Some Problems Related to Geometric Analysis

Jiazu Zhou
Department of Mathematics
Southwest University
(Southwest Normal University)
Chongqing 400715
Visiting scholar of S. S. Chern Institute of Mathematics
College of Mathematics and Statistics
Wuhan University
Wuhan, Hubei 430072

March 29, 2006

We are going to present several geometric problems related to integral geometry, geometric convexity, geometric inequalities and geometric analysis (solved and unsolved).

1. Hyperplane Sections of the Cube.

The unit cube $C=\left[-\frac{1}{2}, \frac{1}{2}\right]^{n} \subset \mathbf{R}^{n}$ cutting by hyperplane H, which hyperplane cuts C with maximum volume?
for $n=2, \max \left(V_{o l} l_{n-1}(H \cap C)\right)=\sqrt{2}$ attained by either of the diagonals.
for $n=3$ the smart reader will guess that the most wonderful section of the cube is the regular hexagon obtained by cutting through the origin (center of the cube C) by a hyperplane H^{*} orthogonal to a diagonal, that is, $\operatorname{Vol}_{n-1}\left(H^{*} \cap C\right)=$ $3 \sqrt{3} / 4$. But it is wrong since $\sqrt{2}>3 \sqrt{3} / 4$.

It was conjectured for a long time that $\sqrt{2}$ is the optimum for any n.
K. Ball, Cube slicing in R^{n}, Proc. Amer. Math. Soc., 97(1986), 465-473.
Probability theory and Fourier theory:

$$
\begin{gathered}
C \cap H: \sum_{i=1}^{n} a_{i} x_{i}=0 \quad\left(\sum_{i=1}^{n} a_{i}^{2}=1\right), \\
\operatorname{Vol}(C \cap H)=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\sin \left(a_{1} t\right)}{a_{1} t} \cdots \int_{-\infty}^{\infty} \frac{\sin \left(a_{n} t\right)}{a_{n} t} d t, \\
\frac{1}{\pi} \int_{-\infty}^{\infty}\left|\frac{\sin t}{t}\right|^{n} d t \leq \frac{\sqrt{2}}{n} \quad \text { if } \quad n \geq 2,
\end{gathered}
$$

and equality holds only for $n=2$.
Though it is apparently obvious it not easy to prove that any hyperplane section through the center of a unit cube has a volume greater than or equal to 1 (it was prove by Vaaler only in 1979: Vaaler, Jeffrey D. A geometric inequality with applications to linear forms. Pacific J. Math. 83 (1979), no. 2, 543-553).
$n=2, \quad 3$ done by students.

2. Busemann-Petty Problem

If two convex bodies K_{i} and K_{j} (say symmetric in the origin) are such that the volume of the section of K_{i} by any hyperplane H through the origin is always smaller than the volume of the section of K_{j} by H, that is

$$
\operatorname{Vol}_{n-1}\left(K_{i} \cap H\right) \leq \operatorname{Vol}_{n-1}\left(K_{j} \cap H\right),
$$

then the volume of K_{i} is smaller that the volume of K_{j}, that is,

$$
\left.\operatorname{Vol}\left(K_{i}\right) \leq \operatorname{Vol}_{(} K_{j}\right)
$$

for $n=2$, it is trivially true (since $K_{i} \subset K_{j}$).
for $n \geq 12$, not true (counterexample: D. Larman \& C. Rogers, The existence of a centrally symmetric convex body with central sections that are unexpectedly small, Mathematika, 22(1975), no.2, 164-175).
for $n \geq 10$, not true (K. Ball (1986)).
for $n \geq 7$, not true (A. Giannopoulos, preprint (1990)).
for $n \geq 5$, not true (J. Bourgain, On the BusemannPetty problem for perturbations of the ball, Geom. Funct. Anal. 1(1991), no.1, 1-13)
for $n \geq 4$, not true (Gaoyong Zhang, Intersection bodies and the Busemann-Petty inequalities in R^{4}, Ann. of Math. (2) 140 (1994), no. 2, 331-346).
for $n=3$, true (R. Gardner, Intersection bodies and the Busemann-Petty problem, Trans. Amer. Math. Soc. 342 (1994), no. 1, 435445).
"The combination of Zhang's work and Gardner's 3-dimensional result is undoubtedly one of the most significant results in this area of geometry" by Paul Goodey.
for $n=4$, true (by G. Zhang, A positive solution to the Busemann-Petty problem in R^{4}. Ann. of Math. (2) 149 (1999), no. 2, 535543).

