轨道空间上的Frobenius流形结构

左达峰
Joint with B．Dubrovin and Youjin Zhang

School of mathematics
Korea Institute for Advanced Study

中国科技大学数学系

Chern Institute of Mathematics
Nov． 222007

Main References

1. B.Dubrovin, Lecture Notes in Math. 1620(1996)120-384
2. B.Dubrovin and Youjin Zhang, Composition Mathematica 111(1998)167-219
3. Dafeng Zuo, International Mathematics Research Notices 8(2007)rnm020-25
4. B.Dubrovin and Youjin Zhang and Dafeng Zuo,

Extended affine Weyl groups and Frobenius manifolds-II
The first draft: math.DG/0502365
5.-, Geometric structures related to new extended affine Weyl groups, in preparation.

Outline of this talk

§1. Physical background [Ref.1]
§2. Definitions and Examples [Ref.1]
§3. Frobenius manifolds and Coxeter groups [Ref.1]
Our question and result I [Ref.3]
§4. Frobenius manifolds and Extended affine Weyl groups [Ref.2]
Our question and result II [Ref.4]
§5. Recent developments [Ref.5]
§1. Physical background

2-dimensional Toplogical field theory (2D TFT)

QFT on Σ consists of

- Local fields $\phi_{\alpha}(x), x \in \Sigma$, eg. gravity field: the metric $g_{j j}(x)$
- Classical action

$$
S[\phi]=\int_{\Sigma} L\left(\phi, \phi_{x}, \cdots\right)
$$

Remark. Classical field theory is determined by the Euler-Lagrangian equations $\frac{\delta S}{\delta \phi_{\alpha}(x)}=0$.

- Partition function

$$
Z_{\Sigma}=\int[d \phi] e^{-S[\phi]}
$$

- Correlators

$$
\left\langle\phi_{\alpha}(x) \phi_{\beta}(y) \cdots\right\rangle=\int[d \phi] \phi_{\alpha}(x) \phi_{\beta}(y) \cdots e^{-S[\phi]}
$$

Topological invariance

$$
\frac{\delta S}{\delta g_{i j}(x)}=0 \quad\left(i . e ., \delta g_{i j}(x)=\text { arbitrary, } \delta S=0\right)
$$

Remark. conformal field theory: $\delta g_{i j}(x)=\epsilon g_{i j}(x), \delta S=0$.
\Rightarrow correlators are numbers depending only on the genus $g=g(\Sigma)$

$$
\left\langle\phi_{\alpha}(x) \phi_{\beta}(y) \cdots\right\rangle=\left\langle\phi_{\alpha} \phi_{\beta} \cdots\right\rangle_{g}
$$

Example. 2D gravity with Hilbert-Einstein action

$$
S=\frac{1}{2 \pi} \int R \sqrt{g} d^{2} x=\chi(\Sigma)
$$

There are two ways of quantization of this functional to obtain 2D quantum gravity.

1. [Matrix gravity] Base on an approximate discrete version of the model ($\Sigma \rightarrow$ Polyhedron) \rightsquigarrow Matrix integrals

$$
Z_{N}(t)=\int_{X=X^{*}} e^{-\operatorname{tr}\left(X^{2}+t_{1} X^{4}+t_{2} X^{6}+\cdots\right)} d X
$$

$N \rightarrow \infty \rightsquigarrow \tau$-function of KdV hierarchy \rightsquigarrow a solution of 2D gravity
2.[Topological 2D gravity] Base on an approximate supersymmetric extension of Hilbert-Einstein Lagrangian \rightsquigarrow

$$
\sigma_{p} \leftrightarrow c_{p} \in H_{*}\left(\mathcal{M}_{g, n}\right)
$$

and the genus g correlators of the topological gravity are expressed as

$$
\left\langle\sigma_{p_{1}} \cdots \sigma_{p_{n}}\right\rangle=\#\left(c_{p_{1}} \cap \cdots c_{p_{n}}\right)=\prod_{i=1}^{n}\left(2 p_{i}+1\right)!!\int_{\overline{\mathcal{M}}_{g, n}} \psi_{1}^{p_{1}} \cdots \psi_{n}^{p_{n}},
$$

where $\psi_{i}=c_{1}\left(L_{i}\right) \in H^{*}\left(\overline{\mathcal{M}}_{g, n}\right)$ (the first Chern classes).

Witten conjecture [Proved by Kontsevich]
$\int_{\overline{\mathcal{M}}_{g, n}} \psi_{1}^{p_{1}} \cdots \psi_{n}^{p_{n}}$ is governed by the τ-function of KdV hierarchy.

Problem. To find a rigorous mathematical foundation of 2D topological field theory.
M.F.Atiyah, Publ.Math. IHES. 68(1988)175-186. (inspired by G.Segal's axiomatization of CFT), for arbitrary dimension

Matter sector of a 2D TFT is specified by

1. $\mathcal{A}=$ the space of local physical states, $\operatorname{dim} \mathcal{A}<\infty$ basis $\left\{\phi_{1}=1, \cdots, \phi_{n}\right\}$ (primary observables)
2. an assignment

$$
(\Sigma, \partial \Sigma) \mapsto v_{(\Sigma, \partial \Sigma)} \in A_{(\Sigma, \partial \Sigma)}
$$

for any oriented 2-surface Σ with an oriented boundary $\partial \Sigma$ depends only on the topology of the the pair $(\Sigma, \partial \Sigma)$

$$
\begin{aligned}
& A_{(\Sigma, \partial \Sigma)}:=\left\{\begin{array}{cl}
\mathbb{C}, & \text { if } \quad \partial \Sigma=\emptyset ; \\
A_{1} \otimes \cdots \otimes A_{k}, & \text { if } \quad \partial \Sigma=C_{1} \cup \cdots \cup C_{k}
\end{array}\right. \\
& A_{i}:= \begin{cases}\mathcal{A}, & \text { oriention of } C_{i} \text { is coherent to that of } \Sigma ; \\
\mathcal{A}^{*}, & \text { otherwise }\end{cases}
\end{aligned}
$$

The assignment satisfies three axioms: (see the attached files)

1. Normalization; 2. Multiplicativity; 3. Factorization.

Denote a symmetric polylinear function on the space of the states by

$$
v_{g, s}:=v_{(\Sigma, \partial \Sigma)} \in \underbrace{\mathcal{A}^{*} \otimes \cdots \otimes \mathcal{A}^{*}}_{s}, \quad g=g(\Sigma)
$$

