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X Fano Miyaoka-Mori, i.e. K−1
X > 0

By Miyaoka-Mori,

X is uniruled, i.e.

“filled up by rational curves”

By Kollar-Miyaoka-Mori

X is rationally connected

Differential-geometric criterion:
X Fano ⇔ ∃ g Kähler, Ric (X, g) > 0
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Grothendieck Splitting Theorem (1956)

V 7→ P1 holomorphic vector bundle. Then

V ∼= O(a1)⊕ · · · ⊕ O(ar) ,

where a1 ≤ · · · ≤ ar are unique.

Formulation in terms of matrices

Let f : C − {0} 7→ GL(n,C) be holomorphic.
Then there exist

g1 : C→ GL(n,C) , g2 : P1−{0} → GL(n,C)

such that

g1fg−1
2 (z) =




za1

. . .
zar




Hilbert (1905), Plemelj (1908), Birkhoff (1913),
Hasse (1895)
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Deformation of Rational Curves
X complex mfld, f : P1 → X, f(P1) = C

{Ct} hol. family of P1, defined by
ft : P1 → X, f0 = f , C0 = C.
Write F (z, t) = ft(z)

∂F

∂t
|t=0 = s ∈ Γ(P1, f∗TX) .

Any section s ∈ Γ(P1, f∗TX) is a candidate for
infinitesimal deformation.
Use power series to construct
F (z, t) = ft(z)

Obstruction to construction given by
H1(P1, f∗TX)

H1(P1, f∗TX) =
r∑

i=1

H1(P1,O(ai))

H1(P1,O(a)) = 0 ∀a ≥ −1 .
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Example of hol. vector bundles on P1

(A) P1 ⊂ P2; V = TP2 |P1
V/TP1 = NP1|P2 , N = normal bundle.

∃ hol. vector fields of P2, along P1, correspond-
ing to inf. deformation of lines in P2. Using s,
we have, s(P ) = 0

V ∼= TP1 ⊕NP1|P2

∼= O(2)⊕O(1) .

In general,

TPn |P1 ∼= O(2)⊕ [O(1)]n−1 .
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(B) P1 ⊂ P1 × P1 , z → (z, 0)

TP1×P1 |P1 ∼= O(2)⊕O .

(C) Qn ⊂ Pn+1 hyperquadric, defined by z2
0 +

· · ·+ z2
n+1 = 0

TQn |P1 ∼= O(2)⊕ [O(1)]n−2 ⊕O .

Trivial factor: Q2 ⊂ Qn; Q2 ∼= P1 × P1.

s = nowhere zero section
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X Fano, L > 0, δL = deg.
minimal rational curve C attains

min{δL(C) : TX |C ≥ 0} .

Deformation Theory of Rational Curves
=⇒ For a very general point P ∈ X,

TX |C ≥ 0 ∀C rat. , P ∈ C .

Consequence
K = choice of irr. comp. of mrc
For P generic, [C] ∈ K generic
f : P1 → X , C = f(P1). Then,

f∗TX
∼= O(2)⊕ [O(1)]p ⊕Oq .
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Varieties of Minimal Rational Tangents

X uniruled,

K = component of Chow space of minimal ra-
tional curves

µ : U → X; ρ : U → K universal family

x ∈ X generic; Ux smooth

The tangent map τ : Ux → PTx(X) is given by

τ([C]) = [Tx(C)] ;

for C smooth at x ∈ X.

τ is rational, generically finite,

a priori undefined for C singular at x.
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We call the strict transform

τ(Ux) = Cx ⊂ PTx(X)

variety of minimal rational tangents.

For C standard, Tx(C) = Cα

T |C ∼= O(2)⊕O(1)p ⊕Oq

Pα := [O(2)⊕O(1)p]x , positive part .

Then,

Tα(C̃x) = Pα ;

T[α](Cx) = Pα mod Cα .

In other words,

dim(Cx) = p ,

and Cx is infinitesimally determined by split-
ting types.
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Characterization of Pn (Cho-Miyaoka-
Shepherd-Barron 2002)

X irr. normal variety, dim(X) = n.

Suppose there exists a minimal component K
on X such that

C(K) = PTX .

Then, there exists

ν : Pn → X

étale over X − Sing(X) such that

members of K = images of lines in Pn.

In particular

X smooth ⇒ X ∼= Pn .
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Theorem (Kebekus 2002, JAG).

The tangent map

τx : Ux → PTx(X)

is a morphism at a generic point x ∈ X.

Theorem (Hwang-Mok 2004, AJM).

The tangent map

τx : Ux → Cx ⊂ PTx(X)

is a birational morphism at a generic point x ∈
X.
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Examples of VMRTs

Fermat hypersurface 1 ≤ d ≤ n− 1

X = {Zd
0 + Zd

1 + · · ·+ Zd
n = 0}

x = [z0, z1, . . . , zn] ∈ X.
FIND all (w0, wr, . . . , wn) such that ∀ t ∈ C.