The support function (of a convex set) $K \subset R^{n}$, is defined as: for $u \in S^{n-1}=\left\{u=\left(u_{1}, \cdots, u_{n}\right)\right.$: $|u|=1\}$,

$$
h_{K}(u)=h(K, u)=\sup \{(x, u) \mid x \in K\} .
$$

A convex set K of R^{n} is a subset such that $\cup_{x, y \in K}[x, y]$. A convex body is a convex subset with non-empty interior.

3. Hadwiger Containment Problem

Given two (convex) domains $K_{i}, \quad K_{j} \subset R^{n}$, if there is a rigid motion $g \in I S O\left(R^{n}\right)$, such that $g K_{j} \subset K_{i}$ or $g K_{j} \supset K_{i}$?
Is there a sufficient condition for $g K_{j} \subset K_{i}$ or $g K_{j} \supset K_{i}$? Hopefully the sufficient condition is a geometric inequality involving the geometric invariants of K_{i} and K_{j} (areas, volumes, etc.). If
$m\left\{g \in I S O\left(R^{n}\right): g K_{j} \subset K_{i}\right.$ or $\left.g K_{j} \supset K_{i}\right\}>0$?
for $n=2$, (Hadwiger 1942)

$$
2 \pi\left(A_{i}+A_{j}\right)-L_{i} L_{j}>0,
$$

where A, L are respectively the area, length of K.
(D. Ren, 1987)

$$
L_{i}-L_{j}>\left(\Delta_{i}+\Delta_{j}\right)^{\frac{1}{2}}
$$

is a sufficient condition for $g K_{j} \subset K_{i}$, where $\Delta=$ $L^{2}-4 \pi A$ is the isoperimetric deficit of domain D.
(E. Grinberg, D. Ren \& J. Zhou 1998) for domains in a plane X^{ϵ} of constant curvature ϵ,

$$
2 \pi\left(A_{i}+A_{j}\right)-L_{i} L_{j}-\epsilon A_{i} A_{j}>0,
$$

is a sufficient condition for $g K_{j} \subset K_{i}$ or $g K_{j} \supset$ K_{i}.
(For $n=3)$ Let $K_{k}(k=i, j)$ be convex domains in \mathbf{R}^{3} with the C^{2} smooth boundaries ∂K_{k}. Denote by A_{k} the areas, V_{k} the volumes, $W_{j}^{(k)}$ the j th order Minkowski quermassintegrales, and $\tilde{H}_{k}=\int_{\partial K_{k}} H_{k}^{2} d \sigma$ the total square mean curvatures of K_{k}.
(G. Zhang, A sufficient condition for one convex domain containing another, Chin. Ann. of Math., 4(1988), 447-451) A sufficient condition for convex body K_{i} to contain, or to be contained in, convex body K_{j} is

$$
\begin{array}{r}
12 \pi\left(V_{i}+V_{j}\right)-3\left(W_{2}^{(i)} A_{j}+W_{2}^{(j)} A_{i}\right) \\
-\left(2 A _ { i } A _ { j } \left[3\left(\tilde{H}_{i} A_{j}+\tilde{H}_{j} A_{i}\right)\right.\right. \\
\left.\left.-4 \pi\left(A_{i}+A_{j}\right)-36 W_{2}^{(i)} W_{2}^{(j)}\right]\right)^{\frac{1}{2}}>0 .
\end{array}
$$

