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Abstract

We explain various results on the asymptotic expansion of the Bergman ker-
nel on Kähler manifolds and also on symplectic manifolds. We also review the
“quantization commutes with reduction” phenomenon for a compact Lie group
action, and its relation to the Bergman kernel.
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0. Introduction

In the theory of quantization, one attempts to associate to a symplectic man-
ifold (X,ω) a Hilbert space H and a mapping from the space of functions on
X into the space of operators on H, and this in a canonical way. The mapping
should give some reasonable relationship between the Poisson bracket on the
function side and the commutator on the operator side. It is generally acknowl-
edged that there is no canonical way to construct a quantization of X without
making use of certain additional structures.

In the theory of the geometric quantization of Kostant and Souriau, (X,ω)
is assumed to be prequantizable, that is, there exists a prequantum line bundle
(L, hL,∇L) on X (i.e., ω is the first Chern form of L associated with the
Hermitian connection ∇L). Given a compatible almost complex structure J
and a Riemannian metric gTX , we can define canonically a Dirac operator DL

acting on Ω0,•(X,L), the smooth (0, •)-forms on X with coefficients in L.
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Assume that X is compact. Following an observation by Bott, we take, as
a quantization of X, Ind(DL

+) = Ker(DL
+) − Coker(DL

+) of DL
+ := DL|Ω0,even ,

which is a formal difference of finite dimensional Hilbert spaces. The virtual
dimension of Ind(DL

+), which can be computed by the Atiyah-Singer index
theorem, does not depend on the choice of the connection and of the metric
on L.

For p � 1, Ind(DLp

+ ) = Ker(DLp

+ ) is an ordinary finite dimensional Hilbert
space. The Bergman kernel is defined as the integral kernel Pp(x, x

′) associated
with the orthogonal projection Pp from Ω0,•(X,Lp) onto Ker(DLp

). We will
show that when p → +∞, the Bergman kernel Pp(x, x

′) has an asymptotic
expansion whose coefficients contain interesting geometric informations about
X and L. The kind of expansion obtained for the kernel Pp(x, x

′) also char-
acterizes the Berezin-Toeplitz operators. Their semi-classical limit provides a
precise way to relate the classical and quantum observables.

Assume that a compact connected Lie group G acts on X, and that the
action lifts to (L, hL,∇L). Then the quantization of X is a G-virtual represen-
tation, and it is interesting to determine the multiplicity of the irreducible rep-
resentations of G. The Guillemin-Sternberg conjecture “quantization commutes
with reduction” gives a precise geometric answer to this problem by using the
associated moment map. Here we explain the behavior of the G-invariant part
of Pp(x, x

′) as p → +∞, and we relate this behavior to the Guillemin-Sternberg
conjecture.

New difficulties appear when the manifold X is no longer supposed to be
compact, since in this case Ind(DL

+) is not well defined. In her ICM 2006 plenary
lecture, Michèle Vergne proposed to replace Ind(DL

+) by a certain transversal
index introduced by Atiyah, under the natural hypothesis that the moment
map is proper, and that the zero-set of the vector field induced by the moment
map is compact. She conjectured that “quantization commutes with reduction”
still holds in this case.

If (X,ω, J) is a compact Kähler manifold and if L is holomorphic, then for
p � 1, Ker(DLp

) is the space of holomorphic sections H0(X,Lp) of Lp on X.
This leads to many applications of the asymptotic expansion of the Bergman
kernel in Kähler geometry.

We refer the reader to our book with Marinescu [41] for a comprehensive
study of the Bergman kernel and applications, and to the survey by Michèle
Vergne [68] on the Guillemin-Sternberg conjecture. One can find more com-
ments, references and motivations in [41] and [68].

This paper is organized as follows. The first two sections are based on our
work with Dai, Liu and Marinescu, the last two sections are based on our
work with Zhang. In Section 1, we review the definition of Bergman kernel and
Berezin-Toeplitz quantization.

In Section 2, we discuss the asymptotic expansion of the Bergman kernel,
and also Toeplitz operators.
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In Section 3, we examine the corresponding results when a compact Lie
group G acts on X and the action lifts to L.

In Section 4, we outline Ma-Zhang’s solution of the Vergne conjecture.

1. Quantization on Symplectic Manifolds

In Section 1.1, we review the basic definitions, and the spectral gap property
of the Dirac operator. Then we explain the model example C

n in Section 1.2.

1.1. Dirac operators and quantization. Let (X,ω) be a compact
symplectic manifold of real dimension 2n with compatible almost complex struc-
ture J , i.e., ω(·, J ·) > 0, ω(J ·, J ·) = ω(·, ·). We endow X with a Riemannian
metric gTX compatible with J , i.e., gTX(J ·, J ·) = gTX(·, ·). Let (E, hE) be a
Hermitian vector bundle on X with Hermitian connection ∇E and curvature
RE = (∇E)2.

The almost complex structure J induces a splitting of the complexification of
the tangent bundle, TX ⊗RC = T (1,0)X ⊕T (0,1)X, where T (1,0)X and T (0,1)X
are the eigenbundles of J corresponding to the eigenvalues

√
−1 and −

√
−1

respectively. Let T ∗ (0,1)X be the dual space of T (0,1)X. For any v ∈ T (1,0)X,
let v∗ ∈ T ∗ (0,1)X be the metric dual of v, then

c(v) =
√
2 v∗∧, c(v) = −

√
2 iv, (1.1)

define the Clifford actions of v, v on Λ0,• := Λ•(T ∗ (0,1)X), where ∧ and i denote
the exterior and interior multiplications respectively.

Consider the Levi–Civita connection ∇TX of (TX, gTX) with associated

curvature RTX . Let ∇T (1,0)X be the connection on T (1,0)X induced by project-

ing ∇TX ; ∇T (1,0)X induces the connection ∇det on det(T (1,0)X). The Clifford
connection ∇Cl on Λ0,• is induced canonically by ∇TX and ∇det (cf. [41, §1.3]).
Finally, let ∇Λ0,•⊗E be the connection on Λ0,• ⊗ E induced by ∇Cl and ∇E .

Let dvX be the Riemannian volume form of (TX, gTX) and Ω0,•(X,E) be
the space of smooth sections of Λ0,• ⊗ E endowed with the L2-norm ‖·‖L2

induced by hE , gTX . Let {ej}2nj=1 be an orthonormal frame of (TX, gTX).

Definition 1.1. The spinc Dirac operator DE is defined by

DE :=
∑

j

c(ej)∇Λ0,•⊗E
ej : Ω0,•(X,E) −→ Ω0,•(X,E) , DE

± := DE |
Ω0, even

odd
.

(1.2)

The operator DE is a formally self–adjoint, first order elliptic differential oper-
ator on Ω0,•(X,E), which interchanges Ω0,even(X,E) and Ω0,odd(X,E) (cf. [41,
§1.3]).
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Thus Ker
(
DE

+

)
, Ker

(
DE

−
)
are finite dimensional Hilbert spaces and the

quantization space of E is defined as their formal difference

Q(E) := Ind(DE
+) := Ker

(
DE

+

)
−Ker

(
DE

−
)
. (1.3)

The Atiyah-Singer index theorem [3, §4.1], [41, Th. 1.3.9] allows us to compute
the virtual dimension of Q(E) by using characteristic numbers:

dimQ(E) =

∫

X

Td(T (1,0)X) ch(E), (1.4)

where ch(·), Td(·) are the Chern character and the Todd class of the corre-
sponding complex vector bundles. In particular, the virtual dimension of Q(E)
does not depend on the choice of J , gTX or the metric and connection on E. If
Ker(DE

−) = 0, then the quantization space Q(E) is an ordinary vector space.
We explain now the idea of the geometric quantization introduced by

Kostant [33] and Souriau [62]. Let (L, hL) be a Hermitian line bundle over
X endowed with a Hermitian connection ∇L with curvature RL = (∇L)2. We
assume that (L, hL,∇L) satisfies the prequantization condition, that is

ω =
√
−1
2π RL . (1.5)

For p ∈ N, we denote by DLp⊗E the Dirac operator associated to Lp ⊗E with
Lp := L⊗p, and set

Ep := Λ0,• ⊗ Lp ⊗ E, Dp := DLp⊗E , D±,p := Dp|Ω0, even
odd

. (1.6)

Let L2(X,Ep) be the L2-completion of (Ω0,•(X,Lp ⊗ E), ‖·‖L2).
The following result is the starting point of the asymptotic expansion results

for the Bergman kernel which we describe in the sequel. The proof is based on
a direct application of the Lichnerowicz formula for D2

p.

