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I. Finite Group Actions in SU(2)-Gauge Theory
[.1 Review of Donaldson Invariant

e VM : a simply connected, smooth, closed 4-manifold with positive
definite intersection form.

e F — M : SU(2)-bundle with ex(E) = —1.
e A connection V € ¢(E) : self-dual if xRY = RV.

— RV : harmonic
V minimizes the Yang-Mills action

(V) =3 [ R avor



e [ he gauge group g of bundle automorphisms of E acts on the
space &D of self-dual connections.

M(E) = &D/g : the moduli space of self-dual connections.

By perturbation or generic metric and compactipication.

Theorem 1.1.1. 9M(E) : a smooth, orientable, 5-manifold with \
singular points each of which has a cone nbd on CP? ,
where A = rank H2(M; 7).

Theorem 1.1.2. If H2(M;Z) =< ay,--- ,a) >, then

A
M ~ HCIP’Q . cobordant.
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Theorem 1.1.3.

(1) The positive definite intersection form (p.d.i.f)
w(M)~((1)d---d(1).

(2) 3 Non smoothable topological 4-manifold.
Ex. nksg.

(3) 3 Exotic smooth structures on R*.

(4) Nondecompasability, M %= Mq8M> (b;'(Mi) >0,1=1,2)
it M has nontrivial Donaldson invariants.



[.2. Obstruction for G-moduli space

e Let G be a finite group.
Suppose that G acts smoothly, semi-freely, isometrically on a simply
connected., closed, smooth 4-manifold M with a p.d.i.f.

Let ¢ : E — M : a G-bundle with c>(FE) = —1,
MY = F = {P}L, [I1{TN}2,, G acts trivially on E|p.

e M(FE) is a G-space, but may not be a G-manifold. Transform the
G-space (E) into a smooth G-manifold with some singularities.

Theorem 1.2.1. There is a Baire set in the G-invariant metrics
such that MG is a smooth manifold in the MG of irreducible self-dual
connections.



For each V € DﬁG, there is G-invariant fundamental elliptic complex
av. av
OHQO(QE)%VQ%EE)HQ%(QE)HO
)
Associate a Dirac operator

(Ve ®V_®gc) D r(V_o®V_®gc)

x /

TN @ VEeVo®ge).

For each g € G,
chy(j*o (D)) td(T9 @ C)

indg(D) = (=1)™ [TX9],

m = dim MY,
j: MI — M,
N9 = N(M,M9I) : normal bundle.



e Perturb the Fredholm G-map W :C/g — [C x Q22 (gg)]/g
given by W([V]) = [V, RY] to transverse the zero section.

The Kuranishi map W is locally equavalent to the sum of a G-
equivariant linear map and a nonlinear G-equivariant map in finite

dimensional range.

e Now we assume tat G = Z, =< h > is the group of order 2.



Proposition 1.2.2. Let A = x(F),V € M(E)E and h(V) = g(V) for
some g € g.
(i) If (hg)2 =1,V € M, then

dim Hg, —dim HE = z(10+ 34)
dim HY —dim HZ = ;(10-34) |,

where Hg,, is (£1)-eigen sp. of (hg),

(i) If (hg)2 = —I, VvV € M(E)C, then
dim Hg, —dim HE = Zz(10+ A)
dim HY —dim HZ = (10— A4)

where HY . is (+1)-eigen space of (hg)?,



(iii) If V is reducible, then

dim HY —dim HZ2 = (10— A)

Y

{ dim Hg, —dim HE = z(14+ A)

where H%i is (£1)-eigen space of gihggy for some g; € INy.

e Apply a G-transversality technique of T. Petrie.
X =M(E)C,
Xo = (end(MN(F)) U nbd of reducible con. in M(F)) N X,

For V € X, there is a fiber bundle V — X with fiber
Vg = Hom2,(HS ,HE )

- the space of surjective G-homomorphisms

. a Stiefel manifold with homotopy groups

Z if (hg)? = —1and i =2,

mi(Vy) = { 0 if (hg)2=1and i< 3.



Theorem 1.2.3.
(i) To perturb W to be G-transversal throughout of M(E)C there are
obstruction classes ©3(W) € H3(X, Xo; Z(= m(V5))).

