HARMONIC SECTIONS OF RIEMANNIAN VECTOR BUNDLES

Chris Wood, University of York, UK

Chern Institute of Mathematics, March 27, 2006

Eric Loubeau, Michelle Benyounes

Université Occidentale de Bretagne, Brest, France

math.DG/0602049

Diff. Geom. Appl. (to appear)

The work is dedicated to Professors J. Eells and J.H. Sampson, mindful of their paper:
"Harmonic Mappings of Riemannian Manifolds",
American J. Math, 1964

Introduction

$(M, g) \cdots$ smooth n-dimensional Riemannian manifold, $(\mathcal{E},\langle\rangle,, \nabla) \rightarrow M \cdots$ smooth Riemannian vector bundle, $\sigma \cdots$ smooth section of \mathcal{E},

$$
X .|\sigma|^{2}=2\left\langle\nabla_{X} \sigma, \sigma\right\rangle
$$

Question: Which sections σ are "best"?

1. $\quad \sigma$ parallel $(\nabla \sigma=0)$.

Drawbacks ("Reduction of holonomy").

- $|\sigma|=$ const. $\quad(\Rightarrow \chi(\mathcal{E})=0)$
- de Rham Decomposition $(\mathcal{E}=T M)$

2. σ Hodge-de Rham harmonic $(\Delta \sigma=0)$.

Drawbacks. For M compact:

- Hodge's Theorem.
$\{H-d R$ harmonic $\sigma\} \cong H^{1}(M, \mathbb{R})$
If $\beta_{1}(M)=0$ then: $\Delta \sigma=0 \Rightarrow \sigma=0$.
- Bochner's Vanishing Theorem.

If $\operatorname{Ric}(M)>0$ then: $\Delta \sigma=0 \Rightarrow \sigma=0$.
If $\operatorname{Ric}(M) \geqslant 0$ then: $\quad \Delta \sigma=0 \Rightarrow \nabla \sigma=0$.
3. σ harmonic section of \mathcal{E}.

$$
E^{v}(\sigma)=\frac{1}{2} \int_{M}|\nabla \sigma|^{2} \operatorname{vol}(g)
$$

Defn. σ harmonic section of \mathcal{E} if: $\left.\frac{d}{d t}\right|_{t=0} E^{v}\left(\sigma_{t}\right)=0, \forall \sigma_{t}$
Euler-Lagrange eqns:

$$
\nabla^{*} \nabla \sigma=0 \quad\left(\nabla^{*} \nabla=-\operatorname{Tr} \nabla^{2}\right)
$$

Drawbacks.

- If M compact and $\nabla^{*} \nabla \sigma=0$ then:
$0=\int_{M}\left\langle\nabla^{*} \nabla \sigma, \sigma\right\rangle \operatorname{vol}(g)=\int_{M}\langle\nabla \sigma, \nabla \sigma\rangle \operatorname{vol}(g), \quad$ so $\nabla \sigma=0$.

4. $|\sigma|=\mathrm{k}, \sigma$ harmonic section of $\mathrm{S} \mathcal{E}(\mathrm{k})$.

$$
S \mathcal{E}(k)=\{u \in \mathcal{E}:|u|=k\}, \quad \text { sphere bundle. }
$$

Successes.

- E-L equations: $\nabla^{*} \nabla \sigma=\frac{1}{k^{2}}|\nabla \sigma|^{2} \sigma \quad$ (nonlinear).
- Many interesting solns. (eg. Hopf vector fields on $S^{2 p+1}$).
- Stability theory. (However...)

Drawbacks.

- Limited to bundles with $\chi(\mathcal{E})=0$.
- Works for all bundles $\mathcal{E} \rightarrow M$, including $\chi(\mathcal{E}) \neq 0$.
- Applies to all sections σ of \mathcal{E}.
- Includes all solutions of 4. as critical points.

Basic Idea.

Eliminate all constraints by perturburbing the background geometry (of \mathcal{E}).
$\sigma: M \rightarrow \mathcal{E}$, section. $\quad \mathcal{V} \subset T \mathcal{E}$, vertical subbundle.

- For each $x \in M$ form: $d^{v} \sigma(x): T_{x} M \rightarrow \mathcal{V}_{\sigma(x)} \subset T_{\sigma(x)} \mathcal{E}$
- Compute: $\left|d^{v} \sigma(x)\right|^{2}=\sum_{i}\left|d^{v} \sigma(x)\left(E_{i}\right)\right|^{2} \quad$ where:
$\left\{E_{i}\right\}$ is a $g(x)$-orthonormal basis of $T_{x} M$,
|. $\left.\right|^{2}$ on $T_{\sigma(x)} \mathcal{E}$ is induced by the Sasaki metric h on \mathcal{E}.
- Then: $E^{v}(\sigma)=\frac{1}{2} \int_{M}|\nabla \sigma|^{2} \operatorname{vol}(g)=\frac{1}{2} \int_{M}\left|d^{v} \sigma\right|^{2} \operatorname{vol}(g)$