[z0 + tw0, z1 + tw1, . . . , zn + twn] ∈ X

(z0 + tw0)d + · · ·+ (zn + twn)d = 0

0 = (zd
0 + · · ·+ zd

n)

+t(zd−1
0 w0 + · · ·+ zd−1

n wn) · d

+t2(zd−2
0 w2

0 + · · ·+ zd−2
n w2

n) · d(d− 1)
2

+ · · ·+ td(wd
0 + · · ·+ wd

n) .

When (z0, z1, . . . , zn) is fixed, we get d + 1
equations, and
Cx = complete intersection of d− 1 hypersur-
faces of degree 2, 3, . . . , d in PTx(X) ∼= Pn−1

If d ≤ n− 1, dim(Cx) = (n+1)− (d+1)− 1 =
n− d− 1 ≥ 0.
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Examples of VMRT

X (generic) VMRT Cx

Pn Pn−1

Qn Qn−2

cubic codim 2 ⊂ Pn−1

in Pn+1 = quadric ∩ cubic, deg. 6

X3
3 ⊂ P4 6 points

X4
3 ⊂ P5 deg. 6 curve of genus 4

X5
3 ⊂ P6 K3 − surfaces

Xn
d ⊂ Pn+1 , complete intersection ⊂ Pn

d < n of degrees 1, 2, . . . , d

In these examples,

{mrc} = {lines in Pn contained in X} .
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Scope

Algebraic Geometry





Mori theory
Hilbert schemes
projective geometry

Differential Geometry
{

distributions
G-structures

Several
Complex Variables

{
Hartogs phenomenon
analytic continuation

Lie Theory
{

Hermitian symmetric spaces
rational homog. spaces G/P
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Examples of G-structures

Riemannian Geometry

A Riemannian metric Σgijdxi⊗dxj gives a re-
duction of the structure group from GL(n,R)
to O(n,R); G = O(n,R).

Holomorphic Metrics

X complex manifold,

∑
gijdzi ⊗ dzj

hol. symmetric 2-tensor,

det(gij) 6= 0 ;

g a holomorphic metric;
Hol. G-structure with G = O(n;C).
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Theorem (Hwang-Mok, Crelle 1997)

V model vector space ∼= Cn,

G reductive complex Lie group,

G & GL(V ) irreducible faithful representa-
tion,

M Fano manifold with holomorphic G-structure.

Then, the G-structure is flat

M ∼= S ,

where S = irr. HSS, compact type of rank
≥ 2.
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Lazarsfeld’s Problem

Theorem (Hwang-Mok, Invent. 1999).

(2nd proof: Asian J. Math. 2004)

Y = G/P rational homogeneous

P maximal parabolic, i.e. b2(Y ) = 1

X projective manifold

f : Y → X finite holomorphic map

Then,

EITHER

(a) X ∼= Pn ; OR

(b) f : Y
∼=−→ X is a biholomorphism.
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Lazarsfeld’s Problem

Principle of Proof:

f : Y → X ; Y = G/P , b2(Y ) = 1 .

Suppose X 6∼= Pn; f not a biholomorphism. To
derive a contradiction let

ϕ : U
∼=−→ V ; U, V ⊂ Y

such that f ◦ ϕ ≡ f.

C ⊂ PT (X) varieties of mrt

D := f∗C ⊂ PT (Y )

ϕ∗D|U = D|V tautologically.

Prove that ϕ = Φ|U for some Φ ∈ Aut(Y ) to
derive a contradiction!
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Varieties of distinguished tangents

N = irr. comp. of Chow space of curves on X

passing through x ∈ X

N ′ ⊂ N subset smooth of curves smooth at x

N ′ = N1 ∪ · · · ∪N ` decomposition in terms of
geometric genus

τ : N j → PTx(X) tangent map

N j = M j
1 ∪ · · · ∪M j

k τ -stratification

Definition.

An irreducible subvariety D ⊂ PTx(X) is called
a variety of distinguished tangents (VMRT) if
D = τ(M j

i ) for some choice of N , N j and
M j

i .
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Varieties of distinguished tangents

Properties

(i) Given an irreducible smooth projective va-
riety X and x ∈ X, there are only count-
ably many varieties of distinguished tan-
gent in PTx(X).

(ii) Let D ⊂ PTx(X) be a variety of distin-
guished tangents associated to some choice
of N , N j and M j

i . Then for any tangent
vector v toD, we can find a family of curves
{lt, t ∈ ∆} belonging to N smooth at x

so that the derivative of the tangent direc-
tions PTy(lt) ∈ PTx(X) at t = 0 is v.

(iii) Suppose a connected Lie group P acts on
X fixing x. Then any variety of distin-
guished tangents in PTx(X) is invariant un-
der the isotropy action of P on PTx(X).
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Theorem. (Hwang-Mok, Invent. 2005)

G simple Lie group over C, g = Lie algebra

P ⊂ G maximal parabolic subgroup

S = rational homogeneous of type (G;α)

π : X → 4 = {t ∈ C : |t| < 1} regular family
such that

(i) Xt := π−1(t) ∼= S for t 6= 0 and

(ii) X0 := π−1(0) is Kähler.