Theorem 1.2 (Ma-Marinescu [37, Th. 1.1, 2.5], [41, Th. 1.5.5]). There exists
C > 0 such that for any p ∈ N, the spectrum of D2

p satisfies

Spec(D2
p) ⊂ {0} ∪ [2pν0 − C,+∞[ , (1.7a)

Ker(D−,p) = 0 for p � 1 , (1.7b)

where ν0 = inf{RL
x (u, u) : u ∈ T

(1,0)
x X, |u|2 = 1, x ∈ X} > 0.

Thus for p � 1, Q(Lp ⊗ E) = Ker(D2
p) is an ordinary vector space and its

dimension is a polynomial in p of degree n given by (1.4). The analogue of The-
orem 1.2 in the holomorphic setting was first obtained by Bismut and Vasserot
[8, Th. 1.1] by using Demailly’s version of the Bochner-Kodaira-Nakano formula
(cf. [41, Th. 1.4.12]). Formula (1.7b) was first established by Borthwick-Uribe
[10, Th. 2.3] and Braverman [14, Th. 2.6] by using Melin’s inequality. Mathai-
Zhang [46, Th. 1.3] obtained a version of (1.7b) for the proper cocompact group
action case by applying the method in [37].
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Definition 1.3. The orthogonal projection Pp : L2(X,Ep) −→ Ker(Dp) is
called the Bergman projection. The Bergman kernel of Dp is the smooth kernel
Pp(x, x

′) ∈ Ep,x⊗E∗
p,x′ , (x, x′ ∈ X), of Pp with respect to dvX(x′), i.e., for any

s ∈ L2(X,Ep), we have

(Pp s)(x) =

∫

X

Pp(x, x
′)s(x′) dvX(x′) . (1.8)

For f ∈ C∞(X,End(E)), set

Tf, p : L2(X,Ep) −→ L2(X,Ep) , Tf, p = Pp f Pp . (1.9)

Here the action of f is the pointwise multiplication by f . The map which
associates to f ∈ C∞(X,End(E)) the family of bounded operators {Tf, p}p on
L2(X,Ep) is called the Berezin-Toeplitz quantization.

Definition 1.4. A Toeplitz operator is a sequence {Tp}p∈N of linear operators
Tp : L2(X,Ep) −→ L2(X,Ep) satisfying Tp = Pp Tp Pp, such that there exists a
sequence gl ∈ C∞(X,End(E)) such that for all k > 0, there exists Ck > 0 with

∥∥∥∥∥Tp −
k∑

l=0

Tgl,p p
−l

∥∥∥∥∥ 6 Ck p−k−1 for any p ∈ N
∗, (1.10)

where ‖·‖ denotes the operator norm on the space of bounded operators. The
section g0 is called the principal symbol of {Tp}.
We express (1.10) symbolically by

Tp =

k∑

l=0

Tgl,p p
−l +O(p−k−1). (1.11)

If (1.10) holds for any k ∈ N, then we write (1.11) with k = +∞.
The Poisson bracket { · , · } on (X,ω) is defined as follows. For f, g ∈

C∞(X), let ξf ∈ C∞(X,TX) be defined by 2πiξfω = df . Then {f, g} :=
ξf (dg).

In the spirit of the geometric quantization, (X,ω) represents the classical
phase space and the Poisson algebra (C∞(X), {·}) represents the classical ob-
servables, while Ker(Dp) is the quantum space and the linear operators on
Ker(Dp) are the quantum observables. The process p → +∞ is called the semi-
classical limit, which is a way to relate the classical and quantum observables.

1.2. Bergman kernel on C
n. Let us consider the canonical real coor-

dinates (Z1, . . . , Z2n) on R
2n and the complex coordinates (z1, . . . , zn) on C

n.
The two sets of coordinates are linked by the relation zj = Z2j−1 +

√
−1Z2j ,

j = 1, . . . , n. We consider the L2-norm ‖ · ‖L2 =
( ∫

R2n | · |2 dZ
)1/2

on the ob-
vious L2-space on R

2n, with dZ = dZ1 · · · dZ2n the Lebesgue measure. For
α = (α1, . . . , αn) ∈ N

n, z ∈ C
n, put zα = zα1

1 · · · zαn
n .
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Let L = C be the trivial holomorphic line bundle on C
n with the canonical

section 1 : Cn → L, z 7→ (z, 1). Let hL be the metric on L defined by

|1|hL(z) := e−
1
4

∑n
j=1 aj |zj |2 = ρ(Z) for z ∈ C

n, (1.12)

with aj > 0 for j ∈ {1, . . . , n}. The space of L2-integrable holomorphic sections
of L with respect to hL and dZ is the classical Segal-Bargmann space of L2-
integrable holomorphic functions with respect to the volume form ρ dZ. It is
well-known that {zβ : β ∈ N

n} forms an orthogonal basis of this space.
To introduce the model operator L we set:

bi = −2
∂

∂zi
+

1

2
aizi , b+i = 2

∂

∂zi
+

1

2
aizi , L =

∑

i

bi b
+
i . (1.13)

We can interpret the operator L in terms of complex geometry. Let ∂
L∗

be the

adjoint of the Dolbeault operator ∂
L
on (L, hL) over (Cn,

√
−1
2

∑
j dzj ∧ dzj).

We have the isometry Ω0,•(Cn,C) → Ω0,•(Cn, L) given by α 7→ ρ−1α. If �L =

∂
L∗

∂
L
+ ∂

L
∂
L∗

denotes the Kodaira Laplacian acting on Ω0,•(Cn, L), then
ρ�Lρ−1 : Ω0,•(Cn, C) → Ω0,•(Cn,C) is given by 1

2L +
∑

j ajdz
j ∧ i ∂

∂zj

, and

its restriction on functions is 1
2L .

The operator L is the complex analogue of the harmonic oscillator, the
operators b, b+ are creation and annihilation operators respectively. Each
eigenspace of L has infinite dimension, but we can still give an explicit de-
scription.

Theorem 1.5 (Ma-Marinescu [38, Th. 1.15], [41, Th. 4.1.20]). The spectrum of
L on L2(R2n) is given by

Spec(L ) =

{
2

n∑

i=1

αiai : α = (α1, · · · , αn) ∈ N
n

}
(1.14)

and an orthogonal basis of the eigenspace of λ ∈ Spec(L ) is given by

Bλ =
{
bα
(
zβ exp

(
− 1

4

∑
i ai|zi|2

))
: 2
∑

i αiai = λ, with α, β ∈ N
n
}

(1.15)

where bα := bα1
1 · · · bαn

n . Moreover, ∪λ{Bλ : λ ∈ Spec(L )} forms a complete
orthogonal basis of L2(R2n).

Let P(Z,Z ′) be the smooth kernel of P, which is the orthogonal projection
from (L2(R2n), ‖ · ‖L2) onto Ker(L ), with respect to dZ ′. Then P(Z,Z ′) is
the classical Bergman kernel on C

n given by

P(Z,Z ′) =
n∏

i=1

ai
2π

exp

(
−1

4

∑

i

ai
(
|zi|2 + |z′i|2 − 2ziz

′
i

)
)
. (1.16)
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2. Asymptotic Expansion of Toeplitz Operators

The starting point for our work on the asymptotic expansion of the Bergman
kernel has been the heat equation proof by Bismut [6] of Demailly’s holomorphic
Morse inequalities [21]. For a unified treatment of these two questions, we refer
to the book [41]. Here, we give various results on expansions of Bergman kernels,
and also on Toeplitz operators.