(J. Zhou, A kinematic formula and analogues of Hadwiger's theorem in space, Cont. Math. Amer. Math. Soc. 140(1992), 159-167) A sufficient condition for convex body K_{i} to contain, or to be contained in, convex body K_{j} is

$$
\begin{array}{r}
8\left(V_{i}+V_{j}\right)-6\left(W_{2}^{(i)} A_{j}+W_{2}^{(j)} A_{i}\right) \\
-\pi\left(A_{i} A_{j}\left[3\left(\tilde{H}_{i} A_{j}+\tilde{H}_{j} A_{i}\right)-4 \pi\left(A_{i}+A_{j}\right)\right]\right)^{\frac{1}{2}}>0 .
\end{array}
$$

(J. Zhou, When can one domainenclose another in R^{3} ? J. Austral. Math Soc. 59 (1995), 266272) A sufficient condition for convex body K_{i} to contain, or to be contained in, convex body K_{j} is

$$
\begin{array}{r}
8\left(V_{i}+V_{j}\right)-6\left(W_{2}^{(i)} A_{j}+W_{2}^{(j)} A_{i}\right) \\
-\pi r\left(3\left(\tilde{H}_{i} A_{j}+\tilde{H}_{j} A_{i}\right)-4 \pi\left(A_{i}+A_{j}\right)\right)>0
\end{array}
$$

(J. Zhou, The Willmore functional and the containment problem in R^{4}, to appear in Science in China, 2006) Let $K_{k}(k=i, j)$ be two convex bodies with the C^{2} smooth boundaries ∂K_{k} in the Euclidean space \mathbf{R}^{4}. Let \tilde{H}_{k} be the total square mean curvatures of $\partial K_{k}, A_{k}$ the areas of $\partial K_{k}, V_{k}$ the volumes of K_{k}, and $W_{j}^{(k)}$ the j thorder Minkowski quermassintegrales of K_{k}. Then a sufficient condition for K_{i} to contain, or to be contained in, K_{j} is

$$
\begin{aligned}
& 5 \pi^{2}\left(V_{i}+V_{j}\right)+14\left(W_{3}^{(i)} A_{j}+W_{3}^{(j)} A_{i}\right)+ \\
& \quad 60 W_{2}^{(i)} W_{2}^{(j)}-6\left(\tilde{H}_{i} A_{j}+\tilde{H}_{j} A_{i}\right)>0 .
\end{aligned}
$$

For domains in a 3-space of constant curvature and in $R^{2 n}$, see:

1. J. Zhou, Sufficient conditions for one domain to contain another in a space of constant curvature, Proc. Amer. Math. Soc., 126 (1998), 2797-2803.
2. J. Zhou, Kinematic formulas for mean curvature powers of hypersurfaces and Hadwiger's theorem in $R^{2 n}$, Trans. Amer. Math. Soc., 345 (1994), 243-262.

Open for general cases!

4. The Willmore functional.

Let M be an m-dimensional submanifold, which is assumed to be C^{2} smooth, in Euclidean space \mathbf{R}^{n}, and H be the mean curvature of M. If $d \sigma$ denote the volume density of M, we wish to find a lowor bound for the total square mean curvature

$$
\int_{M} H^{2} d \sigma .
$$

Proposition 1 (Willmore). Let M be a compact surface in \mathbf{R}^{3} and H be the mean curvature of M. Then

$$
\int_{M} H^{2} d \sigma \geq 4 \pi,
$$

with equality if and only if M is a standard sphere.

Willmore initiated the question if an embedded torus in R^{3} must have the illmore functional bounded from below by that of the Clifford torus. However, Willmore's original question is still open. The novelty of Willmore question was the fact that the estimate is independent on the metric as well as the embedding. Reference can be easily found in the geometric literature.

If $\operatorname{dim}(M) \neq 2$, then the Willmore functional is not a Riemannian invariant, so by applying homothetic transformation, the value may approach zero. So there is no lower bound in this case. However if we assume that $\operatorname{vol}(M)$, the volume of M, is positive, then the Willmore functional should have a lower bound. The following result is due to B-Y Chen

Proposition 2 (Chen). Let M be a closed submanifold of dimension m in Euclidean space \mathbf{R}^{n} and H be the mean curvature of M. Then

$$
\int_{M}|H|^{m} d \sigma \geq O_{m}
$$

with equality if and only if M is imbedded as an m-sphere of \mathbf{R}^{n}.