Then,
X0

∼= S .
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Deformation rigidity in the Kähler case

Scheme

(1) S Hermitian symmetric
[Hwang-Mok, Invent. Math 1998]

(2) S of type (G,α), α a long simple root
[Hwang, Crelle 1997] for the contact case
[Hwang-Mok, Ann. ENS 2002] in general

(3) S of type (F4, α1)
[Hwang-Mok, Springer-Verlag 2004]

(4) S of type (Cn, αk), 1 < k < n; or (F4, α2)
[Hwang-Mok, Invent. Math 2005]
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Deformation rigidity in the Kähler case

Methods

(1) Distribution spanned by VMRT
Integrability

(2) Differential systems generated by distribu-
tions spanned by VMRT

(3) Methods of (2)

(4) Holomorphic vector fields on uniruled pro-
jective manifolds.
Uses also conditions on integrability of (1).
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Distributions Spanned by MRT

X uniruled,
K: component of Chow space of minimal ra-

tional curves
Cx: variety of mrt;
Cx ⊂ PTx(X); C̃x ⊂ Tx(X);
Wx = Span(C̃x) ⊂ Tx(X).

Assume W 6= T (X).

Q. Is W integrable?

Pic(X) = 1 ⇒ W not integrable

Projective-geometric properties of Cx

⇒ W integrable

For C on X0, W = T (X0), i.e. Cx lin. nondeg.
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Integrability of Distributions

Proposition.
Ω ⊂ Cn, W ⊂ TΩ hol. distribution. Then, W

is integrable iff

(∗) Given x ∈ Ω, ∃ hol. vector fields αj , βj

def. on a nbd of x s.t.

(i) [αj , βj ](x) ∈ Wx.

(ii) Span{αj ∧ βj} = Λ2Wx.
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Verification of Integrability
C ⊂ X0 be a smooth standard mrc.

TX0 |C ∼= O(2)⊕ [O(1)]p ⊕Oq .

For x ∈ C; Tx(C) ∼= Cαx. Define

Pαx = (O(2)⊕ [O(1)]p)x .

Proposition
C ⊂ X0 standard mrc; x ∈ C. ξx ∈ Pαx

s.t. (αx, ξx) linearly independent. Then, there
exists a loc. smooth complex-analytic surface
Σ at x such that
(i) Tx(Σ) = Cαx + Cξx;
(ii) at every y ∈ Σ near x;

Ty(Σ) ⊂ Wy .
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Proposition.

Cx ⊂ PWx VMRT at generic x

Tx ⊂ P(∧2Wx) variety of tangents.

Then,

Tx ⊂ P(∧2Wx) lin. nondeg.

⇒ W integrable.

Proposition. Tx ⊂ P(∧2Wx) is linearly

non-degenerate if

dim Cx ≥ codim Cx in PWx ,

Cx ⊂ PWx is smooth .
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Differential system

0 6= D1 & D2 & · · · & Dm ⊂ TU

filtration of X by hol. distributions.

Weak derived system (X, D)

D1 = D , meromorphic distribution

Dk = Dk−1 + [D,Dk−1].

• On a Fano manifold X, b2(X) = 1, Dm =
TX for some m.

Symbol algebra of a weak derived system:

s(X, D) := D1 ⊕D2/D1 ⊕ · · · ⊕Dm/Dm−1

• On a rational homogeneous space S = G/P ,
b2(S) = 1, with D = min. nontrivial G-inv.
hol. distribution,

n+ := g1 ⊕ · · · ⊕ gm
∼= s(S, D).
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Serre relations

g simplie Lie algebra over C

Σ = {α1, . . . , α`} system of simple roots

n(i, j) = entries of Cartan matrix

Then, g is the universal Lie algebra generated
by {xi, yi, hi : 1 ≤ i ≤ `} subject to the iden-
tities

• [hi, hj ] = 0

• [xi, yi] = hi, [xi, yj ] = 0 if i 6= j

• [hi, xj ] = n(i, j)xj , [hi, yj ] = −n(i, j)yj

• ad(xi)−n(i,j)+1(xj) = 0 if i 6= j

• ad(yi)−n(i,j)+1(yj) = 0 if i 6= j
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Objective
For the regular family π : X → 4 consider
D ⊂ TX0 spanned by VMRTs. Show that
s(X0, D) ∼= n+ = g1 ⊕ · · · ⊕ gm for the model
S = G/P .

Serre relations for n+

Write n+ ⊂ g subalgebra generated by
{x1, x2, . . . , x`}. Then, n+ is the universal Lie
algebra generated by {x1, . . . , x`} subject to

ad(xi)−n(i,j)+1(xj) = 0.

Note that
• When αi is a long simple root,

n(i, j) =
2(αi, αj)
‖αi‖2 = 0 or − 1 .

For us the crucial relations are

[xi, [xi, xj ]] = 0 if n(i, j) 6= 0.
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Concluding argument:

s(X0, D) is a quotient of the universal Lie al-
gebra U gen. by {x1, . . . , x`} subject to

ad(xj)−n(i,j)+1(xi) = 0.

By Serre relations,

U ∼= n+ , s(X0, D) ∼= n+/J.