This Section is organized as follows. In Section 2.1, we give the asymptotic
expansion of the Bergman kernel.

In Section 2.2, we describe a characterization of the Toeplitz operators in
terms of their asymptotic expansion.

In Section 2.3, we specify the results to the Kähler case.
We will use the notation and assumptions of Section 1.1.

2.1. Asymptotic expansion of Bergman kernel. Let dX(x, x′)
be the Riemannian distance between x, x′ ∈ X. Let aX be the injectivity radius
of (X, gTX). We denote by BX(x, ε) and BTxX(0, ε) the open balls in X and
TxX with centers x and 0 and radius ε, respectively. Then the exponential
map TxX 3 Z → expXx (Z) ∈ X is a diffeomorphism from BTxX(0, ε) onto
BX(x, ε) for ε 6 aX . From now on, we identify BTxX(0, ε) with BX(x, ε) via
the exponential map for ε 6 aX . When a function is calculated using normal
coordinates based at x, we will add a subscript x.

We fix x0 ∈ X. For Z ∈ BTx0
X(0, ε), we identify Ep,Z with Ep,x0

by parallel

transport with respect to the connection ∇Ep := ∇Λ0,•⊗Lp⊗E along the curve
γZ : [0, 1] 3 u → uZ.

Let dvTX be the Riemannian volume form on (Tx0
X, gTx0

X). There exists
a smooth positive function κx0

on BTx0
X(0, ε) defined by

dvX(Z) = κx0
(Z)dvTX(Z), κx0

(0) = 1. (2.1)

We will identify the 2-form RL with the Hermitian matrix ṘL ∈
End(T (1,0)X) such that for W,Y ∈ T (1,0)X, RL(W,Y ) = 〈ṘLW,Y 〉. We choose

an orthonormal basis {wi}ni=1 of T
(1,0)
x0 X such that

ṘL(x0) = diag(a1(x0), · · · , an(x0)) ∈ End(T (1,0)
x0

X) with aj(x0) > 0 . (2.2)

Then e2j−1 = 1√
2
(wj + wj) and e2j =

√
−1√
2
(wj − wj) , j = 1, . . . , n , form an

orthonormal basis of Tx0
X. We use the identification (Z1, . . . , Z2n) ∈ R

2n −→∑
i Ziei ∈ Tx0

X. In what follows, we also use the corresponding complex coor-
dinates z = (z1, . . . , zn) on C

n ' R
2n.

Let π : TX ×X TX → X be the obvious projection. Let {Θp}p∈N be a
sequence of linear operators Θp : L2(X,Ep) −→ L2(X,Ep) with smooth kernels
Θp(x, y) with respect to dvX(y). In terms of our trivialization, Θp(x, y) induce
smooth sections Θp, x0

(Z,Z ′) of π∗(End(Λ0,• ⊗ E)) over TX ×X TX, with
Z,Z ′ ∈ Tx0

X. Recall that Px0
= P was defined in (1.16).
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Notation 2.1. Let {Qr, x0
}06r6k,x0∈X be a family Qr, x0

∈ End(Λ0,• ⊗
E)x0

[Z,Z ′] of polynomials in Z,Z ′, smooth with respect to the parameter
x0 ∈ X. We will write

p−nΘp,x0
(Z,Z ′) ∼=

k∑

r=0

(Qr, x0
Px0

)(
√
pZ,

√
pZ ′)p−

r
2 +O(p−

k+1
2 ) , (2.3)

if there exist ε′ ∈ ]0, aX [, C0 > 0 with the following property: for any l ∈ N, there
exist Ck, l > 0, M > 0 such that for any x0 ∈ X, Z,Z ′ ∈ Tx0

X, |Z|, |Z ′| < ε′

and p ∈ N
∗, the following estimate holds:

∣∣∣∣∣p
−nΘp, x0

(Z,Z ′)κ
1
2
x0(Z)κ

1
2
x0(Z

′)−
k∑

r=0

(Qr,x0
Px0

)(
√
pZ,

√
pZ ′)p−

r
2

∣∣∣∣∣
C l(X)

6Ck, l p
− k+1

2 (1 +
√
p |Z|+√

p |Z ′|)M exp(−
√

C0p |Z − Z ′|) + O(p−∞) .

(2.4)

Here | · |C l(X) is the C l norm with respect to the parameter x0 ∈ X.

If K ⊂ X × X is compact, we will write that as p → +∞, Pp(x, x
′) =

O(p−∞) for x, x′ ∈ K if for any k, l ∈ N, the C l norm of Pp(x, x
′) for x, x′ ∈ K

with respect to the connections ∇L,∇E and the metrics hL, hE , gTX is domi-
nated by Cp−k.

We denote by IC⊗E the projection from Λ0,•⊗E onto C⊗E relative to the
decomposition Λ0,• = C⊕ Λ0,>0.

We have the following full asymptotic expansion of the Bergman kernel.

Theorem 2.2 (Dai-Liu-Ma [20, Prop. 4.1 and Th. 4.18′], [41, Th. 8.1.4]). For
any x0 ∈ X and r ∈ N, there exist polynomials Jr, x0

(Z,Z ′) ∈ End(Λ0,• ⊗E)x0

in Z,Z ′ with the same parity as r and with deg Jr, x0
6 3r, whose coefficients

are functions of the curvatures and their derivatives, such that for any k ∈ N,
in the sense of Notation 2.1,

p−nPp, x0
(Z,Z ′) ∼=

k∑

r=0

(Jr, x0
Px0

)(
√
pZ,

√
pZ ′)p−

r
2 +O(p−

k+1
2 ) , (2.5)

with J0,x0
= IC⊗E. Moreover, for any ε > 0, we have

Pp(x, x
′) = O(p−∞) if dX(x, x′) > ε. (2.6)

Idea of the proof. Using the spectral gap property in Theorem 1.2, and finite
propagation speed of solutions of hyperbolic equations, we get (2.6). Also we
can localize the asymptotics of Pp(x0, x

′) in the neighborhood of x0. The second
step consists in working on R

2n. To conclude the proof, we combine the spectral
gap property, the rescaling of the coordinates and functional analytic techniques
inspired by Bismut-Lebeau [7, §11].
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By taking br(x0) = (J2r, x0
Px0

)(0, 0), we get from (2.5) that for any k, l ∈ N,
there exists Ck,l > 0 such that for any p ∈ N

∗,

∣∣∣∣∣Pp(x, x)−
k∑

r=0

br(x)p
n−r

∣∣∣∣∣
C l(X)

6 Ck,lp
n−k−1. (2.7)

We will give an algorithm to compute the coefficients Jr,x0
in the expansion,

by using a formal power series trick.
For s ∈ C∞(R2n, (Λ0,• ⊗ E)x0

), Z ∈ R
2n, |Z| 6 ε, and for t = 1√

p , set

(Sts)(Z) := s(Z/t), Lt := S−1
t κ1/2 t2D2

pκ
−1/2St. (2.8)

By [20, Th. 4.6] (cf. [41, Th. 4.1.7]), there exist second order differential oper-
ators Or such that for any m ∈ N, we have an asymptotic expansion when
t → 0,

Lt = L0 +

m∑

r=1

trOr + O(tm+1), with L0 = L + 2
∑

j

ajw
j ∧ iwj

. (2.9)

Then PN = IC⊗EP is the orthogonal projection of (L2(R2n, (Λ0,• ⊗ E)x0
), ‖ ·

‖L2) onto N = Ker(L0). Set PN⊥

= Id−PN . We define by recursion fr(λ) ∈
End(L2(R2n, (Λ0,• ⊗ E)x0

)) by

f0(λ) = (λ− L0)
−1, fr(λ) = (λ− L0)

−1
r∑

j=1

Ojfr−j(λ). (2.10)

