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I. Motivations and Backgrounds

Kähler-Yang-Mills theory;
Dimension reduction solution: Gravitating vortices

Einstein-Maxwell-Higgs theory.
String-like solution: Einstein-Bogomol’nyi equation
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Kähler-Yang-Mills Equations
Introduced by Álvarez-Cónsul, Garcia-Fernandez and Garćıa-Prada

Let E ! X be a holomorphic vector bundle over a Kählerian
manifold, try to find (H,!) where H is a Hermitian metric on E

and ! a Kähler metric on X , s.t.
⇢

⇤!FH = z .
↵0S! + ↵1⇤2

!(FH ^ FH) = c .

where FH is the curvature of the Chern connection for H, and S!

is the scalar curvature of !.
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Moment map interpretation

There are two well-known problem::

A. Hermitian-Yang-Mills connection is zero of a moment map for
G y (A1,1,!A) by [Atiyah-Bott, Donaldson];

B. Constant scalar curvature Kähler metric is zero of a moment
map for H y (J int ,!J ) by [Fujiki, Donaldson];

Coupling together these two, Álvarez-Cónsul, Garcia-Fernandez
and Garcia-Prada studied eG y (P,!↵), where

P = {(J,A) 2 J int ⇥A|F 0,2
A

= 0};
!↵ = ↵0!J + ↵1!A;
eG is the extended gauge group,

1 ! G ! eG ! H ! 1.

The zero moment map equation of this action is KYM equation.
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Gravitating Vortex equations

Assume the rank 2 holomorphic vector bundle E ! ⌃⇥ P1 comes
from extension of holomorphic line bundles, i.e. asssume E is an
extension of L on ⌃ and OP1(2) determined by � 2 H

0(⌃, L):

0 ! p
⇤
1L ! E ! p

⇤
2OP1(2) ! 0,

then the SU(2)-invariant KYM solution is equivalent to
Gravitating Vortex equations, which therefore also has a
moment map interpretation too [AC-GF-GP, 17’].
Here,

!⌧ = p
⇤
1! +

4

⌧
!FS .
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Einstein-Maxwell-Higgs Model
Physical meaning: describe how gravity and electro-magnetic field interacts

Let M be a 4-manifold, L ! M a Hermitian line bundle. Consider
the action:

S(g ,A,�) =

Z

M

✓
Rg

16⇡G
+ L

◆
dvolg ,

where

g is Lorentzian of signature (�,+,+,+) on M, A is a unitary
connection on L, and � is a section of L;

L =
1

4
|FA|2 +

1

2
|DA�|2 +

1

8

�
|�|2 � ⌧

�2
.

Euler-Lagrange equation: Einstein-Maxwell-Higgs equations.
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Bogomol’nyi reduction

M = R1,1 ⇥ ⌃, L,A,� are pulled back from ⌃, and
g = �dt2 + dz2 + g⌃. The EMH equations are equivalent
[Comtet-Gibbons, Linet, Yang] to a system of Bogomol’nyi
self-dual equations. It admits vortex like solutions. (Physically known as

cosmic strings, gives a potential explanation of galaxy formation in the early universe proposed by physicst T.

Kibble.)

Figure: T. Kibble & Cosmic strings, Photo source: website
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Einstein-Bogomol’nyi equation

The mathematical treatment started from Y. Yang in 1990’s. It
becomes the following PDEs for (g , u):

8
>><

>>:

�gu = (eu � ⌧) + 4⇡
dX

j=1

nj�pj ,

Kg = �↵ [⌧(eu � ⌧)��ge
u] ,

(1)

and could be combined to one single semilinear PDE (with
↵ = 1

⌧N ) with an undetermined parameter (see below).

↵ is the coupling constant;

⌧ is the symmetry-breaking scale;

pj ’s are the location of the strings, and nj are local string
numbers.
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Some model solutions

A singular solution, and its smoothing obtained by
[Chen-Hastings-Mcleod-Yang, 94]:
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EB equation recast as GV equations

The above EB equation fits into the following more general PDE
system:

8
<

:
iFh +

1

2
(|�|2

h
� ⌧)! = 0,

S! + ↵(�! + ⌧)(|�|2
h
� ⌧) = c↵,

(2)

called the GV equations (when c↵ = 0, we recover EB equation).

