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Representation Spaces

S orientable surface of finite type, with χ(S) < 0.

G reductive Lie group
(today G = PSL(n,R) or PSp(2n,R) or PO(p,q)).

Rep(π1(S),G) = Hom(π1(S),G)/G

Representation Space of π1(S) in G. (non-Hausdorff space.)
(its Hausdorff version is called Character variety.)

Important in several areas of Geometry and Theoretical Physics.

Higher Teichmüller-Thurston Theory
Theory of Higgs Bundles Gauge Theory
Geometric Quantization Knot Theory
SUSY Quantum Field Theories Integrable Systems
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Higher Teichmüller-Thurston Theory

We borrow ideas from
the classical Teichmüller-Thurston Theory
to study some special subsets of Rep(π1(S),G).
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Teichmüller-Thurston Theory

G = PSL(2,R) = Isom+(H2).

If S is closed, the Teichmüller space of S is

T (S) = { hyperbolic structures on S }/ ∼

Rep(π1(S),G)

⊆

{ρ ∈ Rep(π1(S),G) | ρ is discrete and faithful }

=

T (S) ∪ T (S̄)

2 connected components of Rep(π1(S),G).

The other components don’t have the same nice geometry.
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Special representations

For general G, we cannot apply the ideas of the
Teichmüller-Thurston theory to the entire Rep(π1(S),G).

For G = PSL(2,R) it would not work.

Idea: select some special subsets of Rep(π1(S),G), consisting
of special representations having good geometric properties.

Restrict attention to these subsets.

Restricting to discrete and faithful representations does not
work.

More subtle definitions are needed, there is a hierarchy of
special representations.
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Special representations

1 Hitchin representations in split groups (Hitchin ’92.)
e.g. G = PSL(n,R),PSp(2n,R),SO(p,p + 1),SO(p,p).

2 Positive representations (Guichard-Wienhard ’18.)
a Hitchin representations.
b Maximal representations in Hermitian groups of tube type

(Burger-Iozzi-Labourie-Wienhard ’05.)
e.g. G = PSp(2n,R),SU(p,p),SO∗(4n),SO(2,n).

c Positive representations in SO(p,q).
d Some other exceptional cases.

3 Anosov representations (Guichard-Wienhard ’11.)
4 Discrete and faithful representations.
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Teichmüller-Thurston Theory

G = PSL(2,R) = Isom+(H2).

If S has boundary, the Teichmüller space of S is

T (S) =
{

hyp. str. on int(S)
∣∣∣ every end is a cusp or a

geodesic boundary component

}
/ ∼

T0(S) = { hyp. str. on int(S) | every end is a cusp } / ∼ ⊂ T (S)
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Teichmüller-Thurston Theory

Rep(π1(S),G)

⊆{
ρ ∈ Rep(π1(S),G)

∣∣∣ ρ is discrete and faithful
and H2/ρ ≈ int(S)

}

=

T (S) ∪ T (S̄)

⊆{
ρ ∈ T (S) ∪ T (S̄)

∣∣∣ every peripheral element
is conjugate to

(
1 1
0 1

) }

=

T0(S) ∪ T0(S̄)

This time, they are not connected components of
Rep(π1(S),G).
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Teichmüller-Thurston Theory

π1(S) is Gromov-hyperbolic.

∂∞π1(S) boundary at infinity.

∂∞π1(S) =

{
a circle if S is closed
a Cantor set is S has boundary

The orientation of S induces a cyclic order on ∂∞π1(S).

Cyclic order: given a triple of distinct elements, we can say if it
is a positive triple or not.

H2 is also Gromov-hyperbolic.

∂∞H2 is a circle, it has a cyclic order.
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Teichmüller-Thurston Theory

ρ ∈ Rep(π1(S),G), where G = PSL(2,R).

π1(S) y ∂∞π1(S).

π1(S)
ρ
y ∂∞H2.

Rep(π1(S),G)

⊆{
ρ ∈ Rep(π1(S),G)

∣∣∣ ∃ a ρ-equivariant map ξ : ∂∞π1(S) → ∂∞H2

sending positive triples to positive triples.