Here O_{m} is the area of the m-dimensional unit sphere and its value is

$$
O_{m}=\frac{2 \pi^{(m+1) / 2}}{\Gamma((m+1) / 2)},
$$

where Γ denote the gamma function.

B-Y Chen also achieved the following inequality:

$$
\int_{M} H^{2} d \sigma \geq \frac{\lambda_{p}}{m} \operatorname{vol}(M)
$$

where p is the lower oder of the immersion (in the case of Chen finite type theory), λ_{p} is the p-th nonnegative eigenvalue of Laplacian and the equality holds when and only when the immersion is of 1type with order p.

We define the Willmore deficit of a closed surface M of R^{3} as

$$
\begin{equation*}
W D(M)=\int_{M} H^{2} d \sigma-4 \pi . \tag{1}
\end{equation*}
$$

Then the result of Willmore will be restated as $W D(M) \geq 0$.
(J. Zhou, The willmore functional and the containment problem in R^{4}, to appear in Science in China, 2006) Let Σ be a convex hypersurface of class C^{2}, which bounds a convex body K, in the Euclidean space \mathbf{R}^{4}. Let H be the mean curvature of Σ, A the area of Σ, V the volume of K, and W_{j} the j th-order Minkowski quermassintegrale of K. Then we have

$$
\int_{\Sigma} H^{2} d \sigma \geq \frac{7 W_{3}}{3}+\frac{5 W_{2}^{2}}{A}+\frac{5 \pi^{2} V}{6 A}
$$

with equality if Σ is a standard sphere.
J. Zhou, On Willmore inequality for submanifolds, to appear in Canadian Mathematical Bulletin.

Theorem 1. Let M be a submanifold of dimension $\frac{n+1}{2}$ in the Euclidean space \mathbf{R}^{n} and H be the mean curvature of M. Denote by \tilde{S} the total scarlar curvature of M and R the radius of the circumscribed ball of M. Then

$$
\int_{M} H^{2} d \sigma \geq \frac{1}{3(n+1)^{2}}\left(8 \tilde{S}(M)+\frac{n+5}{R^{2}} \operatorname{Vol}(M)\right)
$$

Theorem 2. Let M be a submanifold of dimension $\frac{n+1}{2}$ in the Euclidean space \mathbf{R}^{n} and H be the mean curvature of M. Denote by $\chi(M)$ the Euler characteristic of M and R the radius of the minimum circumscribed ball of M. If $\frac{n+1}{2}$ is even, then we have

$$
\begin{array}{r}
\int_{M} H^{2} d \sigma \geq \frac{1}{3(n+1)^{2}}\left(\frac{2^{\frac{n+7}{2}} \pi^{\frac{n+1}{4}}}{(n-1)(n-5) \cdots 2} \chi(M)\right. \\
\left.+\frac{n+5}{R^{2}} \operatorname{Vol}(M)\right)
\end{array}
$$

(For a case of R^{3} see: J. Zhou, On the Willmore deficit of convex surfaces, Lect. in Appl. Math. Amer. Math. Soc., 30 (1994), 279-287.)

5. Minkowski quermassintegrale

A support hyperplane of a convex set K (or a support hyperplane of the convex surface ∂K) is a hyperplane that contains points of K but does not seperate any two points of K. Let K be a convex set and let O be a fixed point in R^{n}. Consider all the $(n-r)$-plane $L_{n-r[O]}$ through O and let K_{n-r}^{\prime} be the orthogonal projection of K into $L_{n-r[O]}$. That is, K_{n-r}^{\prime} denotes the convex set of all intersection points of $L_{n-r[O]}$ with the r-plane perpendicular to $L_{n-r[O]}$ through each point of K. Then the $r-$ th Minkowski quermassintegrale $W_{r}(K)$, or mean cross-sectional measure, introduced by Minkowski, is defined by the normalized $E\left(V\left(K_{n-r}^{\prime}\right)\right)$:

$$
E\left(V\left(K_{n-r}^{\prime}\right)\right)=\frac{I_{r}(K)}{m\left(G_{n-r, r}\right)},
$$

where

$$
\begin{gathered}
I_{r}(K)=\int_{G_{n-r, r}} \operatorname{Vol}\left(K_{n-r}^{\prime}\right) d L_{n-r[O]}=\int_{G_{r, n-r}} \operatorname{Vol}\left(K_{n-r}^{\prime}\right) d L_{r[O]} \\
m\left(G_{n-r, r}\right)=\int_{G_{n-r, r}} d L_{n-r[O]}
\end{gathered}
$$