If J 6= 0, the weak derived system (X, D)
would terminate at Dm, dim Dm < n, giving
an integrable distribution W = Dm containing
VMRTs, which contradicts with b2(X0) = 1.

¤
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Conjecture 1

X Fano, b2(X) = 1

x ∈ X generic point

Z ∈ Γ(X, TX).

Then,
ordx(Z) ≥ 3 ⇒ Z ≡ 0 .

Conjecture 2

X Fano, b2(X) = 1, dimCX = n

⇒ dimC(Aut(X)) ≤ n2 + 2n;

= n2 + 2n ⇔ X ∼= Pn.
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Remark:

(1) For Σk = P(O⊕O(k)), the k-th Hirzebruch
surface,

dim(Aut(Σk)) > dim Γ(P1,O(k)) = k + 1.

Bounds fail in general for projective uniruled
projective manifolds.

(2) If ∃K on X such that dim Cx = 0, Hwang
shows that there are no hol. v.f. vanishing at a
generic point x ∈ X. In that case, dim(Aut(X)) ≤
n.

dim{Z ∈ Γ(X, TX) : ordx(Z) ≤ 2}
(3)

≤ n(n + 1)(n + 2)
2

∼= n3

2
.
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Theorem 1 (Hwang-Mok)

X projective uniruled manifold

K = minimal rational component
x ∈ X generic point

Cx ⊂ PTx(X), VMRT at x, dim Cx = p > 0

Assume Cx ⊂ PTx(X)
nonsingular, irreducible,
linearly non-degenerate.

Then,

Z ∈ Γ(X, TX) , ordx(Z) ≥ 3 ⇒ Z ≡ 0 .
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Theorem 2

Assume Cx ⊂ PTx(X), dim X = n

nonsingular, irreducible,

linearly non-degenerate,

linearly normal.

Then,

dim(Aut(X)) ≤ n2 + 2n

= n2 + 2n ⇔ X ∼= Pn
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Corollary

X Fano, b2(X) = 1, dimX = n

O(1) positive generator of Pic(X) ∼= Z.

Assume O(1) very ample.

c1(X) >
n + 1

2
, x ∈ X generic. Then,

0 6= Z ∈ Γ(X,TX) ⇒ ordx(Z) ≤ 3 ;

c1(X) >
2(n + 2)

3
, X 6∼= Pn

⇒ dim(Aut(X)) < n2 + 2n .
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Ideas of Proof

(1) A holomorphic vector field Z vanishing at
x ∈ X to the order ≥ 2 gives by power series
expansion

Z =
∑

i,j,k

Ak
ijz

izj ∂

∂zk
+ higher order terms

A ∈ S2T ∗x ⊗ Tx with the property that

(†) for any α ∈ C̃x, for

Aα :=
∑

Ak
αjdzj ⊗ ∂

∂zk
∈ End(Tx) ,

Aα|C̃x
is tangent to C̃x.

Here we identify vector fields on Tx with en-
domorphisms.
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(2) Taking α, β ∈ C̃x; α, β 6= 0

Aαβ = Aα(β) = Aβ(α)

is tangent to C̃x both at α and β, i.e.

Aαβ ∈ Pα ∩ Pβ .

(3) The symmetry property on A forces (by
letting β → α) that Aαα ∈ Ker(σα) for the
second fundamental form σα on C̃x − {0}. If
Cx & PTx is smooth and non-linear, Ker(σα) =
Cα (Zak’s Thm.), and

A ∈ Γ(Cx; Hom(L2, L)) = Γ(Cx, L∗)

for the tautological line bundle L.
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(4) We can get bounds for the dimension of Z

with ordx(Z) ≥ 2 if we know that

(∗) A = 0 ⇒ A = 0 .

Moreover, the latter is enough to prove the
nonexistence of nontrivial Z with
ordx(Z) ≥ 3. If ordx(Z) ≥ 3 start with

A ∈ S3T ∗x ⊗ Tx such that

Aαβγ ∈ Pα ∩ Pβ ∩ Pγ for α, β, γ ∈ C̃x − {0}.

Then, we get

Aααγ ∈ Pα ∩ Pγ for any α, γ ∈ C̃x − {0}
⇒ Aααγ = 0

⇒ A ≡ 0 if (∗) holds.
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Prolongation of infinitesimal auto-

morphisms of projective varieties

V complex vector space, dim V = n

g ⊂ End(V ) Lie subalgebra

g(k) ⊂ Sk+1V ∗ ⊗ V , σ ∈ g(k) ⇔

∀ v1, . . . , vk ∈ V , writing

σv1,... ,vk
(v) = σ(v; v1, . . . , vk) ,

we have σv1,... ,vk
∈ g .

g(k) = k-th prolongation of g; g(0) = g.

g(k) = 0 ⇒ g(k+1) = 0.

h ⊂ g ⇒ h(k) ⊂ g(k).

[g(k); g(`)] ⊂ g(k+`).
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Y ⊂ PV projective subvariety, dimY = p

Ỹ ⊂ V affine cone of Y . Define

aut(Y )={A ∈ End(V ) :exp(tA)(Ỹ ) ⊂ Ỹ , t ∈ C}.