The genus g correlators of the fields $\phi_{\alpha_{1}}, \cdots, \phi_{\alpha_{s}}$ are defined by

$$
\left\langle\phi_{\alpha_{1}} \cdots \phi_{\alpha_{s}}\right\rangle_{g}:=v_{g, s}\left(\phi_{\alpha_{1}} \otimes \cdots \otimes \phi_{\alpha_{s}}\right)
$$

Theorem[Dijgraff etc.] \mathcal{A} carries a natural structure of a Frobenius algebra $\left(\mathcal{A}, \bullet,\langle\rangle,, \phi_{1}\right)$. All correlators can be expressed in a pure algebraic way in terms of this algebra, i.e.,

$$
\left\langle\phi_{\alpha_{1}} \cdots \phi_{\alpha_{s}}\right\rangle_{g}=\left\langle\phi_{\alpha_{1}} \bullet \ldots \bullet \phi_{\alpha_{s}}, H^{g}\right\rangle
$$

where $H=\eta^{\alpha \beta} \phi_{\alpha} \bullet \phi_{\beta}$ and $\eta_{\alpha \beta}=\left\langle\phi_{\alpha}, \phi_{\beta}\right\rangle$.

Definition. A Frobenius algebra is a pair $(\mathcal{A}, \bullet,\langle\rangle, e$,$) satisfying$

1. \mathcal{A} is a commutative and associative algebra over \mathcal{K} with a unit e;
2. $\langle\rangle:, \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{K}$ is a symmetric non-degenerate inner product;
3. \langle,$\rangle is invariant, i.e., \langle a \bullet b, c\rangle=\langle a, b \bullet c\rangle$.

Example A[Topological sigma model]. X a smooth projective variety,

$$
\operatorname{dim}_{\mathbb{C}} X=d, H^{\text {odd }}(X)=0, \mathcal{A}=H^{*}(X), \operatorname{dim} \mathcal{A}=n
$$

primary observables \leftrightarrow cohomologies $\phi_{1}=1, \cdots, \phi_{n} \in H^{*}(X)$

$$
\left\langle\phi_{i}, \phi_{j}\right\rangle:=\int_{X} \phi_{i} \cup \phi_{j}
$$

Claim: $\left(\mathcal{A}, \cup,\langle\rangle,, \phi_{1}\right)$ is a Frobenius algebra.

Example B[Topological Landau-Ginsburg model]. Let $f(x)$ be an analytic function, $x=\left(x_{1}, \cdots, x_{N}\right) \in \mathbb{C}^{N}$ with an isolated singularity at $x=0$ of the multiplicity n, i.e., $\left.d f\right|_{x=0}=0$.

$$
\begin{array}{r}
\mathcal{A}:=\mathbb{C}\left[x_{1}, \cdots, x_{N}\right] /\left(\frac{\partial f}{\partial x_{1}}, \cdots, \frac{\partial f}{\partial x_{N}}\right), \quad \operatorname{dim} \mathcal{A}=n \\
\text { primary observables } \leftrightarrow \phi_{1}=1, \phi_{2}(x), \cdots, \phi_{n}(x) \in \mathcal{A} \\
\langle\phi(x), \psi(x)\rangle:=\frac{1}{(2 \pi i)^{N}} \int_{\cap\left|\frac{\partial f}{\partial x_{i}}\right|=\epsilon} \frac{\phi(x) \psi(x)}{\frac{\partial f}{\partial x_{1}} \cdots \frac{\partial f}{\partial x_{N}}} d^{N} x
\end{array}
$$

Claim: $\left(\mathcal{A},\langle\rangle,, \phi_{1}, \cdot\right)$ is a Frobenius algebra.

Next, they consider a particular topological perturbation, which preserves the topological invariance:

$$
\begin{gathered}
S \mapsto \tilde{S}(t):=S-\sum_{\alpha=1}^{n} t^{\alpha} \int_{\Sigma} \Omega \\
\left\langle\phi_{\alpha}(x) \phi_{\beta}(y) \cdots\right\rangle(t) \equiv \int[d \phi] \phi_{\alpha}(x) \phi_{\beta}(y) \cdots e^{-\tilde{S}(t)}
\end{gathered}
$$

Theorem. [WDVV, 1991] The perturbed Frobenius algebra \mathcal{A}_{t} satisfies WDVV equations of associativity

$$
\frac{\partial^{3} F}{\partial t^{\alpha} \partial t^{\beta} \partial t^{\lambda}} \eta^{\lambda \mu} \frac{\partial^{3} F}{\partial t^{\mu} \partial t^{\delta} \partial t^{\gamma}}=\frac{\partial^{3} F}{\partial t^{\delta} \partial t^{\beta} \partial t^{\lambda}} \eta^{\lambda \mu} \frac{\partial^{3} F}{\partial t^{\mu} \partial t^{\alpha} \partial t^{\gamma}},
$$

with a quasihomogeneity condition

$$
\mathcal{L}_{E} F=(3-d) F+\text { quadratic polynomial in } t
$$

where

$$
E=t^{1} \partial_{1}+\text { linear in } t^{2}, \cdots, t^{n}
$$

is Euler vector field and ϕ_{1} is unit,

$$
\eta_{\alpha \beta}=\left\langle\phi_{\alpha} \phi_{\beta}\right\rangle_{0}(t)=\text { const., } \quad\left\langle\phi_{\alpha} \phi_{\beta} \phi_{\gamma}\right\rangle_{0}(t)=\frac{\partial^{3} F}{\partial t^{\alpha} \partial t^{\beta} \partial t^{\gamma}}
$$

for some function $F(t)$, called primary free energy.
[B.Dubrovin's idea,1992]: Add the above statement [WDVV] as a new axiom of 2D TFT. That is to say, to reconstruct the building of 2D TFT on the base of WDVV equations.

Example \mathbf{A}^{\prime}. Frobenius algebra \mathcal{A}_{t} : quantum cohomology of X

$$
t=\left(t^{\prime}, t^{\prime \prime}\right), t^{\prime} \in H^{2}(X) / 2 \pi i H^{2}(X, \mathbb{Z}), t^{\prime \prime} \in H^{* \neq 2}(X)
$$

The primary energy $F(t)$ is the generating function of the genus 0 Gromov-Witten invariants.