Alexandrov-Fenchel inequalities:
$W_{i}^{2} \geq W_{i-1} W_{i+1} ; W_{1}=A ; W_{0}=V(i=1, \cdots, n-1)$.
open questions?

The Minkowski theory has been an active and fascinating field in Mathematics in the last century and is still going on.

1) R. Schneider, Convex Bodies: The BrunnMinkowski Theory, Cambridge University Press, (1993).
2) L. Santaló, Integral Geometry and Geometric Probability, Addison-Wesley Pub. Company (1976).
3) D. Ren, Topic in Integral Geometry, World Scientific, Singapore (1994).
4) D. Klain \& G. Rota, Introduction to Geometric Probability, Cambridge University Press, (1997).
5) Yu. D. Burago \& V. A. Zalgaller, Geometric Inequalities, Springer-Verlag Berlin Heidelberg (1988).

6. Geometric inequalities

Perhaps the oldest geometric inequality is the following isoperimetric inequality:

Theorem 1. The area A and the length L of any domain D in the euclidean plane R^{2} satisfy the inequality

$$
\begin{equation*}
L^{2}-4 \pi A \geq 0 \tag{2}
\end{equation*}
$$

with the equality if and only if D is a disc.
If we take the convex hull D^{*} of any domain D, then we have $L^{2}-4 \pi A \geq L^{* 2}-4 \pi A^{*}$ since the convex hull increases the area and decreases the length of the boundary. Therefore we only consider the convex domain for the case of isoperimetric inequality.

A more stronger inequality related to isoperimetric inequality is due to Bonnesen:

Theorem 2. The area A and the length L of any convex domain D in the euclidean plane R^{2} satisfy

$$
\begin{equation*}
L^{2}-4 \pi A \geq \pi^{2}\left(r_{e}-r_{i}\right)^{2} \tag{3}
\end{equation*}
$$

where r_{e} and r_{i} are the out-radius and the inradius of the convex domain D with the quality when and only when $r_{e}=r_{i}$, that is, D is a disc.

Another geometric question closely related to the isoperimetric inequality asks: given two domains $D_{k}(k=i, j)$, when can one domain contain another? More precisely, we ask if there is an isometry g of the plane R^{2} so that $g D_{j} \subset D_{i}$ or $g D_{j} \supset D_{i}$. We wish to have an answer that depends only on the geometric invariants of domains involved, preferably on the areas A_{k} and the lengths L_{k}. One would ask the same question for domains in the plane of constant curvature and the domains in R^{n}. But the invariants may involve more curvature integrals.

Let $D_{k}(k=i, j)$ be two domains of connected and simply connected and bounded by simple curves. Let G be the group of isometries in R^{n} and $d g$ be the kinematic measure (Harr measure in measure theory) on G. Then we have the following containment measure

$$
\begin{align*}
& m\left\{g \in G: g D_{j} \subset D_{i} \text { or } g D_{j} \supset D_{i}\right\} \\
& \quad=m\left\{g \in G: D_{i} \cap g D_{j} \neq \emptyset\right\} \\
& -m\left\{g \in G: \partial D_{i} \cap g \partial D_{j} \neq \emptyset\right\} . \tag{4}
\end{align*}
$$

If we can estimate the measure $m\left\{g \in G: D_{i} \cap\right.$ $\left.g D_{j} \neq \emptyset\right\}$ from below or (and) the measure $m\{g \in$ $\left.G: \partial D_{i} \cap g \partial D_{j} \neq \emptyset\right\}$ from above in terms of geometric invariants of D_{i} and D_{j}, then we obtain an inequality of the form

$$
\begin{array}{r}
m\left\{g \in G: g D_{j} \subset D_{i} \text { or } g D_{j} \supset D_{i}\right\} \\
\quad \geq f\left(A_{i}^{1}, \cdots, A_{i}^{r} ; A_{j}^{1}, \cdots, A_{j}^{r}\right), \tag{5}
\end{array}
$$

where each of $A_{k}^{\alpha}(k=i, j ; \alpha=1, \cdots, r)$ is an integral geometric invariant of D_{k}.