X complex manifold, dim X = n

C ⊂ PT (X) projective and flat over X

Cx ⊂ PTx(X) irreducible, reduced

f := germs of C-preserving holomorphic vector
fields at x

For ` ≥ −1, let

f` = {Z ∈ f : ordx(Z) ≥ ` + 1} .
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Proposition. For k ≥ 0, identify fk/fk+1 ⊂
Sk+1T ∗x (X) ⊗ Tx(X) by taking leading terms
of Taylor expansions of the vector fields at x.
Then

fk/fk+1 ⊂ aut(Cx)(k) ,

the k-th prolongation of the Lie algebra of in-
finitesimal automorphisms of the projective va-
riety Cx.

Proof. Z hol. vector field at x, defined on U ⊂
X, ordxZ ≥ k + 1

jj+1
x (Z) ∈ Sk+1T ∗x (X)⊗ Tx(X)

Z can be lifted canonically to Z ′ on PT (U):
Z = inf. generator of {ft}, germs of biholo-
morphism at x

ft : U → X gives Ft : T (U) → T (X),
where Ft(x, η) = (ft(x), dft(x)(η)).
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η ∈ Tx(X), ordη(Z ′) ≥ k,

jk
η ∈ SkT ∗η (T (X))⊗ Tη(T (X)) .

For k = 0, j0
η ∈ Tη(T (X)).

For k ≥ 1, Z ′|Tx(X) ≡ 0,

jk
η ∈ SkN∗

η ⊗ Tη(T (X)) ,

where N = normal bundle of Tx(X) in T (X),
N ∼= π∗T (X). Since ordx(Z) ≥ k + 1,
π∗(jk

η (v1, . . . , vk)) = 0 for v1, . . . , vk ∈ Tx(X).
Hence,

jk
η (Z ′) ∈ SkN∗

η⊗Tη(Tx(X)) ∼= SkT ∗x (X)⊗Tx(X) .

Straightforward calculations give

jk
η (Z ′)(v1, . . . , vk) = jk+1

x (Z)(v, v1, . . . , vk)

where we write η and v for the same thing, η

when it is consider a point on the fiber Tx(X),
v when it is considered a tangent vector at x.
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Leading Terms of Hol. Vector Fields

0 ∈ Ω ⊂ Cn; Z = hol. vector field on Ω

ord0(Z) = p ≥ 0

Z =
∑

Ak
i1···ip

zi1zi2 · · · zip ∂
∂zk

+ O(|z|p+1)

Principal term ρ(Z) at o:

ρ(Z) = A ∈ SpT ∗o ⊗ To .

Lemma. Z, W = germs of hol. vector fields
at o, ordo(Z) = p, ordo(Z) = q. Then ordo[Z, W ]
≥ p + q − 1. Suppose ordo[Z, W ] = p + q − 1,
p + q ≥ 1. Then,

ρ([Z,W ]) = bilinear expression in ρ(Z), ρ(W ).

For p = 1, so that ρ(Z) ∈ End(To),

ρ([Z,W ]) = ρ(Z)(ρ(W )) .
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Symbolic Lie algebra of leading terms

Hermitian symmetric case

g = g−1 ⊕ g0 ⊕ g1

= m− ⊕ kC ⊕m+ .

[m−, m−] = [m+, m+] = 0

m− = {Z ∈ Γ(S, TS) : ordoZ ≥ 2} .

All Lie brackets determined by principal terms:

[k,m+], [k, m−], [k, k′], [m−,m+] .

Deformation Rigidity
Given π : X → ∆

gt = aut(Xt) for t 6= 0

g0 = Limiting Lie algebra .
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More precisely,
T = relative tangent bundle
π∗T = O(V ), V hol. vector bundle on ∆
gt := Vt, Lie alg. structure induced from
T .

Assume stability of Cσ(t) as t 7→ 0. Define

J
(k)
t = {Z ∈ gt : ordσ(t)(Z) ≥ k}

It = {Z ∈ gt : Z(σ(t)) = 0 , AZ ∈ C · id} .

For t 6= 0, any Z ∈ Et, AZ 6≡ 0 determines a
C∗-action. Since Cσ(0) ⊂ PTσ(0)(X0) is conju-
gate to Co ⊂ PTo(S)

dim E
(2)
0 ≤ n , E

(k)
0 = 0 for k ≥ 3

dim I0 ≥ n + 1 (upper semicontinuity)

dim I0 ≤ n + 1 (VMRT) .
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Therefore, dim I0 = n + 1 and ∃ a hol. vector
bundle I of rank n + 1, I = O(I).
∃Z ∈ I0 such that AZ 6≡ 0, and we have a hol.
family of C∗-actions Tt.
Tt = {eλEt}, period 2πi.

gt
i

def= {Z ∈ gt : [Et, Z] = iZ}
gt = gt

−1 ⊕ gt
0 ⊕ gt

1 .

For t 6= 0,

gt
0
∼= {A ∈ Endσ(t)(Tσ(t)) : A|C̃σ(t)

is tangent to C̃σ(t)} .

