## Abstract

Given integers \$k_1, k_2\$ with \$0\le k_1<k_2\$, the determinations of all positive integers $\$ q$ \$ for which there exists a perfect Splitter \$B[-k_1, k_2](q)\$ set is a wide open question in general. In this paper, we obtain new necessary and sufficient conditions for an odd prime $\$ p \$$ such that there exists a nonsingular perfect $\$ B[-1,3](p) \$$ set. We also give some necessary conditions for the existence of purely singular perfect splitter sets. In particular, we determine all perfect \$B[-k_1, $\left.\mathrm{k} \_2\right]\left(2^{\wedge} \mathrm{n}\right)$ \$ sets for any positive integers \$k_1,k_2\$ with \$k_1 k_2\ge4\$; we show that if $\$ k$, $n \$$ are positive integers with \$k\ge2\$ and there exists a perfect $\$ \mathrm{~B}[-\mathrm{k} 1, \mathrm{k}](\mathrm{n})$ \$ set, then $\$ \mathrm{n}=2 \mathrm{k} \$$. We also prove that there are infinitely many prime $\$ p \$$ such that there exists a perfect $\$ B[-1,3](p) \$$ set.