}

=

T (S)

This definition takes care of the topology and orientation of S.

It generalizes to higher rank giving positive representations.
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Positive representations

Generalize this definition to a G of higher rank.

PSL(2,R)  G
H2  G/K (symmetric space)
∂∞H2  G/P (parabolic homogeneous space)

for some choice of a parabolic subgroup P < G.

A positive structure on (G,P) is a way to decide what are the
positive triples in G/P, such that they satisfy some “good”
properties.

From this, we define the positive representations:

Rep(π1(S),G)

⊆{
ρ ∈ Rep(π1(S),G)

∣∣∣ ∃ a ρ-equivariant map ξ : ∂∞π1(S) → G/P
sending positive triples to positive triples.

}

=

Pos(S,G)
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Hitchin representations

e.g. G = PSL(n,R)

P = B Borel subgroup

G/B = { Full flags in Rn }

Notion of positive triples of flags (Lusztig).

Positive representations are the Hitchin representations.

Fock-Goncharov’s work is for this positive structure.
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Maximal representations

e.g. G = PSp(2n,R).

PSp(2n,R) y (R2n, ω) ω symplectic form.

L ⊂ R2n a Lagrangian subspace.

P = StabG(L) the parabolic subgroup.

G/P = Lag(R2n) the Lagrangian Grassmannian.

µ(L1,L2,L3) ∈ {−n, . . . ,n} the Maslov index.

(L1,L2,L3) is positive if µ(L1,L2,L3) = n.

Positive representations are the Maximal representations.

Our work A.-Guichard-Rogozinnikov-Wienhard is for this
positive structure.
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Special representations

1 Hitchin representations in split groups (Hitchin ’92.)
e.g. G = PSL(n,R),PSp(2n,R),SO(p,p + 1),SO(p,p).

2 Positive representations (Guichard-Wienhard ’18.)
a Hitchin representations.
b Maximal representations in Hermitian groups of tube type

(Burger-Iozzi-Labourie-Wienhard ’05.)
e.g. G = PSp(2n,R),SU(p,p),SO∗(4n),SO(2,n).

c Positive representations in SO(p,q).
d Some other exceptional cases.

3 Anosov representations (Guichard-Wienhard ’11.)
4 Discrete and faithful representations.

We can see Pos(S,G) as higher rank analogues of Teichmüller
spaces: higher Teichmüller spaces.

We want to study them using ideas from Teichmüller-Thurston
theory.
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Teichmüller-Thurston Theory

G = PSL(2,R) = Isom+(H2).

Assume that ∂S 6= ∅.

A useful tool to study T (S) is an topological ideal
triangulation.

There are two different ways of describing Teichmüller spaces
using ideal triangulations.

1 Thurston’s shear coordinates for T (S) (framed theory)
2 Penner’s λ-lengths for T0(S) (decorated theory)
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Teichmüller-Thurston Theory

We need to add extra information (a framing or a decoration)
to the hyperbolic structure.

T (S) T f (S) = {(h, f )} framed space.

h ∈ T (S) is a hyperbolic structure.

f is a framing: for every component of
∂S that is a geodesic for h, we choose an
orientation of the component.

T0(S) T d (S) = {(h,d)} decorated space.

h ∈ T0(S) is a hyperbolic structure.

d is a decoration: for every cusp of h,
we need to choose a horocycle centered
at the cusp.
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Teichmüller-Thurston Theory

Fix a topological ideal triangulation on S.

#edges = 6g − 6 + 3b

This gives coordinates on T f (S) and T d
0 (S), one per edge, i.e.

T f (S)→ R6g−6+3b
>0

T d
0 (S)→ R6g−6+3b

>0
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Teichmüller-Thurston Theory

For T f (S), given (h, f ), we can straighten the topological ideal
triangulation to a geodesic ideal triangulation.

We use the framing to decide the direction of the spiralling.