Dimension count forces the same for t = 0.
[g0

1, g
0
1] = [g0

−1, g
0
−1] = 0. Lie algebra structure

on g0 completely determined by leading terms.
Hence X0 = G/P ∼= S.
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Uniqueness of tautological foliation:
ρ : U → K, µ : U → X universal family
π : C → X family of VMRTs

F = 1− dim. multi-foliation on C
defined by tautological liftings Ĉ of C,
F := tautological foliation

For C standard TX |C ∼= O(2) ⊕ O(1)p ⊕ Oq.
Write TxC = Cα, Pα = (O(2)⊕O(1)p)x.

P[α] = {η ∈ T[α](C) : dπ(η) ∈ Pα}.

As T[α](Cx) ∼= Pα/Cα, P is defined by C.

W = distribution on K defined by

W[C] = Γ(C,O(1)p) ⊂ Γ(C, NC|X) ∼= T[C](K).

We have

P = ρ−1W , F = ρ−1(0) ⇒ [F ,P] ⊂ P .
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Proposition
Assume Gauss map on a generic VMRT Cx

to be injective at a generic [α] ∈ Cx. Then,
[v,P] ⊂ P ⇒ v ∈ F , i.e.,

Cauchy Char. (P) = F .

Corollary
Assume U ⊂ X, U ′ ⊂ X ′, f : U

∼=−→ U ′,
[df ]∗C′ = C|U . Then,

f maps open pieces of mrc on X to

open pieces of mrc on X.

Proof. Write f∗C′ for [df ]∗C′, etc. Then, f∗C′ =
C|U implies f∗P ′ = P|U . Thus,

[f∗F ′,P] = [f∗F ′, f∗P ′]
= f∗[F ′,P ′] ⊂ f∗P ′ = P.

Proposition implies f∗F ′ = F . ¤
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Theorem. (Hwang-Mok, JMPA 2001,

AJM 2004)

X projective uniruled, b2(X) = 1,

K minimal rational component on X.

Assume
(†) for a general point x ∈ X, dim Cx = φ > 0

and Gauss map on Cx generically finite.
(]) more generally if Cx is non-linear , i.e., not

a finite union of projective linear subspaces

Then,

(X,K) has the Cartan-Fubini

Extension Property

Examples:
(1) X = G/P 6= PN , G simple, P maximal

parabolic.
(2) X ⊂ PN smooth complete intersection, Fano

with dim(X) ≥ 3, c1(X) ≥ 3.
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Ideas of proof of CF under the assumption (†)
(1) f : (X,K) → (X ′,K′) gen. finite surj.
map, f∗C′ = C (i.e., VMRT-preserving).

Uniqueness of tautological foliation
⇒ f preserves tautological foliation

(2) Analytic continuation along mrc, obtained
by passing to moduli spaces of mrc:

f : X → X ′ induces f# : V → K′ on some

open subset V ⊂ K.

Now, interpret a point x ∈ X as the intersec-
tion of C, [C] ∈ Kx, to do analytic continua-
tion.

(3) (X,K) is rationally connected,
Analytic cont. along chains of mrc defines a
multi-valued map F : X → X ′.
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(4) b2(X) = 1 ⇒ any mrc C intersects any
hypersurface H ⊂ X.
Analytic cont. along C forces univalence of F ,
viz., F is a birational map preserving VMRTs

(5) birational + VMRT-preserving
⇒ biholomorphic

(a) VMRT-preserving
⇒ R(F ) = ∅, R : ramification divisor

(b) Embed X to PN by K−`
X , X being Fano,

etc. R(F ) = ∅ gives hol. extension of F ∗s

for sections s of K−`
X ,

F : X → X ′ is the restriction of some pro-
jective linear isomorphism of PN .
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Local rigidity of holomorphic maps

π : X →4 regular family

Xt Fano, Pic(Xt) ∼= Z

X0 carries a rational curve C, with trivial nor-
mal bundle

X ′ projective manifold

ft : X ′ → Xt holomorphic family of generi-
cally finite surjective holomorphic maps. Then,

There exist ϕt : X0

∼=−→ Xt

such that ft ≡ ϕt ◦ f0

59



Application of Cartan-Fubini

Theorem (Hwang-Mok, AJM 2004)

X Fano manifold; b2(X) = 1

K: minimal rational component

Cx: VMRT of (X,K), x ∈ X generic

Y projective manifold

ft : Y → X one-parameter family
of surjective finite holomorphic maps.

Assume dim Cx := p > 0, and

Cx ⊂ PTx(X) is non-linear. Then,

∃Φt ∈ Aut(X) such that

ft ≡ Φt ◦ f0; Φ0 = id.
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Theorem (Hwang-Mok 2004, AJM). Local
rigidity for ft : Y → Xt remains valid un-
der the assumption that X0 carries a minimal
component K0 whose general VMRT is non-
linear.

New solution of Lazarsfeld Problem

Y = G/P G simple, P maximal parabolic

Take Xt = X, f : Y → X.

Assume generic Cx ⊂ PTx(X) non-linear.

