Abstract

Let \mathbb{F}_{2^n} be a finite field of cardinality 2^m , λ and k be integers satisfying $\lambda, k \ge 2$ and denote $R = \mathbb{F}_{2^n}[u]/\langle u^{2\lambda} \rangle$. Let $\delta, \alpha \in \mathbb{F}_{2^n}^{\times}$. For any odd positive integer n, we give an explicit representation and enumeration for all distinct $(\delta + \alpha u^2)$ -constacyclic codes over R of length $2^k n$, and provide a clear formula to count the number of all these codes. As a corollary, we conclude that every $(\delta + \alpha u^2)$ -constacyclic code over R of length $2^k n$ is an ideal generated by at most 2 polynomials in the residue class ring $R[x]/\langle x^{2^{t_n}} - (\delta + \alpha u^2) \rangle$.