Let δ be the counterclockwise oriented circle in C of center 0 and radius ν0/2.
We denote by Fr,x0

the operator with smooth kernel

Fr,x0
(Z,Z ′) = Jr,x0

(Z,Z ′)P(Z,Z ′) (2.11)

with respect to dZ ′. Then by [38, (1.110)] (cf. also [41, (4.1.91)])

Fr,x0
=

1

2π
√
−1

∫

δ

fr(λ)dλ. (2.12)

By Theorem 1.5, (2.10), (2.12) and by the residue formula, we can express

Fr,x0
in terms of L

−1
0 , PN , PN⊥

, Ok (with k 6 r). This gives a direct method
to compute Fr,x0

. In [39, §2], we find an explicit computation for F2,x0
when

ω(·, ·) = gTX(J ·, ·) (i.e., ṘL = 2π Id). We have in particular:

Theorem 2.3 (Ma-Marinescu [39, Th. 2.1]). If ω(·, ·) = gTX(J ·, ·), we have

Tr |Λ(T∗(0,1)X)[b1(x)] =
1

8π


rX +

1

4
|∇XJ |2 + 4

∑

j

RE(wj , wj)


 . (2.13)
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Here ∇XJ is the covariant derivative of J with respect to ∇TX , and rX is
the scalar curvature of (X, gTX). In Donaldson [22], the term rX + 1

4 |∇XJ |2
in (2.13) is called the Hermitian scalar curvature. It is a natural substitute
for the Riemannian scalar curvature in the almost-Kähler case. It was used
by Donaldson to define the moment map on the space of compatible almost-
complex structures.

Ma-Zhang [44] obtained a family version of Theorem 2.2.

2.2. Asymptotic expansion of Toeplitz operators. Here is a
useful characterization of the Toeplitz operators in terms of their kernel.

Theorem 2.4. (Ma-Marinescu [40, Th. 4.9, Rem. 4.10], [41, Lem-
mas 7.2.2, 7.2.4, Th.7.3.1]) Let {Tp : L2(X,Ep) −→ L2(X,Ep)} be a family of
bounded linear operators. Then {Tp} is a Toeplitz operator if and only if it
satisfies the following three conditions:

(i) For any p ∈ N, Pp Tp Pp = Tp .

(ii) For any ε0 > 0, Tp(x, x
′) = O(p−∞) if dX(x, x′) > ε0.

(iii) There exists a family of polynomials {Qr, x0
∈ End(Λ0,• ⊗

E)x0
[Z,Z ′]}x0∈X which has the same parity as r, such that for any k ∈ N,

we have in the sense of (2.3) and (2.4),

p−nTp, x0
(Z,Z ′) ∼=

k∑

r=0

(Qr, x0
Px0

)(
√
pZ,

√
pZ ′)p−

r
2 +O(p−

k+1
2 ). (2.14)

In this case, its principal symbol is g0(x0) = Q0, x0
(0, 0)|C⊗E ∈ End(Ex0

) .

Remark 2.5. For f ∈ C∞(X,End(E)), conditions (i), (ii), (iii) of Theorem
2.4 for {Tf,p} are consequences of Theorem 2.2 and of the Taylor expansion of
f at x0. The coefficients Qr, x0

in (2.14) corresponding to the Toeplitz operator
{Tf,p} are denoted by Qr, x0

(f), and Q0, x0
(f) = f(x0)IC⊗E .

By taking br,f (x0) = (Q2r, x0
(f)Px0

)(0, 0), we get from (2.14) that for any
k, l ∈ N, there exists Ck,l > 0 such that for any p ∈ N

∗, we have

∣∣∣∣∣Tf,p(x, x)−
k∑

r=0

br,f (x)p
n−r

∣∣∣∣∣
C l(X)

6 Ck,lp
n−k−1. (2.15)

In [40, (4.15)] (cf. also [41, (7.2.16)]), we find a precise formula for Qr, x0
(f)

by using the Taylor expansion of f at x0, Jj,x0
(j 6 r) and Px0

in (2.5), from
which the computation br,f (x0) can be derived.

Theorem 2.6 (Ma-Marinescu [40, Th. 1.1], [41, Th. 7.4.1]). The product of the
Toeplitz operators Tf, p and Tg, p, with f, g ∈ C∞(X,End(E)), is a Toeplitz
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operator, i.e., it admits the asymptotic expansion in the sense of (1.11):

Tf, p Tg, p =

∞∑

r=0

p−rTCr(f,g), p +O(p−∞), (2.16)

where Cr are bidifferential operators, C0(f, g) = fg and Cr(f, g) ∈
C∞(X,End(E)).
If f, g ∈ (C∞(X), {·, ·}) with the Poisson bracket defined in Section 1.1, we
have

[Tf, p , Tg, p] =

√
−1

p
T{f,g}, p +O(p−2). (2.17)

Theorem 2.6 implies that the set of Toeplitz operators is closed under the
composition of operators, and so it forms an associative algebra.

For E = C, Theorem 2.6 shows that we can associate to f, g ∈ C∞(X) a
formal power series

∑∞
l=0 ~

lCl(f, g) ∈ C∞(X)[[~]], where Cl are bidifferential
operators. Therefore, we have constructed in a canonical way an associative
star-product f ∗ g =

∑∞
l=0 ~

lCl(f, g), called the Berezin-Toeplitz star-product .
Note that the existence of formal star product on symplectic manifolds was
established by De Wilde and Lecomte in 1983. We refer to Fedosov’s book [24]
for more information on the theory of deformation quantization. In Theorem
2.6, we gave a geometric realization of the associative star-product.

2.3. The Kähler case. In this subsection, we assume that (X,ω, J) is a
compact Kähler manifold, (L, hL) is a holomorphic Hermitian line bundle with
Chern connection ∇L verifying (1.5), and (E, hE) is a holomorphic Hermitian

vector bundle with Chern connection ∇E . We assume also that ω =
√
−1
2π RL

is the Kähler form of (X, gTX). Let ∂
Lp⊗E,∗

be the adjoint of the Dolbeault

operator ∂
Lp⊗E

on Ω0,•(X,Lp ⊗ E). In this case, Dp in (1.6) is given by

Dp =
√
2(∂

Lp⊗E
+ ∂

Lp⊗E,∗
). (2.18)

Thus D2
p preserves the Z-grading on Ω0,•(X,Lp⊗E). By Hodge theory and the

Kodaira vanishing theorem, we have

Ker(Dp) = H0(X,Lp ⊗ E) for p � 1. (2.19)

The Bergman projection Pp reduces to a projection from C∞(X,Lp ⊗E) onto
H0(X,Lp ⊗ E), a Toeplitz operator {Tp} is now a sequence of linear opera-
tors acting on C∞(X,Lp ⊗ E). Thus we don’t need to introduce differential
forms, and we can work on C∞(X,Lp ⊗ E). In this situation, Jr,x0

, br(x0),
Qr,x0

(f), br,f (x0) introduced in (2.5), (2.7), Remark 2.5 and (2.15) take values
in End(E)x0

.
Let P(H0(X,Lp)∗) be the projective space associated to the dual of

H0(X,Lp), and let ωFS be the Fubini–Study (1, 1)-form. The Kodaira map
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φp : X −→ P(H0(X,Lp)∗) is defined by φp(x) = {H0(X,Lp) 3 s → s(x) ∈ Lp
x}

for x ∈ X. The Kodaira embedding theorem asserts that for p � 1, φp is a

holomorphic embedding and φ∗
pO(1) = Lp. Let hφ∗

pO(1) be the metric on φ∗
pO(1)

induced by the metric hO(1) on O(1). Then for E = C, we have (cf. [41, Th.
5.1.3])

hφ∗
pO(1)(x) = Pp(x, x)

−1hLp

(x). (2.20)

The question of the convergence as p → +∞ of 1
pφ

∗
p(ωFS) was raised by Yau

[71, §6.1]. By (2.7) for E = C, and (2.20), as p → +∞, 1
pφ

∗
p(ωFS) converges to

ω in the C∞ topology : for any l > 0, there exists Cl > 0 such that

∣∣∣∣
1

p
φ∗
p(ωFS)− ω

∣∣∣∣
C l(X)

6 Cl/p
2. (2.21)

When l = 2, the estimate of the type (2.21) was obtained by Tian [64] with
p2 replaced by

√
p, by using the Bergman kernel on the diagonal, Pp(x, x).

