Directed Anosov and weakly positive representations

Tengren Zhang (w/ Sungwoon Kim and Ser Peow Tan)

National University of Singapore

matzt@nus.edu.sg

April 1, 2021

Singular values and symmetric spaces

• Let V be an n-dimensional real vector space.

Fact

Choose an inner product on V. For any linear map $L:V\to V$, there are orthonormal bases

$$(e_1, ..., e_n)$$
 and $(f_1, ..., f_n)$

of V such that for all k = 1, ..., n, $L(e_k) = c_k f_k$ for some real number $c_k \ge 0$, and $c_1 \ge \cdots \ge c_n$.

- We refer to c_k as the k-th singular value of L.
- If L is invertible, then $c_n > 0$.

Singular values and symmetric spaces

- Let $PGL(V) := GL(V)/\mathbb{R}^{\times}$
- ullet The PGL(V)-Riemanian symmetric space is

$$X := \{\text{inner products on } V\}/\mathbb{R}^{\times}.$$

Let $d_X: X \times X \to \mathbb{R}$ be the distance function on X.

- For any point $o \in X$, choose an inner product on V representing o.
- For any $g \in PGL(V)$, let $\sigma_k(g)$ denote the k-th singular value of a volume-preserving representative of g.

Fact

For any $g \in PGL(V)$,

$$d_X(g \cdot o, o) = \sqrt{\sum_{k=1}^{n-1} \left(\log \frac{\sigma_k}{\sigma_{k+1}}(g)\right)^2}.$$

Anosov representations

- Let Γ be a group generated by a finite set $S \subset \Gamma$ $d(\Upsilon, Y_2)$
- Equip Γ with the word metric associated to $S \cup S^{-1}$. Ξ word light of X_i X_i A geodesic ray $(\gamma_i)_{i \geq 0}$ in Γ is rooted if $\gamma_0 = \mathrm{id}$.

Definition
$$d(Y_i, Y_i) = |Y_i - i|$$

Fix a point $o \in X$. A representation $\rho : \Gamma \to PGL(V)$ is (Borel) Anosov if there are constants $\kappa, \kappa' > 0$ such that

$$\log \frac{\sigma_k}{\sigma_{k+1}} \rho(\gamma_i) \ge \kappa i - \kappa' \qquad \text{Anovor condition}.$$

for all k = 1, ..., n-1 and all rooted, geodesic rays $(\gamma_i)_{i \geq 0}$ in Γ .

- ullet Anosovness of a representation does not depend on S or o.
- There is a constant $\kappa'' > 0$ such that

$$\log \frac{\sigma_k}{\sigma_{k+1}} \rho(\gamma_i) \le \kappa'' i.$$

Thus, we are requiring $\log \frac{\sigma_k}{\sigma_{k+1}} \rho(\gamma_i)$ to grow uniformly linearly along rooted geodesic rays.

Anosov representations

ullet If $V=\mathbb{R}^2$, then $X=\mathbb{H}^2$ and

$$d_X(g \cdot o, o) = \log \frac{\sigma_1}{\sigma_2}(g)$$

for all $g \in PGL(2, \mathbb{R})$.

- As such, $\rho: \Gamma \to \mathsf{PGL}(2,\mathbb{R})$ is Anosov if and only if the orbit map $\Gamma \to X$ given by $\gamma \mapsto \rho(\gamma) \cdot o$ sends every rooted geodesic ray in Γ to a uniform quasi-geodesic ray in X.
- This is in turn equivalent to requiring that the orbit map is a quasi-isometric embedding.
- More generally, if G is a semisimple rank 1 Lie group of non-compact type, then $\rho:\Gamma\to G$ is Anosov if and only if the orbit map $\Gamma\to X$ is a quasi-isometric embedding. Classically, these are known as *convex-cocompact representations*.

Anosov representations

(Labourie, Guichard-Wienhard, Kapovich-Leeb-Porti, ららんび) Bochi-Potrie-Sambarino)

• If $\rho:\Gamma\to \mathrm{PGL}(V)$ is Anosov, then having paints district about when the orbit map $\Gamma\to X/\mathrm{is}$ a quasi-isometric form.

 $\binom{1}{2}$

(1-1)

- 1 the orbit map $\Gamma \to X$ is a quasi-isometric embedding. $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$
- $\rho(\gamma)$ is loxodromic for every infinite order $\gamma \in \Gamma$.
- Γ is a hyperbolic group.
- Anosov representations form an open subset of $Hom(\Gamma, PGL(V)).$
- Examples of Anosov representations include Hitchin representations, Barbot representations, ping-pong lemma type constructions...
- If we require the Anosov property to hold only for some $k = 1, \ldots, n-1$, then examples include maximal representations, Benoist representations...