Local rigidity ⇒ Any holomorphic vector field
Z on Y descends to a holomorphic vector field
W on X such that f : Y → X is equivariant
w.r.t. 1-parameter groups generated by Z and
W.

R := ramification divisor of f

B := f(R)
Then, W is tangent to B.
Hence, Z is tangent to R,
contradicting homogeneity of Y = G/P !
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Bounding degrees of holomorphic maps

X ′ projective manifold
F0 = {X Fano: Pic(X) ∼= Z; ∃ rat. curve

C ⊂ X with trivial normal bundle}
Then,

There exists a constant C(X ′) such that

∀f : X ′ → X, X ∈ F0

generically finite, surjective hol. map

deg(f) ≤ C(X ′).

Finiteness Theorem

Given X ′, there exists at most finitely many
pairs (X, f) of such maps f : X ′ → X.
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Finiteness Theorem in 3 dimensions

Y Fano manifold, Pic(Y ) ∼= Z, dim Y = 3.

Then, there are at most finitely many projec-
tive manifolds X for which there exists a sur-
jective holomorphic map

f : Y → X .

Proof.
From sol’n to Lazarsfeld’s Problem,

Y ∼= P3 ⇒ X ∼= P3;

Y ∼= Q3 ⇒ X ∼= Q3 or P3.

Otherwise, Y carries a rational curve with triv-
ial normal bundle, from Iskovskih’s classifica-
tion. Then,

X ∼= P3, Q3 or

a finite no. of possibilities in F0.

64



Webs on a Fano manifold

F0 = {X Fano: Pic(X) ∼= Z; ∃ a rat. curve
C ⊂ X with trivial normal bundle}

X ∈ F0, C ⊂ X, NC|X ∼= On−1

K = minimal rational component, [C] ∈ K.

µ : U → X, ρ : U → K universal family

X ∈ F0 ⇔ For π : C → X of VMRTs, dim Cx =
0 for x generic.

R ⊂ U ramification divisor,
M = µ(R) ⊂ X branching divisor

M := discriminantal divisor of K.
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L ⊂ X smallest hypersurface such that
π : C → X is unramified over X − L− Z

for some Z ⊂ X of codim. ≥ 2, M ⊂ L.

L := extended discriminantal divisor of K

Principal properties on webs

¨ f : X ′ → X gen. finite surj. hol. map, K
web of rational curves on X

⇒ f−1K finite union of webs of rational curves
on X ′.

¨ f−1K := K′ = K1 ∪ · · · ∪ Km

L′ := LK1 ∪ · · · ∪ LKm , etc.
Then,

f−1(L) ⊂ L′ .
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Solution to the Frankel Conjecture:

Theorem (Siu-Yau 1980).

(X, g) compact Kähler, Bisect (X, g) > 0
⇒ X ∼= Pn.

Solution to the Generalized Frankel Conjecture:

Theorem (Mok 1988).

(X, g) compact Kähler, Bisect (X, g) ≥ 0
⇒ X̃ ∼= Cm× Hermitian symmetric space of
compact type.

For X Fano, we have
X ∼= Hermitian symmetric space of com-
pact type.
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Solution to the Harshorne Conjecture:

Theorem (Mori 1979).

X projective manifold, TX ample
⇒ X ∼= Pn.

How about a “Generalized Hartshorne Conjec-
ture”?

Conjecture (Campana-Peternell 1991).

X Fano manifold, TX numerically effective
⇒ X ∼= rational homogeneous space

Solved for dim ≤ 3 independently by Campana-
Peternell and Fangyuan Zheng:

Case of 3 dimensions:

X ∼= P3 , Q3 , P1×P2 , P1×P1×P1 or P(TP2)
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Theorem (Mok 2002, Trans. AMS).

X projective manifold

b2(X) = b4(X) = 1,

TX ≥ 0 (numerically effective).

Suppose dim Cx = 1 for x generic.

Then,

X ∼= P2 , Q3 or K(G2) ,

where K(G2) = 5-dimensional Fano contact
homogeneous manifold associated to the excep-
tional Lie group G2.

Theorem (Hwang 2004).

The condition b4 = 1 can be dropped.
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Campana-Peternell 1993
Their conjecture is valid in dimension 4 except
for the possible exception of a Fano manifold
X of Picard number 1 with nef tangent bundle
such that c1(X) = 1 (i.e. positive generator of
Pic(X) ∼= Z).

Elimination of the exceptional case c1 = 1

p = 0 implies the existence of a 1-dim (hence
integrable) distribution spanned by
VMRTs, contradicting b2 = 1

p = 1 ruled out by Mok + Hwang’s improve-
ment

p = 2 would contradict Miyaoka’s characteri-
zation of the hyperquadric

p = 3 ruled out by the characterization of
projective spaces of Cho-Miyaoka-Shepherd-
Barron, Kebekus
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Theorem (Mok 2006, Hong-Hwang 2007).

Let S = G/P be a rational homogeneous man-
ifold of Picard number 1 corresponding to a
long simple root α. (We say that S is of type
(g, α)), S 6∼= Pn.