(ii) If the obstruction cohomology classes ©3(WV) = 0, then we may
have a smooth G-manifold M(E) of dimension 5 with X\ singlular
points each of which has a cone nbd of CP?, where \ = rankHQ(M; 7).
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[.3. Involution and Donaldson invariant

e X : a closed, simply connected, smooth 4-manifold with
an orientation-preserving smooth involution o.

X9 =F : a 2-dim submanif.
F — X : SU(2) vector bundle, —c>(FE) : even.
p: X — X/o=X'": projection, F/ = p(F).

e For a generic o-invariant metric on X, let M(E)? be the moduli
space of o-invariant self-dual connections.
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Theorem 1.3.1. There is 1-1 correspondence between M(E)° and

M(E"), where M(E") is the moduli space of self-dual connections on
E — X',

Let dim MO (E) = dim M(E') = 2d.

For the coupled SU(2)-bundle E* — M°(E) x X,

the Donaldson p : Ho(X) c2(E7)/ H2(O (E))

T |PD

Hoy (N7 (E)).
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The Donaldson invariant

D% Hy(X)? X +-- X ho(X)? — Z,
Do, ,aq) = ## M (E) Npla) NN plag)].

Theorem 1.3.2. (Wang) Let aq,---,ag € H>(X;Z)° and p«(c;) =
26’& < HQ(X/,Z), 1= 17 7d' Then DO‘(a17”° ,Oﬁd) — D/(Blf" 7ﬁd);

where D' : Hy>(X') x --- x Ho(X") — 7Z is the Donaldson invariant on
the quotient £/ — X'.
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II. Finite Group Actions in U(1)-Gauge Theory
II.1. Review of Seiberg-Witten Invariant

e X : a closed, oriented, smooth 4-manifold, bél_(ac) > 1.
L— X :a U(1l)—bundle with ¢1(L) = ¢1(X) mod 2.
W= : twisted spinor bundles associated with L.
Clifford multi. WTQT*X — W~
T Wt x Wt — End(Wt),
given by 7(¢,d) = (¢ ® ¢t)o : traceless endomorphism of W.

e Levi-Civita connection. on X and a connection.

A on L induce a Dirac operator D : FT(W+) — I(W™).

Seiberg-Witten (SW) equations :
Dap =0
(X) {

_T(¢7 ¢)

_I_
TN
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e Gauge group c*(X,U(1)) of L acts on SW(L) = {(A,¢)|(X)}.
M(L) = SW(L)/c*(X,U(1)) : the moduli space associated with
the spin€ structure L on X.

e For a generic metric on X, 9MM(L) : a compact orientable manifold
with dimeusion d = Z[c1(L)? — (2x + 30)].

e Fix a point zo € X, o : c®(X,U(1)) —U(1) : evaluation induces
a U(1)-bundle
E=(SW(L)xC)/c>*(X,U(1)) — M(L).

SW(L) =< c1(E)%, M(L) >
. the Seiberg-Witten invariant of L, where d = 2s.
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Theorem I1.1.1.

(1) 3 finitely many spin® str. L on X for which SW(L) # 0.

(2) If X = X1 X5, b3 (X; > 0),i=1,2,
then SW(L) = O for spin® str. L on X.

(3) SW(L) : indep. on the metrics on X, dep. only on c1(L).
(4) f : a self-diffeo. of X, SW(L) = £SW(f*L).

(5) If X admits a metric of positive scalar curvature,
then SW = 0 on X.

(6) If X : symplectic, then SW(Ky) = +1.

(7) Thom conjecture is true.
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II.2. Finite Group Action and spin¢ structure

Let 71(X) be finite, and G be a finite group.

Theorem I1.2.1. If G acts smoothly, freely on X, SW x =% O.
Then X/G cannot decomposed as a smooth X1§X»
with b3 (X;) > 0,i = 1,2.

Theorem I1.2.2. Let X be symplectic, ¢1(X)? > 0, bé"(X) > 3.
If o : free anti-sym. involution on X, then SW =0 on X/o and X/o
can not be symplectic.

Theorem I1.2.3. Let SWyx £ 0 on X, bj‘(X) > 1.

