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Kahler-Yang-Mills Equations

Introduced by Alvarez-Cénsul, Garcia-Fernandez and Garcia-Prada

Let E — X be a holomorphic vector bundle over a Kahlerian
manifold, try to find (H,w) where H is a Hermitian metric on E
and w a Kahler metric on X, s.t.

where Fp is the curvature of the Chern connection for H, and S,
is the scalar curvature of w.
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Moment map interpretation

There are two well-known problem:: ,
A. Hermitian-Yang-Mills connection is zero of for
(7 11 ivah- T
g G~ (A7, wa) by [Atiyah-Bott, Donaldson];
B. Constant scalar ature Kahler metric is zero of a moment

¢ ma for’Hm w7) by [Fujiki, Donaldson “ TD
) p @ 7) by [Fuj Y

/Coupllng together these two, Alvarez-Cénsul, Garcia-Fernandez
and Garcia-Prada studied G ~ (P, w,), where

o P={(J,A) € T x AIFy* =0};

° Lia:OKOWJ+041WA; M 5‘“" ""‘f .

@ G is the extended gauge group,
~Cc

E
1 %@ﬁ(@vﬁa H9—> 1. %

The zero moment map equation of this action is KYM equation.
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Gravitating Vortex equations

%
W

Assume the rank 2 holomorphic vector bundle £ — ¥ X _]E’fl comes
from extension of holomorphic line bundles, i.e. asssume E is an
extension of L on ¥ and Op1(2) determined by ¢ € H°(Z, L):

0— piL— E — p3Op(2) — 0, +=°. _
P1 P20 (2) =)E_

then the SU(2)-invariant KYM solution is equivalent to LD ("9
Gravitating Vortex equations, which therefore also has a .
moment map interpretation too [AC-GF-GP, 17].

Here, t
wr = pi‘{Jr ~i@ s ‘“ ’
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Einstein-Maxwell-Higgs Model

Physical meaning: describe how gravity and electro-magnetic field interacts

Let M be a 4-manifold, L — M a Hermitian line bundle. Consider

the T ,/

S(g,A,¢):/ <l6RG >dvolg,

TTA Hilbeyt - Einstein

@ g is Lorentzian of signature (—,+,+,+) on M, Ais a unitary
connection on L, and ¢ is a section of L;
Po"'ﬂd‘i.'

(|¢|2 )’ 7).

where

Euler-Lagrange equation: Einstein—MaxweII—nggs equations.
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Bogomol'nyi reduction
M =RLI x5 L A, ¢ are pulled back from ¥, and
g = —dt® + dz? The EMH equations are equivalent ==

R S y .
[Comtet-Gibbons, Linet, Yang] to a system of Bogomol'nyi
self-dual equations. It admits vortex like solutions. (physically known as

cosmic strings, gives a potential explanation of galaxy formation in the early universe proposed by physicst T.

Kibble.) OO’V““ sTrwn

Figure: T. Kibble & Cosmic strings, Photo source; website
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Einstein-Bogomol'nyi equation

The mathematical treatment started from Y. Yang in 1990's. It
becomes the following PDEs for (,f?r, ‘L‘/)
rd

Ke = —a[r(e" — 1)

and could be combined to one single semilinear PDE (with

o = —) with an undetermined parameter (see below). I M‘

[ .
@ « Is the coupling constant; =,
@ 7 is the symmetry-breaking scale;

@ pj's are the location of the strings, and n; are local string
numbers.
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Some model solutions

A singular solution, and its smoothing obtained by
[Chen-Hastings-Mcleod-Yang, 94]:

C
C;aV\KL“Q' Pﬁg}v
Ji’;ﬁ,\/
%
“' lz|’ - 2EC

S _\;KAM HWJ‘\M IS

oo Hain
s "9

(3, ) Solagion by
[Chmy, 9]

ot call

Yotation .l),lj

Cyimebic |
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EB equation recast as GV equations

The above EB equation fits into the following more general PDE
system:

L'/ !»\\
Y

oz~ S —i—a(A +T)(\¢\h—7)

called the GV equations (when ¢, = 0, Werecover] EB equation?).

The unknowns are( iw, h))where w is a Kahler metric on X and h is
a Hermitian metric on the holomorphic line bundle L, ¢ is a
holomorphic section (called the Higgs field).

KEY DIFFERENCE: EB is one PDE while GV is a system of two
PDEs for ¢, # 0!



|. Motivation and Background
oe

Vortex Equation

The first equation in the above system is called the Vortex
equation, studied throughly by [Jaffe-Taubes, Witten, Noguchi,
Bradlow, Garcia-Prada,....]. -

-
On C, the unique solution obtained by Li [JGA. 2018]

Aw = e% — ‘(MZe—(k—l)W

gives Vortex solution h = e~ *¥ for the data
((C,a = W|dz|2), L=

It is proved on compact Riemann surface ¥, for any given Kahler

Geed |72 (L
metric@with Vol, > WClQ, there exists a unique h solving it
T = -
for any ¢ € H(Z, L). ) §=o

The solvability does not depend on ¢. (In Garcia-Prada’s proof of
relating this vortex equation to Hermitian-Yang-Mills connections,
the boxed numerical condition is the slope stability.condition
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lI. Gravitating Vortex equations

Previous known results: About ¢, > 0

The constant ¢, = %ﬁaﬂv)

And, ¢, > 0 implies ¥ = P*.