Particularly, $X=\mathbb{C} \mathbb{P}^{1}$,
Quantum cohomology of $\mathbb{C P}^{1}=\mathbb{C}[\phi] /\left(\phi_{2}=e^{t^{2}}\right)$

$$
F(t)=\frac{1}{2}\left(t^{1}\right)^{2}\left(t^{2}\right)+e^{t^{2}}, E=t^{1} \partial_{1}+2 \partial_{2}, e=\partial_{1}
$$

Example B'. Set $f_{t}(x)=f(x)+\sum_{\alpha=1}^{n} s^{\alpha}(t) \phi_{\alpha}(x)$, then the deformed Frobenius algebra \mathcal{A}_{t} is

$$
\mathcal{A}_{t}:=\mathbb{C}\left[x_{1}, \cdots, x_{N}\right] /\left(\frac{\partial f_{t}}{\partial x_{1}}, \cdots, \frac{\partial f_{t}}{\partial x_{N}}\right)
$$

primary observables \leftrightarrow elements of the Jacobi ring \mathcal{A}

$$
\langle\phi(x), \psi(x)\rangle \equiv \eta_{i j}(t):=\frac{1}{(2 \pi i)^{N}} \int_{\cap\left|\frac{\partial f_{t}}{\partial x_{i}}\right|=\epsilon} \frac{\phi(x) \psi(x)}{\frac{\partial f_{t}}{\partial x_{1}} \cdots \frac{\partial f_{t}}{\partial x_{N}}} d^{N} x
$$

Particularly, $f(x)=x^{n+1}$
The simple singularity of type $A_{n}, \mathcal{A}=\mathbb{C}[x] /\left(x^{n}\right)$.
§2. Definitions and Examples

Back to the main problem: we have a family of Frobenius algebras \mathcal{A}_{t} depending on the parameters $t=\left(t^{1}, \cdots, t^{n}\right)$. Write

$$
M=\text { the space of parameters }
$$

and we have a fiber bundle

$$
\stackrel{\downarrow \mathcal{A}_{t}}{t \in M^{\prime}}
$$

The basic idea is to identify this fiber bundle with the tangent bundle TM of the manifold M.

Definition. A Frobenius structure of charge d on M is the data $(M, \bullet,\langle\rangle, e, E$,$) satisfying$
(i) $\eta:=\langle$,$\rangle is a flat pseudo-Riemannian metric and \nabla e=0$;
(ii) $\left(T_{m} M, \bullet, \eta, e\right)$ is a Frobenius algebra which depends smoothly on $m \in M$;
(iii) $\left(\nabla_{w} c\right)(x, y, z)$ is symmetric, where $c(x, y, z):=\langle x \bullet y, z\rangle$;
(iv) A linear vector field $E \in \operatorname{Vect}(M)$ must be fixed on M, i.e. $\nabla \nabla E=0$ such that

$$
\mathcal{L}_{E}\langle,\rangle=(2-d)\langle,\rangle, \quad \mathcal{L}_{E} \bullet=\bullet, \quad \mathcal{L}_{E} e=-e .
$$

Theorem. [B.Dubrovin 1992] There is a one to one correspondence between a Frobenius manifold and the solution $F(\mathbf{t})$ of WDVV equations of associativity

$$
\frac{\partial^{3} F}{\partial t^{\alpha} \partial t^{\beta} \partial t^{\lambda}} \eta^{\lambda \mu} \frac{\partial^{3} F}{\partial t^{\mu} \partial t^{\delta} \partial t^{\gamma}}=\frac{\partial^{3} F}{\partial t^{\delta} \partial t^{\beta} \partial t^{\lambda}} \eta^{\lambda \mu} \frac{\partial^{3} F}{\partial t^{\mu} \partial t^{\alpha} \partial t^{\gamma}},
$$

with a quasihomogeneity condition

$$
\mathcal{L}_{E} F=(3-d) F+\text { quadratic polynomial in } \mathrm{t} .
$$

Definition. A Frobenius manifold is called semisimple if the algebra $\left(T_{m} M, \bullet\right)$ are semisimple at generic m.

Main mathematical applications of Frobenius manifolds
\star The theory of Gromov - Witten invariants,
\star Singularity theory,
\star Hamiltonian theory of integrable hierarchies,
\star Differential geometry of the orbit spaces of reflection groups and of their extensions \rightsquigarrow semisimple Frobenius manifolds.

Definition. An intersection form of Frobenius manifold is a symmetric bilinear form on the cotangent bundle $T^{*} M$ defined by

$$
\left(\omega_{1}, \omega_{2}\right)^{*}=i_{E}\left(\omega_{1} \cdot \omega_{2}\right), \quad \omega_{1}, \omega_{2} \in T^{*} M
$$

Here the multiplication law on the cotangent planes is defined using the isomorphism

$$
\langle,\rangle: T M \rightarrow T^{*} M
$$

The discriminant Σ is defined by

$$
\Sigma=\left\{t|\operatorname{det}(,)|_{T_{t}^{*} M}=0\right\} \subset M .
$$

Theorem. [B.Dubrovin 1992]
The metrics $\eta:=\langle$,$\rangle and g:=(,)^{*}$ form a flat pencil on $M \backslash \Sigma$, i.e.,

1. The metric $h^{\alpha \beta}=\eta^{\alpha \beta}+\lambda g^{\alpha \beta}$ is flat for arbitrary λ and
2. The Levi-Civita connection for the metric $h^{\alpha \beta}$ has the form

$$
\Gamma_{\delta_{(h)}}^{\alpha \beta}=\Gamma_{k_{(\eta)}}^{\alpha \beta}+\lambda \Gamma_{k_{(g)}}^{\alpha \beta},
$$

where $\Gamma_{\delta_{(h)}}^{\alpha \beta}=-h^{\alpha \gamma} \Gamma_{\delta \gamma_{(h)}}^{\beta}, \Gamma_{\delta_{(g)}}^{\alpha \beta}=-g^{\alpha \gamma} \Gamma_{\delta \gamma_{(g)}}^{\beta}, \Gamma_{\delta_{(\eta)}}^{\alpha \beta}=-\eta^{\alpha \gamma} \Gamma_{\delta \gamma_{(\eta)}}^{\beta}$.