One can then immediately state the following conclusion:
(I). If $f\left(A_{i}^{1}, \cdots, A_{i}^{r} ; A_{j}^{1}, \cdots, A_{j}^{r}\right)>0$ then there is an isometry $g \in G$ such that either $g D_{j}$ contains or is contained in D_{i}.
(II). If one let $D_{i} \equiv D_{j} \equiv D$, then there is no $g \in G$ such that $g D \subset D$ or $g D \supset D$. Therefore we have

$$
\begin{equation*}
f\left(A^{1}(D), \cdots, A^{r}(D)\right) \leq 0 . \tag{6}
\end{equation*}
$$

This will result in a geometric inequality.
(III). Let D_{i} be, respectively, the in-ball and the out-ball of domain $D_{j}(\equiv D)$, i.e., the largest ball contained in D and the smallest ball containing D. Then there is no $g \in G$ such that $g D \subset D_{i}$ or $g D \supset D_{i}$ and we have

$$
\begin{align*}
f\left(A^{1}(D), \cdots, A^{r}(D), r_{e}\right) & \leq 0, \\
f\left(A^{1}(D), \cdots, A^{r}(D), r_{i}\right) & \leq 0 . \tag{7}
\end{align*}
$$

We would have an Bonnesen-type inequality.
(IV). If we let D_{i} be a ball of radius r between the inscribed ball of radius r_{i} and the circumscribed ball of radius r_{e} of $D_{j}(\equiv D)$, then we have neither $g D \subset D_{i}$ nor $g D \supset D_{i}$. Therefore we have an inequality

$$
f\left(A^{1}(D), \cdots, A^{r}(D), r\right) \leq 0 ; \quad r_{i} \leq r \leq r_{e} .
$$

Let $g \in G$, the isometries in R^{2}. If μ denotes set of all positions of D_{j} in which either $g D_{j} \subset D_{i}$ or $g D_{j} \supset D_{i}$ then by the Poincaé formula and the fundamental kinematic formula of Blaschké we have

$$
\begin{align*}
& m\left\{g \in G: g D_{j} \subset D_{i} \text { or } g D_{j} \supset D_{i}\right\} \\
& \quad=\int_{\mu} d g \geq 2 \pi\left(A_{i}+A_{j}\right)-L_{i} L_{j} . \tag{8}
\end{align*}
$$

This immediately gives
Theorem 3. (Hadwiger) Let D_{i} and D_{j} be two domains in the euclidean plane R^{2}. A sufficient condition for D_{j} to contain, or to be contained in, D_{i} is

$$
\begin{equation*}
2 \pi\left(A_{i}+A_{j}\right)-L_{i} L_{j}>0 . \tag{9}
\end{equation*}
$$

Moreover, if $A_{i} \geq A_{j}$, then D_{i} can contain a copy of D_{j}.

If we let $D_{i} \equiv D_{j} \equiv D$, then D can not contain any copy of D itself. Then the left hand side integral of (7) vanishes and we have Theorem 1, i.e., the isoperimetric inequality (1).

If we let D_{i} be, respectively, the inscribed disc of radius r_{i} of $D_{j}(\equiv D)$ and the circumscribed disc of radius r_{e} of $D_{j}(\equiv D)$, then we have

$$
\pi r_{i}^{2}-L r_{i}+A \leq 0 ; \quad \pi r_{e}^{2}-L r_{e}+A \leq 0
$$

From these inequality and another general inequality $x^{2}+y^{2} \geq(x+y)^{2} / 2$, we obtain the Bonnesen's isoperimetric inequality (Theorem 2):

$$
\begin{equation*}
L^{2}-4 \pi A \geq \pi^{2}\left(r_{e}-r_{i}\right)^{2} \tag{11}
\end{equation*}
$$