The unknowns are (!, h) where ! is a Kähler metric on ⌃ and h is
a Hermitian metric on the holomorphic line bundle L, � is a
holomorphic section (called the Higgs field).

KEY DIFFERENCE: EB is one PDE while GV is a system of two
PDEs for c↵ 6= 0!
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Vortex Equation

The first equation in the above system is called the Vortex

equation, studied throughly by [Ja↵e-Taubes, Witten, Noguchi,
Bradlow, Garcia-Prada,....].

On C, the unique solution obtained by Li [JGA. 2018]

�w = e
w � |�|2e�(k�1)w

gives Vortex solution h = e
�kw for the data�

(C,� = e
w |dz |2), L = K

k

C,� = �(dz)⌦k
�
.

It is proved on compact Riemann surface ⌃, for any given Kähler

metric ! with Vol! >
4⇡c1(L)

⌧
, there exists a unique h solving it

for any � 2 H
0(⌃, L).

The solvability does not depend on �. (In Garcia-Prada’s proof of
relating this vortex equation to Hermitian-Yang-Mills connections,
the boxed numerical condition is the slope stability condition

there.)

ztrn zn

oten-nn-rrr-E-zooO.nu
-



I. Motivation and Background II. Gravitating Vortex equations III. Main Theorems

II. Gravitating Vortex equations
Previous known results: About c↵ > 0

The constant c↵ = 2⇡(�(⌃)�2↵⌧N)
Vol!

, is topologically determined.

And, c↵ > 0 implies ⌃ = P1.

Theorem (Yang)

1 (97’) Let � be strictly polystable. Then, 8 V > 4⇡c1(L)
⌧ , 9 a

solution (!, h) to the EB equation with Vol! = V .

2 (95’) Let � be stable. Then, 8 V > 4⇡N
⌧ , 9 a solution (!, h)

to the EB equation satisfying Vol! > V .

A converse was proved recently.

Theorem (AC-GF-GP-P, 20’)

The existence of solution to GV equations with c↵ > 0 implies � is

polystable.
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Stability of binary quantics

The holomorphic section � is homogeneous polynomial of degree
N in variable z0, z1. It is one of the main themes of classical
invariant theory, in 19th century.

It is also the most basic example of Mumford’s Geometric Invariant
Theory. Let (� = 0) =

P
d

j=1 njpj 2 SymN(P1),

� is strictly polystable if d = 2 and n1 = n2 =
N

2 ;

� is stable if nj <
N

2 for j = 1, 2, · · · , d .
-_-0.in
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Questions left

The stability condition was a technical assumption in Yang’s proof,
its PDE is

�f� =
1

2�
(⌧ � |�|2e2f�)e4↵⌧ f��2↵|�|2e2f� � N,

where the assumption on the multiplicities of zeros of � enables
one to construct super/subsolutions (cf. also [Han-Sohn, 19’]).

Using the moment map picture, [AC-GF-GP-P, 20’] showed the
necessity! Some questions are left:

a) Existence of solution to EB equation for arbitrary admissible
volume V 2 (4⇡N⌧ ,+1);

b) Existence of solutions to GV equations for ↵ 2 (0, 1
⌧N ];

c) Uniqueness of solutions.

tonnrrrnr

歱 签



I. Motivation and Background II. Gravitating Vortex equations III. Main Theorems

III. Main Theorems

The first result strengthens Yang’s existence theorem, confirming
question a) above:

Theorem (Garcia-Fernandez, Pingali & Y., 21’)

Let � be polystable. Then 8 V > 4⇡N
⌧ , 9 a solution to the EB

equation with Vol! = V .

Then, we prove a similar existence result for c↵ > 0, answering b):

Theorem (ibid.)