The holonomy of the local Euclidean structure defined on $M \backslash \Sigma$ by the intersection form $(,)^{*}$ gives a representation

$$
\mu: \pi_{1}(M \backslash \Sigma) \rightarrow \operatorname{Isometries}\left(\mathbb{C}^{n}\right)
$$

Definition. The group

$$
W(M):=\mu\left(\pi_{1}(M \backslash \Sigma)\right) \subset \operatorname{Isometries}\left(\mathbb{C}^{n}\right)
$$

is called a monodromy group of Frobenius manifold.

$$
\Longrightarrow \quad M \backslash \Sigma=\Omega / W(M), \quad \Omega \subset \mathbb{C}^{n}
$$

[B.Dubrovin's conjecture] The monodromy group is a discrete group for a solution of WDVV equations with good properties.

Example. $\left[W(M)=\right.$ Coxeter group $\left.A_{1}\right] n=1, M=\mathbb{R}, t=t^{1}$,

$$
F(t)=\frac{1}{6} t^{3}, \quad E=t \partial_{t}, \quad e=\partial_{t}, \quad \eta^{11}=<\partial_{t}, \partial_{t}>=1
$$

\rightsquigarrow dispersionless KdV hierarchy \rightsquigarrow Witten Conjecture.

Example. $\left[W(M)=\right.$ extended affine Weyl group $\left.\widetilde{W}\left(A_{1}\right)\right]$
Quantum cohomology of $\mathbb{C P}^{1}$:

$$
F=\frac{1}{2}\left(t^{1}\right)^{2} t^{2}+e^{t^{2}}, E=t^{1} \partial_{1}+2 \partial_{2}, e=\partial_{1}
$$

\rightsquigarrow dispersionless extended Toda hierarchy \rightsquigarrow Toda Conjecture.

Question 1. Given a Frobenius manifold, how to find the monodromy group? (Some cases can be computed).
Question 2. Which kind of groups can be served as the monodromy groups of some Frobenius manifolds?
\& Coxeter groups [B.Dubrovin1996]
\& Extended affine Weyl groups [B.Dubrovin Youjin Zhang 1996]
[Dubrovin-Zhang-Zuo 2005,general], [2007,new cases]
For the general case of type E, still open?
\& Jacobi forms $J\left(A_{n}\right), J\left(B_{n}\right), J\left(G_{2}\right)[\mathrm{n}=1$, B.Dubrovin 1996, general n, M.Bertola 2000], $J\left(E_{6}\right), J\left(D_{4}\right)$ [Satake.I 1993, 1998] Open for the rest?
\& Elliptic Weyl groups [Satake.I 2006, math.AG/0611553]
§3 Frobenius manifolds and Coxeter groups

Let W be a finite irreducible Coxeter group.

$$
W \curvearrowright V \quad W \curvearrowright S(V)
$$

[Chevalley Theorem]. The ring $S(V)^{W}$ of W-invariant polynomial functions on V

$$
\mathbb{C}\left[x_{1}, \cdots, x_{n}\right]^{W} \simeq \mathbb{C}\left[y^{1}, \cdots, y^{n}\right]
$$

where $y^{i}=y^{i}\left(x_{1}, \cdots, x_{n}\right)$ are certain homogeneous W-invariant polynomials of degree $\operatorname{deg} y^{i}=d_{i}, i=1, \cdots, n$.

The maximal degree h is called the Coxeter number. We use the ordering of the invariant polynomials

$$
\operatorname{deg} y^{n}=d_{n}=h>d_{n-1}>\cdots>d_{1}=2
$$

The degrees satisfy the duality condition

$$
d_{i}+d_{n-i+1}=h+2, \quad i=1, \cdots, n .
$$

$$
W \curvearrowright V \quad W \curvearrowright V \otimes \mathbb{C}
$$

$\mathcal{M}=V \otimes \mathbb{C} / W \quad$ affine algebraic variety

$$
S(V)^{W} \quad \text { the coordinate ring of } \mathcal{M}
$$

$V \rightsquigarrow$ flat manifold $\quad\left(V,\left\{x_{1}, \cdots, x_{n}\right\},\left(d x_{a}, d x_{b}\right)^{*}=\delta_{a b}\right)$
$\rightsquigarrow\left(\mathcal{M} \backslash \Sigma, g^{i j}(y)\right)$

$$
g^{i j}(y):=\left(d y^{i}, d y^{j}\right)^{*}=\sum_{a, b=1}^{n} \frac{\partial y^{i}}{\partial x_{a}} \frac{\partial y^{j}}{\partial x_{b}} \delta_{a b}
$$

Lemma.[K.Saito etc 1980]

1. The metric $\left(g^{i j}(y)\right)$ is flat on $\mathcal{M} \backslash \Sigma$.
2. These $g^{i j}(y)$ are at most linear w.r.t y^{n}.

Write

$$
e:=\frac{\partial}{\partial y^{n}} .
$$

Introduce a new metric,

$$
\eta^{i j}(y):=\left\langle d y^{i}, d y^{j}\right\rangle=\mathcal{L}_{e} g^{i j}(y)=\frac{\partial g^{i j}(y)}{\partial y^{n}} .
$$

Theorem. [K.Saito etc. 1980, B.Dubrovin 1992]
The metrics \langle,$\rangle and (,)* form a flat pencil of metrics.$
Moreover, there exist homogeneous polynomials

$$
t^{1}(x), \cdots, t^{n}(x)
$$

of degrees d_{1}, \cdots, d_{n} respectively such that the matrix

$$
\left\langle d t^{i}, d t^{j}\right\rangle:=\eta^{i j}=\frac{\partial g^{i j}(t)}{\partial t^{n}}
$$

is a constant nondegenerate matrix.

Theorem.[B.Dubrovin, 1992] There exists a unique Frobenius structure of charge $d=1-\frac{2}{h}$ on the orbit space \mathcal{M} polynomial in $t^{1}, t^{2}, \cdots, t^{n}$ such that

1. The unity vector field e coincides with $\frac{\partial}{\partial y^{n}}=\frac{\partial}{\partial t^{n}}$;
2. The Euler vector field has the form

$$
E=\sum_{\alpha=1}^{n} d_{\alpha} t^{\alpha} \frac{\partial}{\partial t^{\alpha}}
$$

Theorem. [B.Dubrovin's conjecture, 1996. C.Hertling, 1999]
Any irreducible semisimple polynomial Frobenius manifold with positive invariant degrees is isomorphic to the orbit space of a finite Coxeter group.