If we let $D_{j} \equiv D$ and D_{i} be a disc of radius r satisfying the condition

$$
\begin{equation*}
r_{i} \leq r \leq r_{e} \tag{12}
\end{equation*}
$$

then formula (7) immediately gives the following Bonnesen's inequality

$$
\begin{equation*}
\pi r^{2}-L r+A \leq 0 \tag{13}
\end{equation*}
$$

The inequality (12) can be rewritten in several equivalent forms:

Theorem 4. Let D be a plane domain of area A and bounded by a simple closed curve of length L. Let r_{i} and r_{e} are, respectively, the in-radius and out-radius of D. Then for any disc of radius $r, r_{i} \leq r \leq r_{e}$, we have the following inequalities

$$
\begin{align*}
L r & \geq A+\pi r^{2} \\
L^{2}-4 \pi A & \geq(L-2 \pi r)^{2} ; \\
L^{2}-4 \pi A & \geq\left(L-\frac{2 A}{r}\right)^{2} ; \tag{14}\\
L^{2}-4 \pi A & \geq\left(\frac{A}{r}-\pi r\right)^{2} .
\end{align*}
$$

Notice that the third inequality of (14) implies

$$
\begin{align*}
& \sqrt{L^{2}-4 \pi A} \geq \frac{2 A}{r_{i}}-L \\
& \sqrt{L^{2}-4 \pi A} \geq L-\frac{2 A}{r_{e}} \tag{15}
\end{align*}
$$

Adding inequality (15) yields

$$
\begin{equation*}
L^{2}-4 \pi A \geq A^{2}\left(\frac{1}{r_{i}}-\frac{1}{r_{e}}\right)^{2} \tag{16}
\end{equation*}
$$

Adding after multiplied by r_{i} and r_{e} gives

$$
\begin{equation*}
L^{2}-4 \pi A \geq L^{2}\left(\frac{r_{e}-r_{i}}{r_{e}+r_{i}}\right)^{2} \tag{17}
\end{equation*}
$$

Therefore we have
Theorem 5. Let D be a plane domain of area A and bounded by a simple closed curve of length L. Let r_{i} and r_{e} are, respectively, the in-radius and out-radius of D. Then we have the following inequalities

$$
\begin{align*}
L^{2}-4 \pi A & \geq A^{2}\left(\frac{1}{r_{i}}-\frac{1}{r_{e}}\right)^{2} \\
L^{2}-4 \pi A & \geq L^{2}\left(\frac{r_{e}-r_{i}}{r_{e}+r_{i}}\right)^{2} \tag{18}
\end{align*}
$$

These geometric inequalities has been generalized to the plane of constant curvature by J. Zhou:

1) J. Zhou, The Bonnesen-type isoperimetric inequalities, The 10th International Workshop on Differential Geometry, Korea (2006).
2) J. Zhou, The Bonnesen-type inequalities, preprint.
3) J. Zhou \& F. Chen, The Bonnesen-type inequalities in a plane of constant curvature, preprint.

7. Kinematic formulas

Let M^{p}, N^{q} be compact submanifolds of dimensions p, q, respectively, in a homogeneous space G / H and let $I\left(M^{p} \cap g N^{q}\right)$ be an integral invariant (e.g., volume, surface area, etc.) of the submanifold $M^{p} \cap g N^{q}$. Then a lot of works in integral geometry have been concerned with computing integrals of the following type

$$
\begin{equation*}
\int_{G} I\left(M^{p} \cap g N^{q}\right) d g, \tag{19}
\end{equation*}
$$

where $d g$ is the normalized kinematic density of G. For example in the case that G is the group of motions in an n-dimensional Euclidean space R^{n}, M^{p}, N^{q} are submanifolds of R^{n} and

$$
I\left(M^{p} \cap g N^{q}\right)=\operatorname{Vol}\left(M^{p} \cap g N^{q}\right)
$$

