Abstract

Notions of affine walled-Brauer algebras ${\rm B}^{\rm mathcal B}^{\rm mathcal B}^{\rm mathcal B}^{\rm mathcal B}$ cyclotomic (or level k) walled Brauer algebras $\{mathcal B\}$ are presen. It is proven that ${\rm B}^{ \rm B} = {\rm B}^{ \rm B}$ infinite rank and ${\rm B} {\rm B} {\rm k,r,t}$ is free with rank ${\rm k^{r+t}(r+t)!}$ if and only if it is admissible in some sense. Using super Schur-Weyl duality between general linear Lie superalgebras ${\frac{gl}} {m|n}$ and ${\frac{B} {2,r,t}}$, we give a classification of highest weight vectors of ${\rm gl} \ {\rm n}^{-1}$ $M^{t} = pq$, the tensor products of Kac-modules with mixed tensor products of the natural module and its dual. This enables us to establish an explicit relationship between ${\frac{gl}} {m|n}$ -Kac-modules and right cell (or standard) ${\text{multiple}}$ B} $\{2,r,t\}$ \$-modules over \mathbb{C} . Further, we find an explicit relationship between indecomposable tilting ${\frac{gl}} {m|n}$ -modules appearing in $M^{rt} \{pq\}\$, and principal indecomposable right $\{\mbox{mathcal B}\$ via the notion of Kleshchev bipartitions. As an application, decomposition numbers of $\Lambda B = \{2,r,t\}\$ arising from super Schur-Weyl duality are determined. This is a joint work with Hebing Rui.