Our question and result I
Lemma. [M.Bertola, 1998] For B_{n} and $1 \leq k \leq n$,

1. These $g^{i j}(y)$ are at most linear w.r.t y^{k}
2. The space \mathcal{M} carries a flat pencil of metrics

$$
\begin{equation*}
g^{i j}(y) \text { and } \eta^{i j}(y)=\frac{\partial g^{i j}(y)}{\partial y^{k}} \tag{0.1}
\end{equation*}
$$

Question: If $k \neq n$, how to construct the flat coordinates of $\eta^{i j}(y)$ and the corresponding Frobenius manifolds?
M.Bertola's results (unpublished 1999)
M.Bertola started from the superpotential

$$
\lambda(p)=p^{-2(n-k)}\left(\sum_{a=1}^{n} p^{2(n-a)} y_{a}+p^{2 n}\right)
$$

to compute the corresponding potential $F(t)$ and obtained n different Frobenius structures related to B_{n}. For example,

$$
\eta\left(\partial^{\prime}, \partial^{\prime \prime}\right)=-\sum_{|\lambda|<\infty} \operatorname{res}_{d \lambda=0} \frac{\partial^{\prime}(\lambda(p) d p) \partial^{\prime \prime}(\lambda(p) d p)}{d \lambda(p)}
$$

Our construction is different.

We started from the flat pencil of metrics.
The first step is to construct the flat coordinate t^{1}, \cdots, t^{n}.
The second step is to show that $g^{i j}(t)$ and the $\Gamma_{m}^{i j}(t)$ are weighted homogeneous polynomials of $t^{1}, \ldots, t^{n}, \frac{1}{t^{n}}$.
The last step is to get the Frobenius structure.

Write

$$
\tilde{d}_{j}=\frac{j}{k}, \quad j \leq k, \quad \tilde{d}_{m}=\frac{2 k(n-m)+1}{2 k(n-k)}, \quad m>k
$$

Main Theorem.[Zuo IMRN-2007] For any fixed integer
$1 \leq k \leq n$, there exists a unique Frobenius structure of charge
$d=1-\frac{1}{k}$ on the orbit space $\mathcal{M} \backslash\left\{t^{n}=0\right\}$ of B_{n} (or D_{n})
polynomial in $t^{1}, t^{2}, \cdots, t^{n}, \frac{1}{t^{n}}$ such that

1. The unity vector field e coincides with $\frac{\partial}{\partial y^{k}}=\frac{\partial}{\partial t^{k}}$;
2. The Euler vector field has the form

$$
E=\sum_{\alpha=1}^{n} \tilde{d}_{\alpha} t^{\alpha} \frac{\partial}{\partial t^{\alpha}}
$$

Theorem. [Zuo IMRN-2007] There is an isomorphism between them.

Motived by James T.Ferguson and I.A.B. Strachan' work, Logarithmic deformations of the rational superpotential/Landau-Ginzburg constructions of solutions of the WDVV equations, arXiv:Math-ph/0605078 we consider a water-bag reduction as follows

$$
\lambda(p)=p^{-2(n-k)}\left(\sum_{a=1}^{n} p^{2(n-a)} y_{a}+p^{2 n}\right)+\sum_{i=1}^{M} k_{i} \log \left(p^{2}-b_{i}^{2}\right) .
$$

Remark. Don't determine a full Frobenius manifold because of the nonexistence of E.

Theorem. [Zuo IMRN-2007] The prepotential F is at most quadratic in the parameters k_{α}, that is, up to quadratic terms in the flat coordinates

$$
F(\mathbf{t}, \mathbf{b})=F^{(0)}(\mathbf{t})+\sum_{\alpha=1}^{M} k_{\alpha} F^{(1)}\left(\mathbf{t}, b_{\alpha}\right)+\sum_{\alpha \neq \beta}^{M} k_{\alpha} k_{\beta} F^{(2)}\left(b_{\alpha}, b_{\beta}\right)
$$

where $\mathbf{t}=\left(t_{1}, \cdots, t_{l}\right)$ and $\mathbf{b}=\left(b_{1}, \cdots, b_{M}\right)$. Here $F^{(0)}$ is the potential associated to $B_{n}\left(D_{n}\right)$ and
$F^{(2)}\left(b_{\alpha}, b_{\beta}\right)=\frac{1}{2}\left(b_{\alpha}-b_{\beta}\right)^{2} \log \left(b_{\alpha}-b_{\beta}\right)^{2}+\frac{1}{2}\left(b_{\alpha}+b_{\beta}\right)^{2} \log \left(b_{\alpha}+b_{\beta}\right)^{2}$,
$\operatorname{deg} F=\operatorname{deg} F^{(0)}=4 K+2, \operatorname{deg} F^{(1)}=2 K+2, \operatorname{deg} F^{(2)}=2$.
$\S 4$. Frobenius manifolds and Extended affine Weyl groups

Motivation. Quantum cohomology of \mathbb{P}^{1} :

$$
F=\frac{1}{2} t_{1}^{2} t_{2}+e^{t_{2}}, E=t_{1} \partial_{1}+2 \partial_{2}, e=\partial_{1}, W(M)=\widetilde{W}\left(A_{1}\right)
$$

Question: How to construct this kind of Frobenius manifolds? That is,

$$
\begin{aligned}
& F=F\left(t_{1}, \cdots, t_{n}, t_{n+1}, e^{t_{n+1}}\right) \\
& E=\sum_{\alpha=1}^{n} d_{\alpha} t_{\alpha} \partial_{\alpha}+d_{n+1} \partial_{n+1}
\end{aligned}
$$

Notations

Let R be an irreducible reduced root system defined on $(V,()$,$) .$ $\left\{\alpha_{j}\right\}$: a basis of simple roots, $\quad\left\{\alpha_{j}^{\vee}\right\}$: the corresponding coroots. W Weyl group, $\quad W_{a}(R)$ affine Weyl group (the semi-direct product of W by the lattice of coroots)
$W_{a}(R) \curvearrowright V$: affine transformations

$$
\mathbf{x} \mapsto w(\mathbf{x})+\sum_{j=1}^{\prime} m_{j} \alpha_{j}^{\vee}, \quad w \in W, m_{j} \in \mathbb{Z}
$$

ω_{j} : the fundamental weights, $\left(\omega_{i}, \alpha_{j}^{\vee}\right)=\delta_{i j}$

Definition.[B.Dubrovin, Y.Zhang 1998]
The extended affine Weyl group $\widetilde{W}=\widetilde{W}^{(k)}(R)$ acts on the extended space

$$
\widetilde{V}=V \oplus \mathbb{R}
$$

and is generated by the transformations

$$
x=\left(\mathbf{x}, x_{I+1}\right) \mapsto\left(w(\mathbf{x})+\sum_{j=1}^{\prime} m_{j} \alpha_{j}^{\vee}, x_{I+1}\right), \quad w \in W, m_{j} \in \mathbb{Z}
$$

and

$$
x=\left(\mathbf{x}, x_{l+1}\right) \mapsto\left(\mathbf{x}+\gamma \omega_{k}, x_{l+1}-\gamma\right)
$$

Here $\gamma=1$ except for the cases when $R=B_{l}, k=I$ and $R=F_{4}, k=3$ or $k=4$, in these three cases $\gamma=2$.