Ruan [59] obtained (2.21) with p instead of p2. Bouche [11] proved that
limp→+∞ p−nPp(x, x) = 1 in the C 0 topology. The expansion (2.7) was first
established by Catlin [17] and Zelditch [72].

Lu [36] calculated more coefficients br via RTX . Let Ric = Ricg(J ·, ·) be the
(1, 1)-form associated to the Ricci curvature Ricg of gTX . Let ∆ be the posi-
tive Laplacian acting on functions on X; set |RTX |2 =

∑
ijkl |〈RTX(wi, wj)wk,

wj〉|2.

Theorem 2.7 (Lu [36, Th. 1.1]). When E = C, we have

b1 =
rX

8π
, π2

b2 = −∆rX

48
+

1

96
|RTX |2 − 1

24
|Ric |2 + 1

128
(rX)2. (2.22)

Wang [70] also computed b1 in (2.7) for general E. When E = C, the
existence of an asymptotic expansion similar to (2.5) for |Z|, |Z ′| 6 C/

√
p was

also obtained in [61, Th. 1]. For other versions of the asymptotic expansion see
[17], [31], [18], [4]. The main tool in [17], [72], [18], [31], and [61] is the Boutet
de Monvel-Sjöstrand parametrix for the Szegö kernel [13], [25]. The coefficients
were computed in [64], [36], [70] by constructing appropriate peak sections,
using Hörmander’s L2 ∂-method.

If E = C, the existence of the expansion (2.16) was first established by
Bordemann, Meinrenken and Schlichenmaier [9], Schlichenmaier [60], [31]. They
used the theory of Toeplitz structures of Boutet de Monvel and Guillemin [12].

Lu’s computation for b1 plays an important role in Donaldson’s work [23] on
Kähler metrics with constant scalar curvature. We refer to [5], [41] for further
information. In [42], we computed the coefficients b1,f , b2,f , C1(f, g), C2(f, g)
from (2.15), (2.16). These computations are also relevant in Kähler geometry
(cf. [26], [27], [35]).
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Theorem 2.8 (Ma-Marinescu [42]). If E = C, for any f ∈ C∞(X), we have:

b0,f = f, b1,f =
rX

8π
f − 1

4π
∆f,

b2,f = b2f +
1

32π2
∆2f − 1

32π2
rX∆f −

√
−1

8π2

〈
Ric, ∂∂f

〉
.

(2.23)

3. Quantization and Symplectic Reduction

We explain briefly the Guillemin-Sternberg conjecture in Section 3.1, then we
review the asymptotic expansion of the G-invariant part of the Bergman kernel
in Section 3.2, and we specialize the results in the Kähler case in Section 3.3. In
particular, we show how to obtain the scalar curvature on the reduction from
the G-invariant Bergman kernel on the total space, and we compare the metrics
on the two sides of the “quantization commutes with reduction”.

We use the same notation and assumptions as in Section 1.1.

3.1. Quantization commutes with reduction. Recall that
(X,ω, J) is a compact symplectic manifold of real dimension 2n with compat-
ible almost complex structure J , and (L, hL,∇L) is a prequantum line bundle
on X (cf. (1.5)).

Let G be a compact connected Lie group of dimension n0 with Lie algebra
g. We assume that G acts on the left on X and that this action lifts to L.
Moreover, we assume that G preserves gTX , J , hL and ∇L.

The G-action commutes with the Dirac operator DL, and Ker
(
DL

±
)
are

finite dimensional G-representations. The quantization space Q(L) of L (cf.
(1.3)) is an element in the representation ring R(G) of G.

For K ∈ g, let KX be the vector field on X generated by K, and let LK be
the corresponding Lie derivative. Let Λ∗

+ ⊂ g∗ be the set of dominant weights,
and let V G

γ be the irreducible representation of G with highest weight γ ∈ Λ∗
+.

Let Q(L)γ ∈ Z be the multiplicity of V G
γ in Q(L). Then we have

Q(L) =
⊕

γ∈Λ∗
+

Q(L)γ · V G
γ ∈ R(G), (3.1)

and there are only finitely many γ ∈ Λ∗
+ such that Q(L)γ 6= 0.

It is not easy to read off Q(L)γ directly from the Atiyah-Bott-Segal-Singer
equivariant index theorem for its character. Guillemin and Sternberg [29] sug-
gested a geometric way to compute Q(L)γ , by using the associated moment
map.

Definition 3.1. The moment map µ : X → g∗ is defined by the Kostant
formula [33],

2
√
−1πµ(K) = ∇L

KX − LK , for K ∈ g. (3.2)

Then µ is G-equivariant and one has iKXω = dµ(K).
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For a regular value ν ∈ g∗ of µ, the Marsden-Weinstein symplectic reduction
Xν := µ−1(G · ν)/G is a compact symplectic orbifold with the symplectic form
ων induced by ω. Moreover, L (resp. J) induces a prequantum line bundle Lν

(resp. an almost complex structure Jν) over (Xν , ων). One can then construct
the associated spinc Dirac operator (twisted by Lν), D

Lν

+ on Xν , of which the
index Q (Lν) ∈ Z (identified as the virtual dimension of Q (Lν) in (1.3)).

If γ ∈ Λ∗
+ is not a regular value of µ, then by [49] (cf. [54, §7.4], [43, §3.5] for a

standard perturbation definition), Q(Lγ) is still well defined. Now we can state:

Guillemin-Sternberg conjecture: For any γ ∈ Λ∗
+,

Q(L)γ = Q (Lγ) . (3.3)

By the classical shifting trick (i.e., by working on X ×Oγ , where Oγ = G · γ is
the orbit of the co-adjoint action of G on g∗), we only need to prove (3.3) for
γ = 0.

This conjecture was proved by Meinrenken [47] and Vergne [67] when G
is abelian; by Meinrenken [48], Meinrenken-Sjamaar[49] for non-abelian groups
G, by using the technique of symplectic cut of Lerman [34].

Tian and Zhang [65] gave an analytic proof of the Guillemin-Sternberg con-
jecture, using a deformation of the Dirac operator, which is associated with the
function |µ|2. Their approach works for a general vector bundle E satisfying
certain positivity conditions [65, (4.2)] (used afterwards by Paradan [54, p. 445]
and Teleman [63, p. 6]), and also for manifolds with boundary [66]. Paradan
[54] developed later a K-theoretic approach by making use of the theory of
transversally elliptic operators. See [68] for a survey and complete references
on this subject.

3.2. Berezin-Toeplitz quantization and reduction. We use the
same notation and assumptions as in Sections 1.1 and 3.1. We assume also that
the G-action lifts on E and preserves hE and ∇E .

Then G-action commutes with the Dirac operatorDp in (1.6). Let Ker(Dp)
G

be the G-trivial component of Ker(Dp). Let PG
p be the orthogonal projection

from C∞(X,Ep) onto Ker(Dp)
G. The G-invariant Bergman kernel is the C∞

kernel PG
p (x, x′), (x, x′ ∈ X) of PG

p associated to dvX(x′).

Assume for simplicity that G acts freely on µ−1(0), and gTX(·, ·) = ω(·, J ·).
We will denote by XG = µ−1(0)/G, and we add a subscript G to denote the
objects on XG induced by the corresponding objects on X.

By a result of Tian and Zhang [65, Th. 0.2], and (1.7b), we have

dimKer(Dp)
G = dimKer(DG,p) for p � 1. (3.4)

We will describe how PG
p (x, x′) “concentrates” on the Bergman kernel

PG,p(x0, x
′
0) on XG, when p → +∞.
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Theorem 3.2 (Ma-Zhang [43, Th. 0.1]). For any open G-neighborhood U of
µ−1(0) and any ε0 > 0, we have

PG
p (x, x′) = O(p−∞) if (x, x′) /∈ U × U or if dX(Gx, x′) > ε0. (3.5)

Let U be an open G-neighborhood of µ−1(0) such that G acts freely on U .
For any G-equivariant vector bundle with connection (F,∇F ) on U , we denote
by (FB ,∇FB ) the bundle on B := U/G induced by G-invariant sections of F
on U .