Suppose $V \in \mathcal{V}_{u}, u \in \mathcal{E}$.
Then $V=v^{\prime}(0)$ for a unique str. line $v(t)=u+t v, v \in \mathcal{E}_{\pi(u)}$
Sasaki metric. Define: $|V|^{2}=|v|^{2}$.
Cheeger-Gromoll metric. $|V|^{2}=\frac{1}{1+|u|^{2}}\left(|v|^{2}+\langle u, v\rangle^{2}\right)$
LBW metric. For any $(m, r) \in \mathbb{R}^{2}$ define:

$$
|V|_{m, r}^{2}=\frac{1}{\left(1+|u|^{2}\right)^{m}}\left(|v|^{2}+r\langle u, v\rangle^{2}\right)
$$

Obtain a "metric" $h_{m, r}$ on \mathcal{E}.

Note. $h_{0,0}=$ Sasaki, $h_{1,1}=$ Cheeger-Gromoll.

Note. If $r<0$ then $h_{m, r}$ is Riemannian only on a tubular nhd. of the zero section:

$$
B \mathcal{E}(1 / \sqrt{-r})=\left\{u \in \mathcal{E}:|u|^{2}<-1 / r\right\}
$$

Definition. Say σ is r-Riemannian if $r|\sigma(x)|^{2} \geqslant-1, \forall x$.

Note. If $r>0$ then every σ is r-Riemannian.

Note. If $r_{1}<r_{2}$ then r_{1}-Riemannian $\Rightarrow r_{2}$-Riemannian.

Replacing Sasaki with LBW yields:

$$
E^{v}(\sigma)=E_{m, r}^{v}(\sigma)=\frac{1}{2} \int_{M} w^{m}(\sigma)\left(|\nabla \sigma|^{2}+r|X(\sigma)|^{2}\right) \operatorname{vol}(g)
$$

where $\quad w(\sigma)=\frac{1}{1+|\sigma|^{2}} \quad$ and $\quad X(\sigma)=\frac{1}{2} \nabla|\sigma|^{2}$.
Remark. If $r<0$ and $|\sigma|^{2} \leqslant-1 / r$, deduce Kato's Inequality:

$$
|\nabla \sigma|^{2}+r|X(\sigma)|^{2} \geqslant 0, \quad \text { with equality iff } \nabla \sigma=0 \text {. }
$$

Definition. A harmonic section of \mathcal{E} w.r.t. $h_{m, r}$ is (m, r)-harmonic.
Note. Not necessarily r-Riemannian.

Euler-Lagrange Equations

Remark. If $|\sigma|=k$ then: $\quad E_{m, r}^{v}(\sigma)=\frac{1}{\left(1+k^{2}\right)^{m}} E_{0,0}^{v}(\sigma)$
σ is an (m, r)-harmonic section of $S \mathcal{E}(k)$ if and only if σ is a harmonic section of $S \mathcal{E}(k)$.

Technical Theorem. σ is an (m, r)-harmonic section of \mathcal{E} iff:

$$
\begin{aligned}
T_{m}(\sigma) & =(1+2 F) \nabla^{*} \nabla \sigma+2 m \nabla_{X(\sigma)} \sigma \\
\phi_{m, r}(\sigma) & =m|\nabla \sigma|^{2}-m r|X(\sigma)|^{2}-r(1+2 F) \Delta F \\
2 F & =|\sigma|^{2}
\end{aligned}
$$

Theorem A. Suppose $|\sigma(x)|=k>0$ for all $x \in M$.
(a) If $m \neq 1+1 / k^{2}$ then σ is an (m, r)-harmonic section of \mathcal{E} if and only if $\nabla \sigma=0$;
(b) If $m=1+1 / k^{2}$ then σ is an (m, r)-harmonic section of \mathcal{E} if and only if σ is a harmonic section of $S \mathcal{E}(k)$.

Example. For $m>1$ define: $\quad \sigma=\frac{1}{\sqrt{m-1}} \xi$,
where ξ is the Hopf vector field on $M=S^{2 p+1}$.
Since ξ is a harmonic section of $S \mathcal{E}(1), \sigma$ is harmonic section of $S \mathcal{E}(1 / \sqrt{m-1})$, hence a (non-parallel) (m, r)-harm. section of \mathcal{E}.

Theorem B. Suppose M is compact, $\chi(\mathcal{E}) \neq 0$, and $\sigma \neq 0$.
For each $m \in \mathbb{R}$ there exists at most one $r \in \mathbb{R}$ such that σ is (m, r)-harmonic, and:
(a) if $-4 \leqslant m \leqslant-1$ then $r<-1-m$;
(b) if $-1 \leqslant m \leqslant 1$ then $r<0$;
(c) if $1<m \leqslant 2$ and $\|\sigma\|_{\infty} \leqslant 1 / \sqrt{m-1}$ then $r<0$;
(d) if $2 \leqslant m$ and $\|\sigma\|_{\infty} \leqslant 1 / \sqrt{m-1}$ then $r<1-m / 2$.