Definition.[B.Dubrovin, Y.Zhang 1998]
$\mathcal{A}=\mathcal{A}^{(k)}(R)$ is the ring of all \widetilde{W}-invariant Fourier polynomials of the form

$$
\sum_{m_{1}, \ldots, m_{l+1} \in \mathbb{Z}} a_{m_{1}, \ldots, m_{l+1}} e^{2 \pi i\left(m_{1} x_{1}+\cdots+m_{l} x_{l}+\frac{1}{f} m_{l+1} x_{l+1}\right)}
$$

that are bounded in the limit

$$
\mathbf{x}=\mathbf{x}^{0}-i \omega_{k} \tau, \quad x_{l+1}=x_{l+1}^{0}+i \tau, \quad \tau \rightarrow+\infty
$$

for any $x^{0}=\left(\mathbf{x}^{0}, x_{l+1}^{0}\right)$, where f is the determinant of the Cartan matrix of the root system R.

We introduce a set of numbers

$$
d_{j}=\left(\omega_{j}, \omega_{k}\right), \quad j=1, \ldots, l
$$

and define the following Fourier polynomials

$$
\begin{gathered}
\tilde{y}_{j}(x)=e^{2 \pi i d_{j} x_{l+1}} y_{j}(\mathbf{x}), \quad j=1, \ldots, I \\
\tilde{y}_{l+1}(x)=e^{\frac{2 \pi i}{\gamma} x_{l+1}}
\end{gathered}
$$

Here

$$
\begin{gathered}
y_{j}(\mathbf{x})=\frac{1}{n_{j}} \sum_{w \in W} e^{2 \pi i\left(\omega_{j}, w(\mathbf{x})\right)}, \\
n_{j}=\#\left\{w \in W \mid e^{2 \pi i\left(\omega_{j}, w(\mathbf{x})\right)}=e^{2 \pi i\left(\omega_{j}, \mathbf{x}\right)}\right\} .
\end{gathered}
$$

B.Dubrovin and Y.Zhang considered a particular choice of α_{k} based on the following observations

1. The Dynkin graph of $R_{k}:=\left\{\alpha_{1}, \cdots, \hat{\alpha_{k}}, \cdot, \alpha_{l}\right\}\left(\alpha_{k}\right.$ is omitted) consists of 1,2 or 3 branches of A_{r} type for some r.
2. $d_{k}>d_{s}, s \neq k$.

Chevalley-Type Theorem [B.Dubrovin, Y.Zhang 1998]
For the above particluar choice of α_{k},

$$
\mathcal{A}^{(k)}(R) \simeq \mathbb{C}\left[\tilde{y}_{1}, \cdots, \tilde{y}_{l+1}\right] .
$$

B_{I}

C_{1}

D_{I}

$\begin{array}{lllll}F_{4} & \bullet & 0 & \longleftrightarrow & 0 \\ \\ & 1 & 2 & 3 & 4 \\ G_{2} & & \rightleftarrows & * \\ & & 1 & 2 & 3\end{array}$
$\mathcal{M}=\operatorname{Spec} \mathcal{A}$: the orbit space of $\widetilde{W}^{(k)}(R)$ global coordinates on $\mathcal{M}:\left\{\tilde{y}_{1}(x), \cdots, \tilde{y}_{I+1}(x)\right\}$ local coordinates on \mathcal{M} :

$$
y^{1}=\tilde{y}_{1}, \ldots, y^{\prime}=\tilde{y}_{l}, y^{l+1}=\log \tilde{y}_{l+1}=2 \pi i x_{l+1}
$$

the metric $(,)^{\sim}$ on $\widetilde{V}=V \oplus \mathbb{C}$
$\left(d x_{a}, d x_{b}\right)^{\sim}=\frac{1}{4 \pi^{2}}\left(\omega_{a}, \omega_{b}\right)$,
$\left(d x_{I+1}, d x_{a}\right)^{\sim}=0, \quad 1 \leq a, b \leq I$,
$\left(d x_{I+1}, d x_{I+1}\right)^{\sim}=-\frac{1}{4 \pi^{2}\left(\omega_{k}, \omega_{k}\right)}=-\frac{1}{4 \pi^{2} d_{k}}$
$\rightsquigarrow\left(\mathcal{M} \backslash \Sigma, g^{i j}(y)\right)$,

$$
\begin{equation*}
g^{i j}(y):=\left(d y^{i}, d y^{j}\right)^{\sim}=\sum_{a, b=1}^{l+1} \frac{\partial y^{i}}{\partial x^{a}} \frac{\partial y^{j}}{\partial x^{b}}\left(d x^{a}, d x^{b}\right)^{\sim} . \tag{0.2}
\end{equation*}
$$

Claim: $g^{i j}(y)$ is flat. Moreover for the particular choice, $g^{i j}(y)$ are at most linear w.r.t y^{k}.
$\rightsquigarrow \eta^{i j}(y)=\mathcal{L}_{e} g^{i j}(y)=\frac{\partial g^{i j}(y)}{\partial y^{k}}, \quad e:=\frac{\partial}{\partial y^{k}}$.

Theorem. [B.Dubrovin, Y.Zhang 1998]
For the particular choice of $\alpha_{k}, \eta^{i j}(y)$ and $g^{i j}(y)$ form a flat pencil. Moreover there exists a unique Frobenius structure on the orbit space $\mathcal{M}=\mathcal{M}(R, k)$ polynomial in $t^{1}, \ldots, t^{\prime}, e^{t^{\prime+1}}$ such that

1. the unity vector field coincides with $\frac{\partial}{\partial y^{k}}=\frac{\partial}{\partial t^{k}}$;
2. the Euler vector field has the form

$$
E=\frac{1}{2 \pi i d_{k}} \frac{\partial}{\partial x_{l+1}}=\sum_{\alpha=1}^{l} \frac{d_{\alpha}}{d_{k}} t^{\alpha} \frac{\partial}{\partial t^{\alpha}}+\frac{1}{d_{k}} \frac{\partial}{\partial t^{I+1}}
$$

3. The intersection form of the Frobenius structure coincides with the metric $(,)^{\sim}$ on \mathcal{M}.

Theorem.[P.Slodowy 1998,Preprint but unpublished]
The ring $\mathcal{A}^{(k)}(R)$ is isomorphic to the ring of polynomials of $\tilde{y}_{1}(x), \cdots, \tilde{y}_{l+1}(x)$ for arbitrary choice.