, is topologically determined.

Theorem (Yang)

Q (95°) Let(g be stable

) be stable) Then, V V >(*2°)) 3 a solution (w, h)
i, to the EB equation satisfying Vol,, > V

A converse was proved recently.

Theorem (AC-GF-GP-P, 20')

The existence of solution to GV equations with c, > 0 implies ¢ is
polystable.
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Stability of binary quantics

The holomorphic section ¢ is homogeneous polynomial of degree
N in variable zp, z;. It is one of the main themes of classical
invariant theory, in 19th century.

It is also the most basic example of Mu !

Theory. Let (¢ =0) = Zj-]:l nip; € BymN(P1)
@ ¢ is strictly polystable if d =2 and ny = np = %;
° ¢ isﬁ)lgifénj < g)forj: 1,2,---,d.

Geometric Invariant

cLa €)Y SURY)
=

SYPY /st )
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Questions left

The stability condition was a technical assumption in Yang's proof,
its PDE is .

A@: 15(7 —e2fx)e42iMe_”* ~N,

where the assumption on the multiplicities of zeros of ¢ enables
one to construct super/subsolutions (cf. also [Han-Sohn, 19']).

Using the moment map picture, [AC-GF-GP-P, 20'] showed the
necessity! Some questions are left:

a) Existence of solution to EB equation for arbitrary admissible
volume V € (@,Jroo);

b) Existence of solutions to GV equations for a € (0, ;
. . Cw =D
c) Uniqueness of solutions. Ly cavo
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[11. Main Theorems

The first result strengthens Yang's existence theorem, confirming
question a) above:

Theorem (Garcia-Fernandez, Pingali & Y., 21")

47N .
Let q’).be gc.)lystab@ Then ¥ V > === 3 a solution to the EB
equation with Vol, = V.

Then, we prove a similar existence result for ¢, > 0, answering b):

Theorem (ibid.)

Let ¢ be polystable, a € (0, ﬁ] Then, ¥ \/>_4_”Tﬁ, 3 a solution
(w, h) to the GV equations with Vol, = V.
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Outline of proof

The two theorems are proved via the same strategy, only two
crucial differences in a priori estimates.

Stepl (set up the continuity method): Starting from one of
for EB equation. Then

is a solution to the following rescaled

system with/arameter ¢ =(¢¢ = V§I7r ;
w0
Ubﬂumak

. 1 ~
i 'Fz+£(’¢’%—7)w207 3
Sz + oAz + )19} —7) = 0. o

Solve the system for (@, h) € (Hewps, Hi) and(
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Step2 (openness): Kernal of the linearized operator
£:(C®/R) x C*® — C* x C* corresponds to

Aut(P', L, ¢)

which @ n case ¢ is strictly polystable, and is {1} in case
¢ is stable. p — -
I
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Se = 2aldagl® + a(r — |9[4)%, + 2
. S
o |ViSk|2 < 3ar? (2¢y + 2a72 +7)° M
e Diam(g) < C for uniform C >0 (the proofs about EB %DE
W
equation and GV equations diverge at this point). co———

solution (w

For a family of solutions (g, h,), we can get a subsequential C%#

Cheeger-Gromoy. limit, i.e. 3 diffeomorphism ¢, : $? — S? s t.
Zcp’;k,,;: koo, In C2P sense. @ - . N Qdd

5.
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Using uniqueness of almost complex structure on 52 (i.e. any two
C?# almost complex structure on S? are related by an C3F
diffeomorphism) to improve the sequence ¢, to holomorphic
automorphism On € PSL(2 C), and

S tate ﬁmcﬁw
k', in C*P sense.

o |(log @) 47rG,’,HCo p1y < C, where &/ = o7®, and G} is the
en’s function for the metric k/, with poles o}i[¢ = 0].

This results in o(gn, ®n) =18 (g5, PL)-
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Moreover, ®’_ satisfies

Agy log® = (r— L) — 4> n; o
' (4)
Sgr. +a(Dgr + NP — T) = ca-

Another regularity result shows that (g/, ®.) is solution to the
GV equations on P! with the Higgs field ¢’ determined by

27 NP oo

Finally, ¢/ is polystable by the above mentioned result of

AC-GF-GP-P, and ¢, Iim,,_mo €(PST(2,C) - 3) Since ¢ is
also polystable, we concIude that ¢ € PSL(2,C) @

o 2

6
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Further results and directions

4
UaSl?ﬁg

/—’_’J”
Recent progresses: fixing ¢, look at how does the solution to EB

equation behave as

i.(V — 47N) the family exhibits a Bradlow/Dissolving limit

feature as in the study of Vortex equations:

f — —oo uniformly;

in some sense.

ii. V — +00, the family of rescaled solution converges to flat
conical metric on P! (polyhedron metrics).
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Directions: study uniqueness and “Weil-Petersen type” metric on
the conjectured moduli space of Einstein-Bogomol'nyi
solutions/Gravitating Vortices

Sym™ (P! [/PSL(2,C).
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Thank you for your attention!



