
It is a pleasure and an honor to be able to write this note on the

occasion of a conference celebrating 110 years since Chern’s birth. And

it is a special pleasure to do this for an event at Nankai University,

which is Chern’s alma mater and is where some fifty years ago I first

visited to give a lecture series on exterior differential systems, a subject

whose basics I learned from Chern. I will first make a few general

observations and then, as Chern would have done, I will discuss a little

mathematics.

Chern was a singular figure in 20th century geometry and indeed

in the overall mathematics community. Through his research work,

personal interactions and collaborations with students and colleagues

and service to our community, his contributions to and impact on our

subject are unexcelled.

Many of the areas in which he worked bear witness to his contribu-

tions by the names attached to them. Chern classes, which he created

as a subject bridging differential geometry and topology, are ubiqui-

tous in mathematics. Evidence of their fundamental nature is provided

by the appearance of Chern classes in many diverse areas, including

algebraic geometry where they are the central topological invariants,

number theory, K-theory and of course topology to name a few. An

important point in his original paper defining Chern classes was that

one representation of them is by polynomials in the curvature matri-

ces of Hermitian vector bundles. In so doing Chern basically initiated

the subject of complex differential geometry: a Hermitian metric in a

general holomorphic vector bundle, not just the tangent bundle, has

a unique natural Chern connection, a phenomenon not present in the

real case. Moreover, as he frequently emphasized the sign properties

of the curvature have profound implications in algebraic geometry and

complex function theory.

There are many more well-known areas I could mention, some of

which bear his name such as Chern-Simons invariants (which have sig-

nificant applications in physics), and Bott-Chern classes (initiated to
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study complex function theory). However I want to briefly describe an

area in which Chern worked that is perhaps less well known. This is

the subject of webs, which also has special meaning to me as it is the

area in which he and I collaborated and wrote joint papers. Although

we were not able to prove the main result we wanted, as is characteris-

tic of Chern’s work the paper stimulated considerable interest and the

subsequent work by others led not only to a proof of the result we were

after but also to results that I, and perhaps also Chern, did not even

dream about.

Before turning to the mathematics, a bit of history. When Chern left

China he went to Hamburg (Germany), which at that time had a flour-

ishing mathematics community, one on at least a par in Germany with

the other leading center at Göttingen. Among the prominent math-

ematicians in Hamburg was Wilhelm Blaschke, a geometer-analyst of

great originality. One of the areas that he basically created was web

geometry, and it was from Blaschke and the people around him such as

Bol that Chern learned about webs and about which he wrote his thesis

solving a problem posed by Blaschke. This work exhibited a number

of characteristics that were to be prevalent in Chern’s research. One

is that the objective was to solve a specific problem, not to further

develop a general theory. A second was that significant and subtle

computations were required; however these computations had a con-

ceptual framework, one that was furthered through the computations.

Chern returned to the subject in the 1970s and this was when we did

our joint work.

So what is a web and why are they interesting?1 We will work in a

small open set U ⊂ Cn and all data will be holomorphic. A d-web is

given by a set W = {W1, . . . ,Wd} of hypersurface foliations of U . It is

assumed that these foliations are in general position. The real picture

1Web geometry is a branch of local differential geometry. As will be seen it has
deep connections with algebraic geometry and, although we will not discuss it, also
with certain special functions. For a reference about web geometry and a guide to
both the literature and its history see “An invitation to web geometry” by Jorge
Vitório Pereira and Luc Pirio, arXiv:1107.0595vi, 4 Feb 2011.
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of a 4-web in C2 is through each point we have something like

In general we shall restrict to the case n = 2 so we can draw pictures.

The web is linearizable if there is a change of coordinates in U so that

the Wi are (parts of) hyperplanes. For d 5 n any web is linearizable,

but this is not the case for d = n + 1. For n = 2, d = 3 there is a web

curvature given the map q→ p in the picture

and that vanishes if, and only if, p = q.2 This is the necessary and

sufficient condition that the web be linearizable.

An arc C in C2 defines a web in the dual projective plane P̌ 2 by the

pictures

C

` `0

`0
P2

P̌2

`

p̌

p(1)

2In this picture taken from Pereira-Pirio, with Li = Hi starting at q one sequen-
tially travels ε-distance along the Li as pictured until you reach p. For details see
loc. cit.
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• by projective duality the lines ` through the point p = `0 ∩ C define

a line p̌ in P̌2 determined by `0 and ` is a point on that line;

• any line in an open set U ⊂ P̌2 around p̌ will meet C, so the above

picture will hold in U and determine a hypersurface through any

point `0 ∈ U .

To get a d-web we take d-arcs and use the picture

`0

Algebraic geometry enters when the arcs are part of an algebraic curve

p1
p2 p3

p4

C = plane quartic

In general a degree d non-degenerate algebraic curve C ⊂ Pn generates

a d-web in the dual projective space P̌n of hyperplanes in Pn.

Analytically a web is given by the level sets ui = constant where

u1, . . . , ud ∈ O(U) are holomorphic functions in U . We may make

a change ui → fi(ui) · ui where fi is non-zero. In the picture (1) if

ω = f(z)dz is a non-zero holomorphic 1-form on C, then the level sets

of the function

(2) u(`0) =

∫ `0∩C
ω

defines a 1-web, in this case a line through the point `0 ∈ P̌2.

An abelian equation is given by a linear relation

a1(u1)u1 + · · ·+ ad(ud)ud = 0
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in U . The name stems from Abel’s theorem, which for a non-singular

plane quartic gives

(3)
d∑

i=1

∫ pi

p0

ω = 0

where ω is a regular 1-form on C. One uses (2) to define the web and

(3) to give an abelian equation. The dimension of the space of such

1-forms is g(C) = 3 where g(C) is the genus of C.

The vector space of abelian relations is finite dimensional of dimen-

sion r(W) := rank of W. In his thesis Chern proved that for n > 2

(4) r(W) 5 π(d, w)

where the Castelnuovo number

π(n, d) =

{
maximum genus of a non-degenerate

algebraic curve of degree d in Pn

}
.3

The problem Chern took up in the 1970s, and on which I worked

with him, has as a special case the converse to (4). More specifically, we

wanted to prove that if n > 2 and d = 2n, then any web of maximum

rank for which equality holds in (4) is algebraizable and linearizable

in the above way. As noted in the Pereira-Pirio book, even through

we were not able to give a complete proof of this result the paper

stimulated renewed interest in webs and the subsequent period saw

a flurry of activity in web geometry, one that is continuing today. A

complete proof of the result was finally given by Tréspreau in 2005, and

together with the other works in the area led to a Bourbaki seminar

in 2008 in which the renewed interest and significant results the whole

area of webs was presented to the mathematical community.

3The result for n = 2 had been established by Bol. For n > 2 the result is sig-
nificantly more complicated. Castelnuovo’s number is given by an explicit formula
involving binomial coefficients that for n = 2 is

(
d−1
2

)
, the usual formula for the

genus of a smooth plane curve of degree d.