Another proof [B.Dubrovin, Y.Zhang and D.Zuo 2006]
We give an alternative proof of Chevelly-Type theorem associated to the root system $B_{l}, C_{l}, D_{l},\left(F_{4}, G_{2}\right)$.

Our question and result-II

An natural question:[P.Slodowy, B.Dubrovin and Y.Zhang 1998]
Is whether the geometric structures that were revealed in the above for particular choice also exist on the orbit spaces of the extended affine Weyl groups for an arbitrary choice of α_{k} ?

Difficulty: d_{k} will be not the maximal number except the particular choice.

1. Note that the $g^{i j}(y)$ may be not linear with respect to y^{k}. Thus if we define $\eta^{i j}(y)=\frac{\partial g^{i j}(y)}{\partial y^{k}}$ as before, we can not obtain the flat pencil.
2. If we can obtain a flat pencil, how to find flat coordinates and construct Frobenius manifolds?

For the question 1 , our strategy is to change the unity vector field.
Main theorem 1. For any fixed integer $0 \leq m \leq I-k$ there is a flat pencil of metrics $\left(g^{i j}(y)\right),\left(\eta^{i j}(y)\right)$ (bilinear forms on $T^{*} M$) with $\left(g^{i j}(y)\right)$ given by (??) and $\eta^{i j}(y)=\mathcal{L}_{e} g^{i j}(y)$ on the orbit space \mathcal{M} of $\widetilde{W}^{(k)}\left(C_{l}\right)$. Here the unity vector field

$$
e:=\sum_{j=k}^{l} a_{j} \frac{\partial}{\partial y^{j}}
$$

is defined by the generating function

$$
\sum_{j=k}^{I} a_{j} u^{I-j}=(u+2)^{m}(u-2)^{I-k-m}
$$

for the constants a_{k}, \ldots, a_{l}.

For the question 2, it is very technical.
Main theorem 2. In the flat coordinates $t^{1}, \ldots, t^{\prime+1}$, the nonzero entries of the matrix ($\eta^{i j}$) are given by

$$
\eta^{i j}=\left\{\begin{array}{lll}
k, & j=k-i, & 1 \leq i \leq k-1 \\
1, & i=I+1, j=k & \text { or } i=k, j=I+1 \\
C, & j=I-m+k-i+1, & k+2 \leq i \leq I-m-1 \\
2, & i=I-m, j=k+1 & \text { or } i=k+1, j=I-m, \\
4 m, & j=2 I-m-i+1, & I-m+2 \leq i \leq I-1 \\
2, & i=I, j=I-m+1 & \text { or } i=I-m+1, j=I
\end{array}\right.
$$

where $C=4(I-m-k)$. The entries of the matrix $\left(g^{i j}(t)\right)$ and the Christoffel symbols $\Gamma_{m}^{i j}(t)$ are weighted homogeneous polynomials in $t^{1}, \ldots, t^{\prime}, \frac{1}{t^{\prime-m}}, \frac{1}{t^{\prime}}, e^{t^{\prime+1}}$.

Main theorem 3. For any fixed integer $0 \leq m \leq I-k$, there exists a unique Frobenius structure of charge $d=1$ on the orbit space $\mathcal{M} \backslash\left\{t^{I-m}=0\right\} \cup\left\{t^{\prime}=0\right\}$ of $\widetilde{W}^{(k)}\left(C_{l}\right)$ weighted homogeneous polynomial in $t^{1}, t^{2}, \cdots, t^{\prime}, \frac{1}{t^{\prime-m}}, \frac{1}{t^{\prime}}, e^{t^{\prime+1}}$ such that

1. The unity vector field e coincides with $\sum_{j=k}^{l} a_{j} \frac{\partial}{\partial y^{j}}=\frac{\partial}{\partial t^{k}}$;
2. The Euler vector field has the form

$$
E=\sum_{\alpha=1}^{l} \tilde{d}_{\alpha} t^{\alpha} \frac{\partial}{\partial t^{\alpha}}+\frac{\partial}{\partial t^{\prime+1}}
$$

3. The intersection form of the Frobenius structure coincides with the metric $\left(g^{i j}(t)\right)$.

Main theorem 4. The Frobenius manifold structures that we obtain in this way from B_{I} and D_{l}, by fixing the k-th vertex of the corresponding Dynkin diagram, are isomorphic to the one that we obtain from C_{l} by choosing the k-th vertex of the Dynkin diagram of C_{1}.

Example. [$C_{5}, k=1, m=2$]Let R be the root system of type C_{5}, take $k=1, m=2$, then

$$
\begin{aligned}
F= & \frac{1}{2} t_{6} t_{1}^{2}+\frac{1}{2} t_{1} t_{2} t_{3}+\frac{1}{2} t_{1} t_{4} t_{5}-\frac{1}{72} t_{3}{ }^{4} t_{5}^{4}-\frac{1}{8} t_{2} t_{3} t_{4} t_{5} \\
& -\frac{1}{2268} t_{5}^{8}-\frac{1}{36288} t_{3}{ }^{8}-\frac{1}{48} t_{3}{ }^{2} t_{2}{ }^{2}-\frac{1}{48} t_{4}{ }^{2} t_{5}{ }^{2}+\frac{1}{24} t_{5}{ }^{4} t_{2} t_{3} \\
& +\frac{1}{96} t_{3}{ }^{4} t_{4} t_{5}+\frac{1}{1440} t_{3}^{5} t_{2}+\frac{1}{360} t_{4} t_{5}{ }^{5}+t_{2} t_{3} e^{t_{6}}-t_{4} t_{5} e^{t_{6}} \\
& -\frac{2}{3} t_{5}{ }^{4} e^{t_{6}}+\frac{1}{6} t_{3}{ }^{4} e^{t_{6}}+\frac{1}{2} e^{2 t_{6}}+\frac{1}{48} \frac{t_{2}{ }^{3}}{t_{3}}+\frac{1}{192} \frac{t_{4}{ }^{3}}{t_{5}} .
\end{aligned}
$$

