Abstract

Let $\mathbb{F}_{2^{m}}$ be a finite field of cardinality $2^{m}, \lambda$ and k be integers satisfying $\lambda, k \geq 2$ and denote $R=\mathbb{F}_{2^{m}}[u] /\left\langle u^{2 \lambda}\right\rangle$. Let $\delta, \alpha \in \mathbb{F}_{2^{m}}^{\times}$. For any odd positive integer n, we give an explicit representation and enumeration for all distinct ($\delta+\alpha u^{2}$) -constacyclic codes over R of length $2^{k} n$, and provide a clear formula to count the number of all these codes. As a corollary, we conclude that every $\left(\delta+\alpha u^{2}\right)$-constacyclic code over R of length $2^{k} n$ is an ideal generated by at most 2 polynomials in the residue class ring $R[x] /\left\langle x^{2^{2} n}-\left(\delta+\alpha u^{2}\right)\right\rangle$.