Directed Anosov representations

• Recall that S is a generating set of Γ . A geodesic ray $(\gamma_i)_{i\geq 0}$ in Γ is S-directed if $\gamma_i^{-1}\gamma_{i+1} \in S$ for all i.

Example

If
$$\Gamma = F_2 = \langle a,b \rangle$$
 and $S = \{a,b\}$, then
$$(a,ab,aba,abab,ababa,\dots)$$

is S-directed, but

$$(a, ab, aba^{-1}, aba^{-1}b, aba^{-1}ba, \dots)$$

is not S-directed.

• If $S = S^{-1}$, then every geodesic ray is S-directed.

Directed Anosov representations

Definition

Fix a point $o \in X$. A representation $\rho : \Gamma \to \mathsf{PGL}(V)$ is (Borel) S-directed Anosov if there are constants $\kappa, \kappa' > 0$ such that

$$\log \frac{\sigma_k}{\sigma_{k+1}} \rho(\gamma_i) \ge \kappa i - \kappa'$$

for all k = 1, ..., n-1 and all rooted, S-directed or S^{-1} -directed, geodesic rays $(\gamma_i)_{i>0}$ in Γ .

- For any generating set S, every Anosov representation is S-directed Anosov, and the converse is true if $S = S^{-1}$.
- If $\rho: \Gamma \to \mathsf{PGL}(V)$ is *S*-directed Anosov, then
 - 1 the orbit map $\Gamma \to X$ sends rooted, S-directed and S^{-1} -directed geodesic rays to uniform quasi-geodesic rays in X.
 - 2 $\rho(\gamma)$ is loxodromic for every infinite order element $\gamma \in \Gamma$ that is a product of elements in S.
- *S*-directed Anosov representations might not have discrete image.

The ping-pong lemma in \mathbb{RP}^1 .

Proposition (The ping-pong lemma in \mathbb{RP}^1)

Let $\rho: \Gamma \to \mathsf{PGL}(2,\mathbb{R})$ be a representation, and let $S \subset \Gamma$ be a finite generating set. Suppose that for each $\gamma \in S$, there are open intervals $I_{\gamma}^+, I_{\gamma}^- \subset \partial \mathbb{H}^2 = \mathbb{RP}^1$ such that

- the intervals $\bigcup_{\gamma \in S} \{I_{\gamma}^+, I_{\gamma}^-\}$ have pairwise disjoint closures, and
- $ullet
 ho(\gamma) \cdot \left(\mathbb{RP}^1 I_{\gamma}^-\right) \subset I_{\gamma}^+ \ ext{for all } \gamma \in \mathcal{S}.$

Then Γ is the free group generated by S, and ρ is an Anosov representation.

Special case of main theorem

Proposition (Main theorem specialized to \mathbb{RP}^1)

Let $\rho: \Gamma \to \mathsf{PGL}(2,\mathbb{R})$ be a representation, and let $S \subset \Gamma$ be a finite generating set. Suppose that there are open intervals $I^+, I^- \subset \partial \mathbb{H}^2$ such that

- I⁺ and I⁻ have disjoint closures,
- $\rho(\gamma) \cdot \overline{I^+} \subset I^+$ and $\rho(\gamma^{-1}) \cdot \overline{I^-} \subset I^-$ for all $\gamma \in S$.

Then ρ is S-directed Anosov.

Definition (Lusztig)

Let \mathcal{B} denote an (ordered) basis of V. Let $U_{>0}(\mathcal{B})$ denote the set of unipotent elements $u \in \mathsf{PGL}(V)$ that are represented in \mathcal{B} by an upper triangular matrix M_u whose minors are positive unless they are forced to be zero by virtue of M_u being upper triangular.

$$\begin{pmatrix} 1 & * & * & * & * \\ 0 & 1 & * & * & * \\ 0 & 0 & 1 & * & * \\ 0 & 0 & 0 & 1 & * \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

ullet A (complete) flag F of V is a nested sequence of subspaces

$$0 = F^{(0)} \subsetneq F^{(1)} \subsetneq \cdots \subsetneq F^{(n-1)} \subsetneq F^{(n)} = V.$$

Denote the set of flags in V by $\mathcal{F}(V)$.

- A pair of flags (F_1, F_2) in $\mathcal{F}(V)$ are transverse if $F_1^{(i)} \cap F_2^{(n-i)} = \{0\}$ for all $i = 1, \dots, n-1$.
- A basis $(e_1, ..., e_n)$ of V is associated to a pair of transverse flags (F_1, F_2) if $e_i \in F_1^{(i)} \cap F_2^{(n-i+1)}$ for all i = 1, ..., n.

