.
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Elements of proof

@ We get an explicit formula of the form

f f e2imm(X) eme Td (M, X) (X)) dX
gJU
= (-term, @) + (p.v.-term, ) + O(m~®)

and the second term is non-local in ¢.
@ In particular, if e ¢ Supp ¢, then

|| e e ole) b = [ 1™ @)oterde + 0 )

= (p.v.-term, ¢) + O(m~ %),

thus identifying the residue term.

@ To conclude, we use Meinrenken,’96 on the polynomial behavior of
RRG(M,L™) in me N, compared to our polynomial formula l



The End

Thank you'!