Let X be a Fano manifold of Picard number 1
admitting a component K of minimal rational
tangents. Write

C0(S) ⊂ PTo(S) , o ∈ S reference point ;

Cx(K) ⊂ PTx(X) , x ∈ X general point

for varieties of minimal tangents. Then,

Cx(K) ⊂ PTo(X) congruent to

C0(S) ⊂ PTo(S)

⇒ X ∼= S
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Ideas of proof
• parallel transport along tautological lift-

ings Ĉ of minimal rational tangents

• behavior of second fundamental forms σ

of Cx ⊂ PTx(X) invariant under paral-
lel transport, hence kernels, images, etc.
are invariant.

• Co ⊂ PTo(S) are quadratic or cubic Her-
mitian symmetric subspaces. If irreducible
and of rank > 1 the G-structure on Co is
determined by second and third funda-
mental forms σ and κ, which determine
C[α](Co).

• In the reducible case transversal folia-
tions are preserved by parallel transport.

• The special case of the second Veronese
embedding of a projective space can be
recovered from the surjectivity of the
second fundamental form σ.
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Theorem (Hwang-Mok 2004, JAG).
X Fano manifold, Pic(X) ∼= Z.
M an irreducible component of the space of
minimal rational curves.
Mx ⊂ M subset of members of M passing
through a general point x ∈ X.
If Mx is irreducible, and dim(Mx) ≥ 2.
Then, Aut0(X) = Aut0(M).

Remarks. Theorem fails when dim(Mx) =
0, 1.

Examples:
(a) dim(Mx) = 0. Take X = codim − 3

general linear section of G(2, 3), M ∼=
P2

Aut0(X) ∼= PSL(2,C);
Aut0(M) ∼= PSL(3,C).

(b) dim(Mx) = 1. Take X = Q3, M ∼= P3

Aut0(X) ∼= PSO(5,C);
Aut0(X) ∼= PSL(4,C).
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Most recent results:

Holomorphic Lagrangian fibrations
(Hwang 2007)

Let Z be a projective irreducible symplectic
manifold and π : Z → X a surjective holomor-
phic map onto a projective manifold with con-
nected and positive-dimensional fibers. Then
X ∼= Pn.

Remark
By the work of Matsushita a general fiber is
an Abelian variety, the underlying subvariety
of every fiber of f is Lagrangian, and X is a
Fano manifold of Picard number 1. In partic-
ular, X can be studied by means of geometric
structures associated to VMRTs.
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Generalized Lazarsfeld Problem
(Lau, to appear in J. Alg. Geom.)
Resolution of the generalized Lazarsfeld Prob-
lem for surjective holomorphic maps π : G/Q →
X, X smooth, G any semisimple complex Lie
groups, Q ⊂ G any parabolic subgroup.
(Currently generalized also to semisimple G.)

Non-equidimensional Cartan-Fubini
extension (Hong-Mok 2008)
(a) Analytic continuation for germs of holo-
morphic maps f : (Z, z0) → (X, x0) for unir-
uled projective manfiolds equipped with VM-
RTs such that

df(C̃Z,z) = C̃X,f(z) ∩ Tf(z)(X)

for z on some neighborhood U of z0. We say
that f respects VMRTs.

(b) Application of non-equidimensional Car-
tan Fubini to the characterization of certain
holomorphic embeddings G/P ↪→ G′/P ′ in
terms of the VMRT-respecting property.
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Open Problems
(1) Irreducibility of VMRTs
Conjecture: X uniruled, projective
K minimal rational component, p(X,K) > 0.
Then, Cx is irreducible for generic in X.

Special case:
If Cx is a union of projective linear subspaces
and p(X,K) > 0, then Cx is irreducible.

Consequence of special case
f : X ′ → X a generically finite map onto a
Fano manifold X of Picard number 1, X 6∼= Pn.
Then f is locally rigid when X ′ is fixed and X

is allowed to vary.

(2) Contact Fano manifolds
Conjecture: X Fano, Pic(X) ∼= Z, equipped
with a contact structure
⇒ X rational homogeneous.

(3) Finite holomorphic maps
Conjecture: X, Y n-dim. Fano manifolds of Pi-
card number 1, X, Y 6∼= Pn. f : X → Y finite
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holomorphic map. Then, deg(f) ≤ Const(X,Y ).

Consequence
X 6∼= Pn, Pic(X) ∼= Z ⇒ End(X) = Aut(X)

(4) Vector Fields
Conjecture: X Fano, Pic(X) ∼= Z. Then,
(a) At a general point /∃ holomorphic vector
fields vanishing to the order ≥ 3.

(b) dim
(
Aut(X)

)
< n2 + 2n unless X ∼= Pn.

(5) Moduli space of minimal rational curves
X Fano manifold of Picard number 1, K a min-
imal rational component, x ∈ X general point,
ρ : U → K universal family, Cx = VMRT at x.

Conjecture (on pseudoconcavity):
Suppose every K-curve through x is standard
and embedded. WriteQx := ρ(Cx) ⊂ K. Then,
every meromorphic function defined on some
open neighborhood U ⊃ Qx extends meromor-
phically to K.
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