Let � be polystable, ↵ 2 (0, 1
⌧N ]. Then, 8 V > 4⇡N

⌧ , 9 a solution

(!, h) to the GV equations with Vol! = V .
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Outline of proof

The two theorems are proved via the same strategy, only two
crucial di↵erences in a priori estimates.

Step1 (set up the continuity method): Starting from one of
Yang’s solution (!0, h0) for EB equation. Then

(e!0, eh0) =
⇣

2⇡
Vol!0

!0, h0
⌘
is a solution to the following rescaled

system with parameter " = "0 =
2⇡

Vol!0
:

iFeh +
1

2"
(|�|2eh � ⌧)e! = 0,

Se! + ↵(�e! +
⌧

"
)(|�|2eh � ⌧) = 0.

(3)

Solve the system for (e!, eh) 2 (H!FS
,HL) and " 2 (0, ⌧

2N ).
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Step2 (openness): Kernal of the linearized operator
L : (C1/R)⇥ C

1 ! C
1 ⇥ C

1 corresponds to

Aut(P1, L,�)

which is C⇤ ⇥C⇤ in case � is strictly polystable, and is {1} in case
� is stable.此 三 ⼀
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Step 3 (closedness): Let � = |�|2
h
, and k = e

2↵�
g be

conformally rescaled metric, then there holds a priori estimates:

0 6 � 6 ⌧ ,

c↵e
�2↵⌧ 6 Sk 6 c↵ + ↵⌧2, notice the following formula for a

solution (!, h):

Sg = 2↵|dA�|2 + ↵(⌧ � |�|2
h
)2,

|rkSk |2k 6 3
2↵⌧

2
�
2c↵ + 2↵⌧2 + ⌧

�2
,

Diam(g)  C for uniform C > 0 (the proofs about EB
equation and GV equations diverge at this point).

For a family of solutions (gn, hn), we can get a subsequential C 2,�

Cheeger-Gromov limit, i.e. 9 di↵eomorphism 'n : S2 ! S
2 s.t.

'⇤
nkn �! k1, in C

2,� sense.
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Using uniqueness of almost complex structure on S
2 (i.e. any two

C
2,� almost complex structure on S

2 are related by an C
3,�

di↵eomorphism) to improve the sequence 'n to holomorphic

automorphism �n 2 PSL(2,C), and

k
0
n = �⇤

nkn �! k
0
1, in C

2,� sense.

|| log�0
n � 4⇡G 0

n||C0(P1) 6 C , where �0
n = �⇤

n�n and G
0
n is the

Green’s function for the metric k
0
n with poles �⇤

n[� = 0].

This results in �⇤
n(gn,�n) !C1,� (g 0

1,�0
1).
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Moreover, �0
1 satisfies

�g 0
1 log�0

1 = (⌧ � �0
1)� 4⇡

X

j

nj�p0
j,1

Sg 0
1 + ↵(�g 0

1 + ⌧)(�0
1 � ⌧) = c↵.

(4)

Another regularity result shows that (g 0
1,�0

1) is solution to the
GV equations on P1 with the Higgs field �0

1 determined byP
j
njp

0
j ,1.

Finally, �0
1 is polystable by the above mentioned result of

AC-GF-GP-P, and �0
1 = limn!1 �⇤

n� 2 PSL(2,C) · �. Since � is
also polystable, we conclude that �0

1 2 PSL(2,C) · �.
在 黳
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Further results and directions

Recent progresses: fixing �, look at how does the solution to EB
equation behave as

i. V ! 4⇡N
⌧ , the family exhibits a Bradlow/Dissolving limit

feature as in the study of Vortex equations:

h = h0e
2f ! 0 , i .e. f ! �1 uniformly;

! ! 2N

⌧
!FS , in some sense.

ii. V ! +1, the family of rescaled solution converges to flat
conical metric on P1 (polyhedron metrics).

i
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Directions: study uniqueness and “Weil-Petersen type” metric on
the conjectured moduli space of Einstein-Bogomol’nyi
solutions/Gravitating Vortices

M↵ = SymN(P1)//PSL(2,C).
.⼀⼆三:
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Thank you for your attention!