For x ∈ U denote by vol(Gx) the volume of the orbit Gx equipped with the
metric induced by gTX . Following [65, (3.10)], let h(x) be the function on U
defined by

h(x) = (vol(Gx))1/2. (3.6)

Then h descends to a function on B.
Let pr1 and pr2 be the projections from X × X onto the first and the

second factor X respectively. Then we can view PG
p (x, x′) (x, x′ ∈ U) as a

smooth section of pr∗1(Ep)B ⊗ pr∗2(E
∗
p)B on B ×B.

We introduce the following coordinates: for any x0 ∈ XG, Z ∈ Tx0
B, we

write Z = Z0 + Z⊥, with Z0 ∈ Tx0
XG, Z

⊥ ∈ NG,x0
, where NG is the normal

bundle of XG in B. For ε0 > 0 small enough, we identify Z ∈ Tx0
B, |Z| < ε0

with expB
exp

XG
x0

(Z0)
(Z⊥) ∈ B, here we still denote by Z⊥ ∈ N

G,exp
XG
x0

(Z0)
, the

parallel transport of Z⊥ along the curve u → expXG
x0

(uZ0) with respect to the
connection on NG induced by projecting the Levi-Civita connection on TB.

We identify (Ep)B,Z with (Ep)B,x0
by using parallel transport with respect

to ∇(Ep)B (cf. §2.1) along the curve [0, 1] 3 u → uZ.
Let dvB , dvXG

, dvNG
be the Riemannian volume forms on TB, TXG, NG

induced by gTX . Let % ∈ C∞(TB|XG
,R), with % = 1 on XG, be defined by

dvB(x0, Z) = %(x0, Z)dvXG
(x0)dvNG,x0

for Z ∈ Tx0
B, x0 ∈ XG. (3.7)

For x0 ∈ XG, Z = (Z0, Z⊥), Z ′ = (Z ′0, Z ′⊥) ∈ Tx0
XG ⊕NG,x0

= Tx0
B, set

P(Z,Z ′) = 2
n0
2 exp

(
−π

2

∑

i

(
|z0i |2 + |z′0i |2 − 2z0i z

′0
i

)
)

× exp
(
− π|Z⊥|2 − π|Z ′⊥|2

)
, (3.8)

with n0 = dimG. As in (1.16) and (2.9), P is the Bergman kernel of a limit
operator, which itself is sum of two terms: one is defined on Tx0

XG, and is equal
L (cf. (1.13)); the other is defined on NG,x0

, it is equal to a harmonic oscilla-
tor. This explains why we expect the G-invariant Bergman kernel PG

p (x, x′) to
exhibit the same sort of behavior, see (3.11).

Let {ΘG
p }p∈N be a sequence of linear operators ΘG

p : L2(X,Ep) −→
L2(X,Ep) with smooth kernel ΘG

p (x, y) with respect to dvX(y). We assume
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that ΘG
p (x, y) is G×G-invariant. Let πB : TB ×XG

TB → XG be the obvious

projection. Relative to our trivialization, ΘG
p (x, y) induces a smooth section

ΘG
p, x0

(Z,Z ′) of π∗
B(End(Λ

0,• ⊗E)B) over TB ×XG
TB with Z,Z ′ ∈ Tx0

B. We
introduce the following notation in analogy to Notation 2.1.

Notation 3.3. We write

p−n+
n0
2 ΘG

p,x0
(Z,Z ′)

h≈
k∑

r=0

(QG
r, x0

Px0
)(
√
pZ,

√
pZ ′)p−

r
2 +O(p−

k+1
2 ) , (3.9)

if there exists a family {QG
r, x0

}06r6k, x0∈XG
with QG

r, x0
∈ End(Λ0,• ⊗

E)B,x0
[Z,Z ′] smooth with respect to the parameter x0 ∈ XG, and there exist

ε′ ∈ ]0, aX [ and C0 > 0 with the following property: for any l,m ∈ N, there
exist C > 0, M > 0 such that for any x0 ∈ XG, Z,Z

′ ∈ Tx0
B, |Z|, |Z ′| < ε′

and p ∈ N
∗, the following estimate holds:

(1 +
√
p|Z⊥|+√

p|Z ′⊥|)m
∣∣∣p−n+

n0
2 ΘG

p, x0
(Z,Z ′)(h%

1
2 )(Z)(h%

1
2 )(Z ′)

−
k∑

r=0

(QG
r,x0

Px0
)(
√
pZ,

√
pZ ′)p−

r
2

∣∣∣
C l(XG)

6 C p−
k+1
2 (1 +

√
p |Z0|+√

p |Z ′0|)M exp(−
√
C0p |Z − Z ′|) + O(p−∞) .

(3.10)

Theorem 3.4 (Ma-Zhang [43, Th. 0.2]). There exists a family of polynomials
{Qr, x0

}r∈N, x0∈XG
∈ End(Λ0,• ⊗E)B,x0

[Z,Z ′] on Z,Z ′ with the same parity as
r, such that Q0,x0

= IC⊗E,G, and for any k ∈ N the following expansion holds
in the sense of Notation 3.3,

p−n+
n0
2 PG

p,x0
(Z,Z ′)

h≈
k∑

r=0

(Qr,x0
Px0

)(
√
pZ,

√
pZ ′)p−

r
2 +O(p−

k+1
2 ). (3.11)

To read off the scalar curvature on the reduction from PG
p , we define

Ip(x0) ∈ End(Λ0,• ⊗ E)G,x0
for x0 ∈ XG by :

Ip(x0) =

∫
|Z|6ε0,

Z∈NG

(%h2)(x0, Z)PG
p ((x0, Z), (x0, Z))dvNG

(Z). (3.12)

By (3.4), (3.5), Ip(x0) does not depend on ε0 modulo O(p−∞), and

dimKer(DG,p) =

∫

XG

Tr[Ip(x0)]dvXG
(x0) + O(p−∞). (3.13)

From Theorem 3.4, we infer the existence of Φr ∈ C∞(XG,End(Λ
0,• ⊗ E)G),

and Φ0 = IC⊗E,G, with the property that for all k,m ∈ N, there exists Ck,m > 0
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such that for all p ∈ N
∗,

∣∣∣∣∣p
−n+n0Ip(x0)−

k∑

r=0

Φr(x0)p
−r

∣∣∣∣∣
Cm(XG)

6 Ck,mp−k−1. (3.14)

Using Theorems 3.2, 3.4, and the same argument as in Remark 2.5, we see
that the analogue of Theorems 3.2, 3.4 still holds for the kernel TG

f,p(x, x
′) of

the operator TG
f,p := PG

p fPG
p , for f ∈ C∞(X,End(E)).

Theorem 3.5 (Ma-Zhang [43, p. 86-88]). Let f ∈ C∞(X,End(E)). For any
open G-neighborhood U of µ−1(0), ε0 > 0, we have

TG
f,p(x, x

′) = O(p−∞) if (x, x′) /∈ U × U or if dX(Gx, x′) > ε0. (3.15)

Moreover, there exists a family {QG
r, x0

(f)}r∈N, x0∈XG
∈ End(Λ0,• ⊗

E)B,x0
[Z,Z ′] of polynomials in Z,Z ′ with the same parity as r such that for

any k ∈ N, we have in the sense of Notation 3.3,

p−n+
n0
2 TG

f, p, x0
(Z,Z ′)

h≈
k∑

r=0

(QG
r, x0

(f)Px0
)(
√
pZ,

√
pZ ′)p−

r
2 +O(p−

k+1
2 ) .

(3.16)
Moreover, QG

0,x0
(f) = fG(x0)IC⊗E,G, where fG is the G-invariant component

of f .