The Euler vector field is given by

$$
E=t_{1} \partial_{1}+\frac{3}{4} t_{2} \partial_{2}+\frac{1}{4} t_{3} \partial_{3}+\frac{3}{4} t_{4} \partial_{4}+\frac{1}{4} t_{5} \partial_{5}+\partial_{6} .
$$

§5. Recent developments

Theorem.[2007] For any fixed integer $1 \leq k<I$, there exists a unique Frobenius structure of charge $d=1$ on the orbit space $\mathcal{M}^{k, 2}$ of $\widetilde{W}^{k, 2}\left(A_{l}\right)$ such that the potential $F(t)=\tilde{F}(t)+\frac{1}{2}\left(t^{k+1}\right)^{2} \log \left(t^{k+1}\right)$, where $\tilde{F}(t)$ is a weighted homogeneous polynomial in $t^{1}, t^{2}, \cdots, t^{\prime}, e^{t^{\prime+1}}, e^{t^{\prime+2}-t^{\prime+1}}$, satisfying

1. The unity vector field e coincides with $\frac{\partial}{\partial y^{k+1}}+e^{k y^{\prime+1}} \frac{\partial}{\partial y^{k}}=\frac{\partial}{\partial t^{k}}$;
2. The Euler vector field has the form

$$
E=\sum_{\alpha=1}^{I} \tilde{d}_{\alpha} t^{\alpha} \frac{\partial}{\partial t^{\alpha}}+\frac{1}{k} \frac{\partial}{\partial t^{\prime+1}}+\frac{I}{k(I-k)} \frac{\partial}{\partial t^{\prime+2}} .
$$

A_{1}

Thanks

Appendix. Main techniques to obtain flat coordinates
The first step: $y \rightarrow \tau$

$$
\begin{aligned}
\sum_{j=0}^{I} \theta^{j} u^{I-j}= & \sum_{j=0}^{I-m} \varpi^{j}(u+2)^{m}(u-2)^{I-m-j} \\
& -\sum_{j=I-m+1}^{l} \varpi^{j}(u+2)^{I-j}(u-2)^{j-k-1}
\end{aligned}
$$

where

The second step: $\tau \rightarrow z$

$$
\begin{aligned}
& z^{I+1}=\tau^{I+1}, z^{j}=\tau^{j}+p_{j}\left(\tau^{1}, \ldots, \tau^{j-1}, e^{\tau^{\prime+1}}\right), 1 \leq j \leq k \\
& z^{j}=\tau^{j}+\sum_{s=j+1}^{I-m} c_{s}^{j} \tau^{s}, \quad k+1 \leq j \leq I-k-m \\
& z^{j}=\tau^{j}+\sum_{s=j+1}^{I} h_{s}^{j} \tau^{s}, \quad I-k-m+1 \leq j \leq I
\end{aligned}
$$

where p_{j} are some weighted homegeoneous polynomials and c_{s}^{j} and h_{s}^{j} are determined by the following function respectively

$$
\cosh \left(\frac{\sqrt{t}}{2}\right)\left(\frac{2 \sinh \left(\frac{\sqrt{t}}{2}\right)}{\sqrt{t}}\right)^{2 i-1}, \quad\left(\frac{\tanh (\sqrt{t})}{\sqrt{t}}\right)^{2 i-1} .
$$

The third step: $z \rightarrow w$

$$
\begin{aligned}
& w^{i}=z^{i}, \quad i=1, \ldots, k, I+1 \\
& w^{k+1}=z^{k+1}\left(z^{I-m}\right)^{-\frac{1}{2(I-m-k)}} \\
& w^{s}=z^{s}\left(z^{I-m}\right)^{-\frac{s-k}{I-m-k}}, s=k+2, \cdots, I-m-1 \\
& w^{I-m}=\left(z^{I-m}\right)^{\frac{1}{2(I-m-k)}} \\
& w^{I-m+1}=z^{I-m+1}\left(z^{I}\right)^{-\frac{1}{2 m}} \\
& w^{r}=z^{r}\left(z^{l}\right)^{-\frac{r+m-I}{m}}, r=I-m+2, \cdots, I-1 \\
& w^{I}=\left(z^{I}\right)^{\frac{1}{2 m}}
\end{aligned}
$$

The last step: $w \rightarrow t$

$$
\begin{aligned}
& t^{1}=w^{1}, \ldots, t^{k}=w^{k}, t^{I+1}=w^{I+1} \\
& t^{k+1}=w^{k+1}+w^{I-m} h_{k+1}\left(w^{k+2}, \ldots, w^{I-m-1}\right), \\
& t^{j}=w^{I-m}\left(w^{j}+h_{j}\left(w^{j+1}, \ldots, w^{I-m-1}\right)\right), k+2 \leq j \leq I-m-1, \\
& t^{I-m+1}=w^{I-m+1}+w^{\prime} h_{I-m+1}\left(w^{I-m+2}, \ldots, w^{I-1}\right), \\
& t^{s}=w^{I}\left(w^{s}+h_{s}\left(w^{s+1}, \ldots, w^{I-1}\right)\right), I-m+2 \leq s \leq I-1 \\
& t^{I-m}=w^{I-m}, \quad t^{\prime}=w^{I} .
\end{aligned}
$$

Here $h_{l-m-1}=h_{l-1}=0, h_{j}$ are weighted homogeneous polynomials of degree $\frac{k(I-m-j)}{I-m-k}$ for $j=k+1, \ldots, I-m-2$ and h_{s} are weighted homogeneous polynomials of degree $\frac{k(I-s)}{m}$ for $s=I-m+2, \ldots, l-1$.

Due to the above construction, we can associate the following natural degrees to the flat coordinates

$$
\begin{aligned}
& \tilde{d}_{j}=\operatorname{deg} t^{j}:=\frac{j}{k}, \quad 1 \leq j \leq k, \\
& \tilde{d}_{s}=\operatorname{deg} t^{s}:=\frac{2 l-2 m-2 s+1}{2(I-m-k)}, \quad k+1 \leq s \leq I-m, \\
& \tilde{d}_{\alpha}=\operatorname{deg} t^{\alpha}:=\frac{2 l-2 \alpha+1}{2 m}, \quad I-m+1 \leq \alpha \leq I, \\
& \tilde{d}_{l+1}=\operatorname{deg} t^{I+1}:=0 .
\end{aligned}
$$