Definition (Fock-Goncharov)

A tuple of flags $(F_1, ..., F_k)$ is positive if (F_1, F_k) is a transverse pair of flags, and there is

- a basis \mathcal{B} associated to (F_1, F_k) , and
- elements $u_2, \ldots, u_{k-1} \in U_{>0}(\mathcal{B})$

such that $F_i = u_i \dots u_{k-1} \cdot F_k$ for all $i = 2, \dots, k-1$.

Example

• $(F_1, ..., F_k) \in \mathcal{F}(\mathbb{R}^2) = \mathbb{RP}^1$ is positive if and only if $F_1 < F_2 < \cdots < F_k$ in one of the two cyclic orders on \mathbb{RP}^1 .

• $(F_1, ..., F_k) \in \mathcal{F}(\mathbb{R}^3)$ is positive if and only if there is a pair of convex k-gons P_1, P_2 in an affine chart $\mathbb{A}^2 \subset \mathbb{RP}^2$ such that P_1 is inscribed in P_2 , the vertices of P_1 are $F_1^{(1)}, ..., F_k^{(1)}$, and the edges of P_2 are $F_1^{(2)}, ..., F_k^{(2)}$ in either cyclic order.

• The forward domain (resp. backward domain) of a positive quadruple of flags (F', F, H, H') is

$$\mathfrak{U}_+:=\{K\in\mathcal{F}(V):(F',F,K,H,H') \text{ is positive}\}$$
 (resp. $\mathfrak{U}_-:=\{K\in\mathcal{F}(V):(K,F',F,H,H') \text{ is positive}\}$).

• These are open sets in $\mathcal{F}(V)$.

Weakly positive representations

Definition

A representation $\rho: \Gamma \to \mathsf{PGL}(V)$ is *S-weakly positive* if there is a positive quadruple of flags (F', F, H, H') such that:

- For all $\gamma \in S$, $\rho(\gamma) \cdot \overline{\mathfrak{U}^+} \subset \mathfrak{U}^+$ and $\rho(\gamma)^{-1} \cdot \overline{\mathfrak{U}^-} \subset \mathfrak{U}^-$,
- For all $\gamma \in S$, the tuple $(F', F, \rho(\gamma) \cdot F, \rho(\gamma) \cdot H, H, H')$ is positive up to switching $\rho(\gamma) \cdot F$ and $\rho(\gamma) \cdot H$,
- For all $\gamma \in S$, the tuple $(\rho(\gamma)^{-1} \cdot F', F', F, H, H', \rho(\gamma)^{-1} \cdot H')$ is positive up to switching $\rho(\gamma)^{-1} \cdot F'$ and $\rho(\gamma)^{-1} \cdot H'$.

We refer to (F', F, H, H') as a *separator* of ρ .

Weakly positive representations

Theorem (Main Theorem)

If $\rho : \Gamma \to PGL(V)$ is S-weakly positive, then it is S-directed Anosov.

- Suppose $S \subset \Gamma$ and the elements in $\rho(S)$ are given.
- Verifying that ρ is S-directed Anosov requires checking infinitely many conditions.
- However, given a candidate separator, verifying that ρ is S-weakly positive with respect to the given separator requires checking only finitely many conditions.

- Let $S \subset F_d$ be a minimal generating set, and equip F_d with the metric associated to $S \cup S^{-1}$.
- An element $\gamma \in F_d$ is *primitive* if it is a member of a minimal generating set of F_d .
- A geodesic in F_d is *primitive* if it is invariant under the left action by a primitive element in F_d .
- A geodesic ray in F_d is primitive if it lies in a primitive geodesic in F_d . Out (F_d) ? How (F_d) PGL(V)) ? from the stable?

Definition (Minsky, Guichard-Gueritaud-Kassel-Wienhard)

Fix a point $o \in X$. A representation $\rho : F_d \to PGL(V)$ is (Borel) primitive stable if there are constants $\kappa, \kappa' > 0$ such that

$$\log \frac{\sigma_k}{\sigma_{k+1}} \rho(\gamma_i) \ge \kappa i - \kappa'$$

for all k = 1, ..., n - 1 and all rooted, primitive geodesic rays $(\gamma_i)_{i>0}$ in F_d .

- Let $S = \{\gamma_1, \gamma_2\}$ generate F_2 , and let $\gamma_3 := \gamma_2^{-1} \gamma_1^{-1}$.
- Let $S' := \{\gamma_1^{-1}, \gamma_2\}$, $S'' := \{\gamma_2^{-1}, \gamma_3\}$ and $S''' := \{\gamma_3^{-1}, \gamma_1\}$.

Proposition (Using Cohen-Metzler-Zimmermann)

If $\rho: F_2 \to PGL(V)$ is (S, S')-weakly positive or (S', S'', S''')-weakly positive, the ρ is primitive stable.

Proposition (Using Goldman-McShane-Stantchev-Tan)

If $\rho: F_2 \to \mathsf{PGL}(2,\mathbb{R})$ is primitive stable, then it is (S',S'',S''')-weakly positive for some generating pair S of F_2 .