Since Tr
[
TG
f,p

]
=
∫
X
Tr
[
TG
f,p(x, x)

]
dvX(x), we deduce from Theorem 3.5 that

there exists a sequence Br,f with B0,f =
∫
XG

Tr
[
fG(x0)

]
dvXG

(x0) and for any
k ∈ N,

p−n+n0 Tr
[
TG
f,p

]
=

k∑

r=0

Br,fp
−r + O(p−k−1). (3.17)

Note that in [43, §4.1, §4.5] the case where 0 is a regular value of µ (so that
XG is an orbifold) is treated in detail. In [43, §4.2], it is shown by a shifting trick
that Theorems 3.2 and 3.4 imply the expansion of the kernel of the orthogonal

projection P
V G
γ

p from Ω0,•(X,Lp ⊗ E) onto the V G
γ -component of Ker(Dp) for

any γ ∈ Λ∗
+.

3.3. The Kähler case. In this subsection, as in Section 2.3, we assume
that (X,ω, J) is a compact Kähler manifold carrying a holomorphic Hermitian
line bundle (L, hL) and a holomorphic Hermitian vector bundle (E, hE) and

moreover ω =
√
−1
2π RL is the Kähler form of (X, gTX). We assume also that the

G-action on X, L, E is holomorphic, and preserves the metrics.
By (2.19), we see as in Section 2.3 that the G-invariant Bergman projection

PG
p reduces to a projection from C∞(X,Lp ⊗ E) onto H0(X,Lp ⊗ E)G, and
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the Toeplitz operator {TG
f,p} reduces to a sequence of linear operators acting on

C∞(X,Lp⊗E). In particular, Qr,x0
, Ip(x0), Φr(x0), QG

r,x0
(f) in (3.11), (3.14)

and (3.16) take values in End(EG)x0
.

Let h̃ be the restriction of h on XG. Let rXG be the scalar curvature on
(XG, ωG, JG), and ∆XG

be the positive Laplacian on XG. Let {w0
j} be an

orthonormal frame of T (1,0)XG. The following result generalizes formula (2.13)
for the coefficient b1 of the expansion (2.7).

Theorem 3.6 (Ma-Zhang [43, Th. 0.6]). The coefficients Φ0 and Φ1 from (3.14)
are given by,

Φ0 = IdEG
, Φ1(x0) =

1

8π
rXG
x0

+
3

4π
∆XG

log h̃+
1

2π

∑

j

REG
x0

(w0
j , w

0
j ). (3.18)

We discuss now the metric aspect of quantization. Let i : µ−1(0) ↪→ X be
the natural injection. Let πG : C∞(µ−1(0), Lp ⊗E)G → C∞(XG, L

p
G ⊗EG) be

the natural identification. By a result of Zhang [73, Th. 1.1 and Prop. 1.2], for
p � 1, the map πG ◦ i∗ : C∞(X,Lp ⊗ E)G → C∞(XG, L

p
G ⊗ EG) induces a

natural isomorphism

σp = πG ◦ i∗ : H0(X,Lp ⊗ E)G → H0(XG, L
p
G ⊗ EG). (3.19)

(When E = C, this result was first proved in [29, Th. 3.8] for p > 1). We denote
by 〈·, ·〉 the L2-Hermitian products on these spaces. A corollary of Theorem 3.5
is as follows.

Theorem 3.7 (Ma-Zhang [43, Th. 4.8]). Set σG
p = σp ◦ PG

p and let σG∗
p

be the adjoint of σG
p . Then Tf,p = p−

n0
2 σG

p fσ
G∗
p ∈ End(H0(XG, L

p
G ⊗

EG)) is a Toeplitz operator with principal symbol 2
n0
2 fG/h̃2, for any f ∈

C∞(X,End(E)).

The natural Hermitian product 〈·, ·〉h̃ on C∞(XG, L
p
G ⊗ EG) is given by

〈s1, s2〉h̃ =

∫

XG

〈s1, s2〉(x0) h̃
2(x0) dvXG

(x0). (3.20)

Theorem 3.8 (Ma-Zhang [43, Th. 0.10]). The isomorphism (2p)−
n0
4 σp is

an asymptotic isometry from (H0(X,Lp ⊗ E)G, 〈·, ·〉) onto (H0(XG, L
p
G ⊗

EG), 〈·, ·〉h̃), i.e., if {s
p
i }

dp

i=1 is an orthonormal basis of (H0(X,Lp ⊗E)G, 〈·, ·〉),
then

(2p)−
n0
2

〈
σps

p
i , σps

p
j

〉
h̃
= δij + O

(
p−1
)
. (3.21)

In [43, Remark 0.11], we find a natural symplectic extension of Theorem
3.8.
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When E = C and G is a torus, Charles [19] first showed that Tf,p in Theorem
3.7 is a Toeplitz operator, and obtained (3.21).

Assume that E = C. Then PG
p (x0, x0) becomes a positive function. By

setting Z = Z ′ = 0 in (3.11), we get the following expansion on XG for any k,

p−n+
n0
2 h2(x0)P

G
p (x0, x0) =

k∑

r=0

cr(x0)p
−r + O(p−k−1) , c0(x0) = 2n0/2 .

(3.22)

Paoletti [50, Th. 1], [51, Th. 1] had obtained the expansion (3.22), but he claimed
that c0(x0) = 1. After our preprint [43] was posted, Hall-Kirwin [30], Paoletti
[52], [53] and Burns-Guillemin-Wang [16] have established related results.

4. Noncompact Case: Vergne’s Conjecture

In this section, we use the same notation and assumptions as in Sections 1,
3.1, except that we assume now that X is noncompact. One asks naturally the
following question: what is the quantization formula in this situation?

When (X, gTX) is a complete Riemannian manifold, it is shown in [38, §3.5],
[40, §5], [41, §6.1, §7.5], [43, §4.6] that under natural (positivity) conditions on
RL, RE , the asymptotic expansion of the Bergman kernel holds. However, in
this section, we do not assume (X, gTX) to be complete.

In Section 4.1, the quantization formula is explained for the model example
C

n. In Section 4.2, we review briefly our solution with Zhang of Vergne’s con-
jecture: “quantization commutes with reduction” in the noncompact setting.

4.1. Quantization formula on C
n. We continue the discussion of

Section 1.2. Let’s assume now that aj = 2π for j = 1, · · · , n. Then (L, hL,∇L)

is a prequantum line bundle on (Cn, ω =
√
−1
2

∑
j dzj ∧ dzj).

Let Tn be the n-dimensional torus with Lie algebra tn. We define a holomor-
phic action of Tn on C

n by eiθ ·z = (eiθ1z1, · · · , eiθnzn), with θ = (θ1, · · · , θn) ∈
R

n and eiθ = (eiθ1 , · · · , eiθn) ∈ Tn. For λ = (λ1, · · · , λn) ∈ Z
n, we define a

holomorphic Tn-action on L by eiθ · 1 = eiθ·λ1 with θ · λ =
∑

j θjλj . Then the
associated moment map µ : Cn → R

n∗ (cf. (3.2)) is given by

µ(z) =
1

2
(|z1|2, · · · , |zn|2) + λ. (4.1)

Given {ui}ni=1 ⊂ Z
m, the Delzant polytope ∆ ⊂ R

m∗ [2, §VII. 1.c., 2.a.] is
defined by

∆ = {x ∈ R
m∗ : (ui, x) > λi for 1 6 i 6 n} , (4.2)

if the vertices have integer coordinates and each vertex q has exactly m-edges,
and the ui such that (ui, q) = λi form a basis of Zm.
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Let  : Rn → R
m be the linear map defined by (ei) = ui with {ei} the

canonical basis of Rn. Let N = Ker()/(Ker() ∩ (2πZ)n) ⊂ R
n/(2πZ)n ' Tn,

so that N is a (n−m)-dimensional torus with Lie algebra n
ı
↪→ R

n ' tn. Thus

we have the exact sequence: 0 → R
m∗ ∗−→ R

n∗ ı∗−→ n∗ → 0.
Now N acts naturally on C

n and L, the associated moment map is Φ =
ı∗ ◦ µ : Cn → n∗. Its symplectic reduction X∆ = Φ−1(0)/N is a m-dimensional
compact Kähler manifold, and L descends naturally to a positive holomorphic
line bundle L∆ on X∆. Then X∆ is the toric variety associated to the Delzant
polytope ∆.