If 'Y has negative definite intersection form and ni,---,n, : even
integers such that 4b1(Y) = 2ny + -+ + 2n, + n% + --- + n?, and
71 (Y') has a nontrivial finite quotient. Then XH#Y has a nontrivial
SW-invariant, but does not admit a symplectic str.
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Theorem I1.2.4. Let X : symplectic, and o : anti-sympl. involution

on X,
X7 =],
A

: lagrangian surfaces, genus(>y) > 1 for some A, bj‘(X/a) > 1.
Then X/o has vanishing SW-invariants.

involution such that ffw = —w.

Let of 13Xy x 3Ty — g X3y, begiven by os(z,y) = (f~1(y), f(2)).
Then o f IS an anti-symplectic involution,

the fixed point set is (X4 x Z4)7f ~ 2.

By Hirzebruch signature thm.,

1 .
b3 (X/of) = 5(b;F(X) —1)=¢g°>1ifg>1.
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Theorem I1.2.6. Let X : Kahler surf., b3 (X) > 3,
H»>(X:;7Z) has no 2-torsion.

oc. X — X  anti-holom. involution,

X9 =% has genus >0, [X] € 2H>(X; Z).

If K% >0 or K% =0 and g(<) > 1, then SW =0 on X/o.
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e Let Z, act on X, p : prime, Hi(X,R) = O,bé"(X) > 1.

Theorem I1.2.7. (Fang) Supp. Z, acts trivially on H*T(X,R).
L : Zp-equivariant spin® str. on X, the equivariant Dirac operator
Dy:T(WT) — (W™) has the form

p—1 _
ind Zp(D4) = = kjt] € R(Zp) = (thE]l).

Then SW(L) =0modyp
ifkj < 2(b3(X)—1),5=0,1,---,p—1.
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III. Finite Group Actions in Gromov-Witten T heory.
III.1. Finite Group Action in Symplectic 4-Manifolds

e Let (X,w) be a closed symplectic 4-manifold.
Let a finite group G act pseudo-holomorhpically, semifreely on X
with a codim.2 fixed pt. set F.

e Let p: X — X/G = X' be the projection.

q2(x: 7)Y g2(x": 7)
PD| \|G|-PD
Ho(X;2)C - Hy(X', 7)

commutes, where |G| : the order of GG, and PD : Poincaré dual.
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o Let A € Hy(X";Z), A/ = PD(d') € Hy(X';Z), and
L' — X' :U(Q) vector bundle ¢ (L") = /.
L=pL) - X, A= PD(c1(L)).
Then A € Ho(X;Z)C and p«(A) = |G|A’.

e Let J be G-invariant, w-comptible almost complex st. on X.
', J' : push downs of w, J, resp., on X’.

px  H=1im(PDo P*) C Ho(X;Z)Y — H' = im(|G|PD) C Ho(X';Z)

IS an isomorphism.
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For A e H,p«(A) = |G|A,F = XC F' = p(F) Cc X/,

Mo p(X, F:ANC
= Hu:(C,zy, - ,21) = (X, F; F)|
u . J — holo. stable map representing A relative to F,
C is a curve with arithmatic genus O and £ marked points,
u(C) : G —invariant.} /Aut(u)]
Mo (', F'; A", J')
= [{:(C,2q1,  -x) = (X, F'; F))|]u . J — holo.
stable map representing A’ relative to F’, C is a curve with
arithmatic genus 0 and k marked points,}/Aut(u)].
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T heorem III.1.1.

(i) There is a homeomorphism
W Mg (X, F A, D) — Mg p (X F AT

which is an orientation preserving diffeomorphism on each strata.

(ii) And we have

(C, 21, -+

(C, 1, -+

dim (Mo x(X, F; A, 1))
dim (Mo (X', F'; A, J'))
2c1(XNA +2k—2—-2A" . F/

d.

) mk)

p (Ca L1, =, ka.)
/ ¢/ &)
“ (X, F)
o (Ca L1, =, Qﬁk)/ p
/ / K
“ (X', F")

) xk)
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II1.2. Relative Gromov-Witten Invariant

T he evaluation map

evy, : Mo (X, F; A, ))E — XF

evi([C, 21, -z, u]) = (u(zy), - ,ulzg)).

im(ev,) C X*: a d’-dim. pseudo-cycle whose boundary has at most
dim. d' — 2.