- An element $g \in PGL(V)$ is positive loxodromic if it is loxodromic and all its eigenvalues have the same sign.
- For any loxodromic $g \in PGL(V)$, let g_+ and g_- respectively denote the attracting and repelling fixed flag in $\mathcal{F}(V)$ of g.

Proposition

Let $\{\gamma_1, \gamma_2\}$ be a generating set for F_2 , and $\rho : F_2 \to \mathsf{PGL}_3(\mathbb{R})$ be a representation. If $a := \rho(\gamma_1)$, $b := \rho(\gamma_2)$ are positive loxodromic, and (b_-, a_+, b_+, a_-) is positive, then ρ is primitive stable.

Proposition

Let $\{\gamma_1, \gamma_2\}$ be a generating set for F_2 , and let $\rho: F_2 \to \mathsf{PGL}(V)$ be a representation. If $a := \rho(\gamma_1)$ is loxodromic, $b := \rho(\gamma_2)$ is positive loxodromic, and $(b_-, a \cdot b_-, a_+, a \cdot b_+, b_+, a_-)$ is positive up to switching $a \cdot b_-$ and $a \cdot b_+$, then ρ is primitive stable.

• This gives many new, explicit examples of primitive stable representations from F_2 to PGL(V), including non-discrete and non-faithful examples.

Proof of Main Theorem

The proof has two parts that are related by the following definition.

Definition

Let W be a collection of sequences in PGL(V), and fix $o \in X$.

- ① \mathcal{W} is uniformly well-behaved if there is a constant C>0 such that for any sequence $(g_i)_{i>0}\in\mathcal{W}$,
 - there is a maximal flat $F \subset X$ such that $d_X(g_i \cdot o, F) < C$ for all $i \geq 0$.
 - $d_X(g_i \cdot o, g_{i+1} \cdot o) < C$ for all $i \ge 0$.
- ② \mathcal{W} is *regulated* if for every D>0, there is an integer N(D)>0 such that

$$\log \frac{\sigma_k}{\sigma_{k+1}}(g_i) \ge D$$

for all sequences $(g_i)_{i\geq 0}\in \mathcal{W}$ and all integers $i\geq N(D)$, and $k=1,\ldots,n-1$.

Proof of Main Theorem (Symmetric space part)

Theorem (Symmetric space part)

Fix $o \in X$. If $\mathcal W$ is a collection of sequences in PGL(V) that is uniformly well-behaved and regulated, then there exists constants $\kappa, \kappa' > 0$ such that

$$\log \frac{\sigma_k}{\sigma_{k+1}}(g_i) \ge \kappa i - \kappa'$$

for all k = 1, ..., n-1 and all sequences $(g_i)_{i>0}$ in W.

- The proof uses ideas developed by Kapovich-Leeb-Porti in their study of Anosov representations $\rho : \Gamma \to PGL(V)$ via their induced actions on X.
- It is now sufficient to show that if $\rho: \Gamma \to \mathsf{PGL}(V)$ is an S-weakly positive representation, then

$$W_S := \{(\rho(\gamma_i))_{i \geq 0} : (\gamma_i)_{i \geq 0} \text{ is a rooted } S\text{-directed geodesic ray}\}$$
 is uniformly well-behaved and regulated.

Proof of Main Theorem (Positivity part)

Let $\rho: \Gamma \to \mathsf{PGL}(V)$ be an S-weakly positive representation, let (F', F, H, H') be a separator for ρ with forward and backward domain \mathfrak{U}_+ and \mathfrak{U}_- respectively.

Step 1: Show that if $(\gamma_i)_{i\geq 0}$ is a rooted *S*-directed geodesic, then

$$(F', F, \rho(\gamma_1) \cdot F, \ldots, \rho(\gamma_k) \cdot F, \rho(\gamma_k) \cdot H, \ldots, \rho(\gamma_1) \cdot H, H, H')$$

is positive for all $k \geq 0$. (Consequence of semigroup property of $U_{>0}(\mathcal{B})$.)

- Step 2: Show that $\lim_{i\to\infty} \rho(\gamma_i) \cdot F = \lim_{i\to\infty} \rho(\gamma_i) \cdot H$. (Uses a cross ratio argument.)
- Step 3: Use this to deduce that $\bigcap_{i=0}^{\infty} \overline{\rho(\gamma_i) \cdot \mathfrak{U}_+}$ is a point. Hence, \mathcal{W}_S is regulated.
- Step 4: Show that $\overline{\mathfrak{U}_+} \times \overline{\mathfrak{U}_-}$ lies in the set of transverse pairs of flags in $\mathcal{F}(V)$ to deduce that \mathcal{W}_S is uniformly well-behaved.

The End