We lift the geodesic triangulation to the
universal covering. For every edge, we
can compute an invariant: the shear of
the quadrilateral.

Thurston’s shear coordinates for T f (S).
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Teichmüller-Thurston Theory

For T d
0 (S), given h we can straighten the triangulation and lift to

the universal cover, as above. No problem with spiralling.

For every edge, we can compute an invariant: the signed
distance between the horocycles.

Penner’s λ-lengths for T d
0 (S).
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Positive representations

I would like to extend this picture to all the spaces of positive
representations.

For Hitchin representations: Fock-Goncharov ’03.

For Maximal representations in PSp(2n,R):
A.-Guichard-Rogozinnikov-Wienhard ’19.

For Maximal representations in other Hermitian groups: in
progress A.-Berenstein-Retakh-Rogozinnikov-Wienhard.

For Positive representation in SO(p,q) in progress
A.-Rogozinnikov-Wienhard.
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Hitchin representations

For G split group.

Hit(S,G) ⊂ Rep(S,G)

Fock-Goncharov introduced the framed and decorated versions
of this space.

Repf (S,G) X − moduli space

Repd
0 (S,G) A− moduli space

They introduced suitable framing and suitable decorations.
They found coordinates generalizing the shear coordinates and
the λ-lengths.

The A-moduli space carries a structure of cluster algebra
(defined by Fomin-Zelevinski).

The X -moduli space carries a similar structure.

Daniele Alessandrini Non commutative coordinates



21/23

Hitchin representations

For G split group.

Hit(S,G) ⊂ Rep(S,G)

Fock-Goncharov introduced the framed and decorated versions
of this space.

Repf (S,G) X − moduli space

Repd
0 (S,G) A− moduli space

They introduced suitable framing and suitable decorations.
They found coordinates generalizing the shear coordinates and
the λ-lengths.

The A-moduli space carries a structure of cluster algebra
(defined by Fomin-Zelevinski).

The X -moduli space carries a similar structure.

Daniele Alessandrini Non commutative coordinates



21/23

Hitchin representations

For G split group.

Hit(S,G) ⊂ Rep(S,G)

Fock-Goncharov introduced the framed and decorated versions
of this space.

Repf (S,G) X − moduli space

Repd
0 (S,G) A− moduli space

They introduced suitable framing and suitable decorations.
They found coordinates generalizing the shear coordinates and
the λ-lengths.

The A-moduli space carries a structure of cluster algebra
(defined by Fomin-Zelevinski).

The X -moduli space carries a similar structure.

Daniele Alessandrini Non commutative coordinates



21/23

Hitchin representations

For G split group.

Hit(S,G) ⊂ Rep(S,G)

Fock-Goncharov introduced the framed and decorated versions
of this space.

Repf (S,G) X − moduli space

Repd
0 (S,G) A− moduli space

They introduced suitable framing and suitable decorations.
They found coordinates generalizing the shear coordinates and
the λ-lengths.

The A-moduli space carries a structure of cluster algebra
(defined by Fomin-Zelevinski).

The X -moduli space carries a similar structure.

Daniele Alessandrini Non commutative coordinates



21/23

Hitchin representations

For G split group.

Hit(S,G) ⊂ Rep(S,G)

Fock-Goncharov introduced the framed and decorated versions
of this space.

Repf (S,G) X − moduli space

Repd
0 (S,G) A− moduli space

They introduced suitable framing and suitable decorations.
They found coordinates generalizing the shear coordinates and
the λ-lengths.

The A-moduli space carries a structure of cluster algebra
(defined by Fomin-Zelevinski).

The X -moduli space carries a similar structure.
Daniele Alessandrini Non commutative coordinates



22/23

Maximal representations

Maximal representations in PSp(2n,R):
A.-Guichard-Rogozinnikov-Wienhard

Max(S,G) ⊂ Rep(S,G)

We introduce the framed and decorated versions of this space.

Repf (S,G) X − type moduli space

Repd
0 (S,G) A− type moduli space

We introduce suitable framing and suitable decorations.
We find coordinates generalizing the shear coordinates and the
λ-lengths.