Remark. Restrictions when $m<-4$?

Remark. $\|\sigma\|_{\infty}$ indicates non-linearity of (m, r)-harmonic section equations.

Definition. Define $\rho:[-4, \infty) \rightarrow \mathbb{R}$ as follows:

$$
\rho(m)= \begin{cases}-1-m, & m \in[-4,-1] \\ 0, & m \in[-1,2] \\ (2-m) / 2, & m \in[2, \infty)\end{cases}
$$

Definition. σ is strictly r-Riemannian if σ is r-Riemannian and:

$$
r|\sigma(x)|^{2}>-1, \quad \text { for some } x \in M
$$

Theorem B+. Suppose M compact.
Suppose $m \geqslant-4, r \geqslant \rho(m)$ and σ is strictly $(1-r)$-Riemannian.
Then σ is (m, r)-harmonic if and only if $\nabla \sigma=0$.

$$
\begin{gathered}
\mathcal{F}_{-}=\{(m, r): m<0, r \leqslant 2 m\}, \quad \mathcal{F}_{0}=\{(m, r): 0 \leqslant m \leqslant \\
\mathcal{F}_{1}=\{(m, r): m>1, r<1-m\}, \quad \mathcal{F}=\mathcal{F}_{-} \cup \mathcal{F}_{0} \cup \mathcal{F}_{1}
\end{gathered}
$$

New Examples

Remark. From Theorems B and C:
If $0 \leqslant m \leqslant 1$ and σ an (m, m)-harmonic section of \mathcal{E} (with $|\sigma|^{2}$ harmonic if M non-compact) then $\nabla \sigma=0$.

Moral. Cheeger-Gromoll no better than Sasaki!
$M=S^{n} \subset \mathbb{R}^{n+1}$
Let ξ be a standard gradient field: $\quad \xi=\nabla \lambda$, where $\lambda: S^{n} \rightarrow \mathbb{R}$ is the restriction of a unit vector of $\left(\mathbb{R}^{n+1}\right)^{*}$.

Define $\sigma=k \xi, k \in \mathbb{R}$.

Theorem.

σ is a non-trivial (m, r)-harmonic section of $T M$ iff $n \geqslant 3$ and:

$$
m=n+1, \quad r=2-n, \quad k^{2}=-1 / r .
$$

Remark. $\|\sigma\|_{\infty}=|k|=1 / \sqrt{-r}$.

- σ is r-Riemannian, but only just!
- $r \leqslant 1-m / 2$, with equality only when $n=3$. However:

$$
\|\sigma\|_{\infty}=1 / \sqrt{n-2}=1 / \sqrt{m-3}>1 / \sqrt{m-1}
$$

So consistent with Theorem B.

Remark. Non-invariance under scaling!

Idea. Try to find new examples by rescaling old ones!

Theorem. Suppose $\sigma=f \xi$ where:
ξ is the Hopf vector field on $M=S^{2 p+1}$;
$f: M \rightarrow \mathbb{R}$ is any smooth function.
Then σ is a non-trivial (m, r)-harmonic section of $T M$ iff:

$$
m>1 \quad \text { and } \quad f= \pm 1 / \sqrt{m-1}
$$

Remark. These are the (m, r)-harmonic sections of Theorem A.

Theorem. Let $n=2 q-1$, and let $\lambda: S^{n} \rightarrow \mathbb{R}$ be the restriction of the following harmonic quadratic form on \mathbb{R}^{n+1} :

$$
k\left(x_{1}^{2}+\cdots+x_{q}^{2}-x_{q+1}^{2}-\cdots-x_{2 q}^{2}\right), \quad k \in \mathbb{R} .
$$

Vector field $\sigma=\frac{1}{2} \nabla \lambda$ is an (m, r)-harmonic section of $T S^{n}$ iff:
$n \geqslant 5 ;$
$2 m=n+3 \quad$ (ie. $m=q+1$;
k^{2} is determined by:

$$
4(m-3) k^{2}=4+2 m-m^{2}+\sqrt{m-2} \sqrt{m^{3}-2 m^{2}-8}
$$

r is determined by: $\quad 0=m(m-3)+2 r\left(m+k^{2}\right)$

$$
\begin{aligned}
n=5, \quad m=4, \quad r=\frac{1}{\sqrt{3}}-1, \quad k^{2}=\sqrt{3}-1 \\
n=7, \quad m=5, \quad r=\frac{\sqrt{201}-24}{16}, \quad k^{2}=\frac{\sqrt{201}-11}{8} \\
n=9, \quad m=6, \quad r=\frac{\sqrt{34}-13}{5}, \quad k^{2}=\frac{\sqrt{34}-5}{3}
\end{aligned}
$$