Observe that if N acts trivially on a holomorphic section zα1 of L for some
α ∈ N

n, then zα1 descends to a holomorphic section of L∆ on X∆.
For eiθ ∈ Tn, we have eiθ · zα1 = eiθ·(α+λ)zα1. Thus N acts trivially on the

holomorphic section zα1 if and only if ı∗(α + λ) = 0, and this is equivalent to
the existence of a ν ∈ R

m∗ such that αi + λi = (ν, ui), i.e., ν ∈ ∆ ∩ Z
m and

αi + λi = (ν, ui).
For ν ∈ ∆ ∩ Z

m, we denote by sν the holomorphic section of L∆ on X∆

induced by zα1, where αi = (ν, ui)− λi.

Theorem 4.1 ([28, §3.5]). The cohomology of L∆ on X∆ is given by

H0(X∆, L∆) =
⊕

ν∈∆∩Zm

C sν , Hj(X∆, L∆) = 0 if j > 0. (4.3)

By Theorem 1.5, we see that the kernel of DL on the noncompact space Cn

is an infinite dimensional vector space. Moreover, by the discussion after (1.13)
we deduce that all higher L2 cohomology groups of Cn with values in L vanish.
Theorem 4.1 implies that “quantization commutes with reduction” still holds.
Note that the moment map Φ = ı∗ ◦ µ is proper here.

Example 4.2. Setm = n−1, ui = ei for i 6 m, un = −(1, · · · , 1) = −∑m
i=1 ei,

λ = (0, · · · , 0,−1). Then Ker() = R(1, · · · , 1), Φ(z) = 1
2

∑n
i=1 |zi|2 − 1. In

this case, (X∆, L∆) ' (CPn−1,O(1)) with O(1) the hyperplane line bundle on
CP

n−1.

4.2. Vergne’s conjecture. Recall that (X,ω, J) is a noncompact
symplectic manifold with the prequantum line bundle (L, hL,∇L), and
gTX is a J-invariant Riemannian metric on X. Let τ : TX → X
be the natural projection. Following [1, p. 7] (cf. [54, §3]), set TGX ={
(x, v) ∈ TxX :

〈
v,KX(x)

〉
= 0 for all K ∈ g

}
.

Then the quantization space Q(L) = Ind(DL) of L is not well defined,
since usually DL is not a Fredholm operator, and we need to make precise the
self-adjoint extension of DL|Ω0,•

0 (X,L), where Ω0,•
0 (X,L) denotes the space of

sections with compact support.
We suppose that the moment map µ : X → g∗ is proper. Then the right

hand side of (3.3) is well defined.
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We identify g with g∗ by using an AdG-invariant metric on g. Let µX(x) :=
(µ(x))X(x) (x ∈ X)1 be the vector field induced by µ : X → g.

We suppose for the moment that {x ∈ X : µX(x) = 0} is compact.

Recall that c(·) is the Clifford action defined in (1.1). For x ∈ X, ξ ∈ TxX,
set2

σX
L,µ(x, ξ) = τ∗

(√
−1c(ξ + µX)⊗ IdL

)∣∣
(x,ξ)

: τ∗(Λeven(T ∗(0,1)X)⊗ L) → τ∗(Λodd(T ∗(0,1)X)⊗ L). (4.4)

Then σX
L,µ is a transversally elliptic symbol on TGX in the sense of Atiyah

[1, §1, §3] and Paradan [54, §3], [55, §3], which determines a transversal index
Ind

(
σX
L,µ

)
in the formal representation ring R[G] of G,

Ind
(
σX
L,µ

)
=
⊕

γ∈Λ∗
+

Indγ
(
σX
L,µ

)
· V G

γ ∈ R[G]. (4.5)

The index Ind
(
σX
L,µ

)
does not depend on gTX , hL,∇L, and it depends only

on the homotopy classes of J , µX . The set {γ ∈ Λ∗
+ : Indγ

(
σX
L,µ

)
6= 0} can be

infinite. Michèle Vergne suggested to use Indγ
(
σX
L,µ

)
to replace the left hand

side of (3.3).

Vergne’s conjecture (ICM 2006 plenary lecture [69, §4.3]) : If µ : X → g∗ is
proper and if {x ∈ X : µX(x) = 0} is compact, then for any γ ∈ Λ∗

+,

Indγ
(
σX
L,µ

)
= Q (Lγ) . (4.6)

Special cases of this conjecture, related to the discrete series of semi-simple
Lie groups, have been proved by Paradan [55], [57].

For a > 0, set Xa = {x ∈ X : |µ|2(x) 6 a}. If a is a regular value of |µ|2,
then Xa is a compact manifold with boundary ∂Xa, and µX is nowhere zero
on ∂Xa. Thus σ

Xa

L,µ is a transversally elliptic symbol on Xa.

Theorem 4.3 (Quantization commutes with reduction, Ma-Zhang [45,
Th. 0.2, 0.3]). Suppose that µ : X → g∗ is proper. For any γ ∈ Λ∗

+, there

exists aγ > 0 such that the function a 7→ Indγ
(
σXa

L,µ

)
is constant on {a >

aγ : a is regular value of |µ|2}. Denote by Q(L)γ this constant. Then for any
γ ∈ Λ∗

+, we have

Q(L)γ = Q(Lγ). (4.7)

1The vector field µ
X is also called Kirwan vector field in view of [32].

2The symbol σX
L,µ is the (semi-classical) symbol of Tian-Zhang’s [65] deformed Dirac op-

erator (4.8) in their approach to the Guillemin-Sternberg geometric quantization conjecture.
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If {x ∈ X : µX(x) = 0} is compact, then Q(L)γ = Indγ
(
σX
L,µ

)
. Therefore

Theorem 4.3 implies Vergne’s conjecture. Note that Paradan [58] gives a new
proof of Theorem 4.3 by using symplectic cuts and the wonderful compactifi-
cations of [56].

Idea of the proof. 1) Assume that {x ∈ X : µX(x) = 0} is compact. For T > 0,
let DL

T be the deformed Dirac operator introduced by Tian-Zhang [65, (1.20)]:

DL
T = DL +

√
−1Tc

(
µX
)
: Ω0,• (X,L) → Ω0,• (X,L) . (4.8)

A first step is to interpret the transversal index as the Atiyah-Patodi-Singer
index of DL

T for a manifold with boundary defined as in [66]. The proof uses
Braverman’s L2-interpretation of the transversal index [15, §5]. The proof of
(4.7) for γ = 0 is then easy.

2) A second key result is as follows. Let (N,ωN , JN ) be a compact sym-
plectic manifold with a prequantum line bundle (F, hF ,∇F ) (see Section
1.1). We suppose that G acts on N and the action lifts to F as above
with the associated moment map η : N → g∗, etc. For γ ∈ Λ∗

+, set

Q (F )
−γ

= dimHomG((V
G
γ )∗, Q(F )), where HomG is the linear space of G-

homomorphisms. Let L⊗F be the obvious prequantum line bundle over X×N .
Then we have

Q (L⊗F )
γ=0

=
∑

γ∈Λ∗
+

Q(L)γ ·Q (F )
−γ

. (4.9)

The proof of Theorem 4.3 is obtained in [45] by combining these two arguments.
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[51] R. Paoletti, The Szegö kernel of a symplectic quotient, Adv. Math. 197 (2005),
523-553.

[52] R. Paoletti, Scaling limits for equivariant Szego kernels, arXiv:math/0612547, J.
Symplectic Geom. 6 (2008), 9–32.

[53] R. Paoletti, Szego kernels, Toeplitz operators, and equivariant fixed point formu-

lae, arXiv:0707.1375, J. Anal. Math. 106 (2008), 209–236.
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