The relative G-invariant Gromov-Witten invariant
F, G .
(DA,k ; Hd(Xk) — Q)
IS given by the integral

A ev,*PD(D) = (imevy,) - D

G

D :/_
k(D) Mo (X, F; A, J)C
. intersection number in X*, where d' + d = 4k.
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Similarly, the evaluation map
evk’ , ﬁO,k(Xla F/; A/, J/) — X/k

IS given by

GU]{;/([C, L1, $k, ’U,/]) — (u/($1)7 e 7u,(xk))'
The relative Gromov-W,itten invariant on the quotient

/
Cbi/,k . Hd(X/k) — Q

is defined by the integral

o (D :/_ ev* PD(D)) = (im (ev,)) - D
A, k(DY) T, 575 a1 1) (D7) = (im (evg))

. Intersection number in X’“, where d' 4+ d = 4k.

o If 2¢1(XNA' =2+ 2k+2F'- A, then the invariant is the degree of
the ev’ which is the number of J’-holomorphic curves representing
the homology A’ meeting generic k distinct points in F’/ tangently.
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Theorem II1.2.1. Let D € H C Hy(X*;2)C and D' € H ¢ Hy(X'*:7)
such that p«(D) = |G|FD’, then
S (D) = ol (D).

[ie., D e Hy(Xx* 7)¢ = S Hy (X)) x oo x Hy (X)©
di+-+dp=d
3Dy, € Hy.(X)“,i=1,--- ,k such that
D = Z Ddlx---Xde.

p«(D) = ps( Dy, X -+ X Dg, )
di+---+dp=d
— Z px(Dgy) X -+ X p*(de)
= |G|"p«(D").

CDA k(D) = (im(ev.)) - D : intersection number in X*.]
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III.3. Example

e Recall the number R(d) of rational curves of the degree d in CP2.
dim Mg x(CP?,d[S?]) = 2(3d — 1 + k).
If k= 3d — 1, then dim Mg ,(CP?,d[S?]) = 4(3d — 1),

evy, WOﬁ(CPQ,d[SQ]) — (CP?)*.

k
* 2\) —
/ﬁo,k(CPQ,d[SQ]) 7;1;[1 or (e(OUDE) = deleny)

_ { Y d1 +dy=d B(d1) R(dp)d2dp [k (50— %) — k(50 4)], d>2
1, d=1

computed by the WDVV-equations for the potential.

R(D) =
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e For CPL CIP’Q,
dim Mg (CP?,CP'; dCPY) = 2(2d — 1 + k).

If k=2d—1, then = 4(2d —1).

The number of rational curves in CP? of degree d relative to CP!
passing through generic (2d — 1) points in CP! is

k
[T evi™(c1(Q(1))?)

/ﬁo,k(C]P’Q,ClPl;dC]Pl) =1
degree of [evy : Mg ,(CP?, CPY; dCP) — (CP?)"].

R'(d) =

o Let o: CP! x CP! — CP! x CP! be the involution given by
o(z1,22) = (22, 21).

Then (CP! x CP1)? = A ~ CP!, and CP! x CP! /o ~ CP?.
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Commutative diagram

H2(CP! x CPYYe -2 H2(CP2)

PD| |2.PD

Ho(CP! x CPYYo 11, (CP?) .
Let A, B € H>(CP! x CP1),C € H>(CP?) : generators.

p«(A) = p«(A, B) = 2C,

dim Mg x(CP! x CPY, A; d(a))°
= 2C1(CP! x CPY) - d(A) + 2k —2 — 2- A -d(D)
=2(2d — 1+ k).

For D € H[(CP! x CPL)*]7, po(D) = 2kD’ € H(CP?)*,
the relative Gromov-Witten invariant

A,o
Valay k(D)

"’gc,k(D/)

Wi (ot pt) if bk =2d—1

R'(d)

deglevy” : ﬁoyk(CPQ,Cpl, dC) — (CP?)A].
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