The A-type moduli space carries a structure of
non-commutative cluster algebra
(defined by Berenstein-Retakh).

We can determine the topology and the homotopy type of
Maxf (S,G).

Daniele Alessandrini Non commutative coordinates



22/23

Maximal representations

Maximal representations in PSp(2n,R):
A.-Guichard-Rogozinnikov-Wienhard

Max(S,G) ⊂ Rep(S,G)

We introduce the framed and decorated versions of this space.

Repf (S,G) X − type moduli space

Repd
0 (S,G) A− type moduli space

We introduce suitable framing and suitable decorations.
We find coordinates generalizing the shear coordinates and the
λ-lengths.

The A-type moduli space carries a structure of
non-commutative cluster algebra
(defined by Berenstein-Retakh).

We can determine the topology and the homotopy type of
Maxf (S,G).

Daniele Alessandrini Non commutative coordinates



22/23

Maximal representations

Maximal representations in PSp(2n,R):
A.-Guichard-Rogozinnikov-Wienhard

Max(S,G) ⊂ Rep(S,G)

We introduce the framed and decorated versions of this space.

Repf (S,G) X − type moduli space

Repd
0 (S,G) A− type moduli space

We introduce suitable framing and suitable decorations.
We find coordinates generalizing the shear coordinates and the
λ-lengths.

The A-type moduli space carries a structure of
non-commutative cluster algebra
(defined by Berenstein-Retakh).

We can determine the topology and the homotopy type of
Maxf (S,G).

Daniele Alessandrini Non commutative coordinates



22/23

Maximal representations

Maximal representations in PSp(2n,R):
A.-Guichard-Rogozinnikov-Wienhard

Max(S,G) ⊂ Rep(S,G)

We introduce the framed and decorated versions of this space.

Repf (S,G) X − type moduli space

Repd
0 (S,G) A− type moduli space

We introduce suitable framing and suitable decorations.
We find coordinates generalizing the shear coordinates and the
λ-lengths.

The A-type moduli space carries a structure of
non-commutative cluster algebra
(defined by Berenstein-Retakh).

We can determine the topology and the homotopy type of
Maxf (S,G).

Daniele Alessandrini Non commutative coordinates



22/23

Maximal representations

Maximal representations in PSp(2n,R):
A.-Guichard-Rogozinnikov-Wienhard

Max(S,G) ⊂ Rep(S,G)

We introduce the framed and decorated versions of this space.

Repf (S,G) X − type moduli space

Repd
0 (S,G) A− type moduli space

We introduce suitable framing and suitable decorations.
We find coordinates generalizing the shear coordinates and the
λ-lengths.

The A-type moduli space carries a structure of
non-commutative cluster algebra
(defined by Berenstein-Retakh).

We can determine the topology and the homotopy type of
Maxf (S,G).

Daniele Alessandrini Non commutative coordinates



22/23

Maximal representations

Maximal representations in PSp(2n,R):
A.-Guichard-Rogozinnikov-Wienhard

Max(S,G) ⊂ Rep(S,G)

We introduce the framed and decorated versions of this space.

Repf (S,G) X − type moduli space

Repd
0 (S,G) A− type moduli space

We introduce suitable framing and suitable decorations.
We find coordinates generalizing the shear coordinates and the
λ-lengths.

The A-type moduli space carries a structure of
non-commutative cluster algebra
(defined by Berenstein-Retakh).

We can determine the topology and the homotopy type of
Maxf (S,G).

Daniele Alessandrini Non commutative coordinates



23/23

Maximal representations

ρ ∈ Rep(π1(S),PSp(2n,R)).

We impose the following condition on ρ:
Every peripheral element of π1(S) is sent to an element that
fixes at least a Lagrangian in R2n.

(all maximal representations have this property)

framing: for every peripheral element, choose one of those
fixed Lagrangians.
(ρ, f ) framed representation.

Repf (π1(S),PSp(2n,R))

Space of framed representations. Our X -type moduli space.
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