evaluation of (19) leads to the formulas of Poincaré, Blaschké, Santaló and others. Howard obtained a kinematic formula for $I\left(M^{p} \cap g N^{q}\right)=\operatorname{Vol}\left(M^{p} \cap\right.$ $\left.g N^{q}\right)$ in a homogeneous space. If $I(M \cap g N)=$ $\chi(M \cap g N)$, the Euler-Poincalé's characteristic of the intersection $M \cap N$ of domains M, N in R^{n} with smooth boundaries, then (19) leads to S. S. Chern's kinematic fundamental formula. Assume that $I\left(M^{p} \cap g N^{q}\right)=\mu\left(M^{p} \cap g N^{q}\right)$ is one of the integral invariant from the Weyl tube formula then
(19) leads to the Chern-Federer kinematic formula for submanifolds in R^{n}. This integral also leads to the C-S. Chen kinematic formula if we take $I(M \cap g N)=\int_{M \cap g N} \kappa^{2} d \sigma$, the total square of the curvature of the intersection curve $M \cap g N$ of two compact surfaces M, N in R^{3}. T. Shifrin also obtained a kinematic formula by letting $I\left(M^{p} \cap g N^{q}\right)$ be the integral of a Chern class. Howard and Zhou achieved more general kinematic formula in the case that $I\left(M^{p} \cap g N^{q}\right)$ is a invariant homogeneous polynomial of the second fundamental forms of $M^{p} \cap g N^{q}$ in a homogeneous space.
S. S. Chern, Kinematic formulas in integral geometry, J. Math. and Mech. 16 (1966), 101118. (translated by Zhou in Mathematics Translations of Chinese Math. Soc.)
R. Howard, The kinematic formula in Riemannian homogeneous space, Memoirs Amer. Math. Soc. 509 (1993).
J. Zhou, Kinematic formulas for mean curvature powers of hypersurfaces and Hadwiger's theorem in $R^{2 n}$, Trans. Amer. Math. Soc., 345 (1994), 243-262.

8. Integrals for power of the chords of a

 convex set.Let K be a convex set and let σ denote the length of the chord determined by the line G on K. Consider the integrals

$$
I_{n}=\int_{G \cap K \neq \emptyset} \sigma^{n} d G, \quad J_{n}=\int_{P_{1}, P_{2} \in K} r^{n} d P_{1} \wedge d P_{2}
$$

where n is an integer and r means the distance between points P_{1} and P_{2} of K.
for the case of $K \subset R^{2}$,
$I_{0}^{2}-4 I_{1} \geq 0 ; \quad$ (isoperimetric inequality)
$I_{n} \geq \frac{2 \cdot 4 \cdots n}{3 \cdot 5 \cdots(n+1)} 2^{n+1} \pi^{-n} I_{1}^{(n+1) / 2} \quad$ for $n=2,4,6, \cdots$;
$I_{n} \geq \frac{1 \cdot 3 \cdots n}{2 \cdot 4 \cdots(n+1)} 2^{n} \pi^{-(n+1)} I_{1}^{(n+1) / 2} \quad$ for $n=3,5,7, \cdots$;

$$
2^{8} I_{1}^{3} \geq 3^{2} \pi^{4} I_{2}^{2}
$$

Inequalities among these I_{n} are works of Santaló (for R^{2}), D . Wu (for R^{3}), D . Ren (for R^{n}) and others.

Open questions?
L. Santaló, Integral Geometry and Geometric Probability, Addison-Wesley Pub. Company (1976).
D. Ren, Topic in Integral Geometry, World Scientific, Singapore (1994).

9. Geometric Measure.

A measure is characterized by two axioms:

$$
\begin{equation*}
\mu(\emptyset)=0, \quad \emptyset \text { is the emptyset. } \tag{A1}
\end{equation*}
$$

(A2): $\quad \mu(A \cup B)=\mu(A)+\mu(B)-\mu(A \cap B)$.
And therefore
$\mu\left(\cup_{i=1}^{n} A_{i}\right)=\sum_{i} \mu\left(A_{i}\right)-\sum_{i<j} \mu\left(A_{i} \cap A_{j}\right)+\sum_{i<j<k} \mu\left(A_{i} \cap A_{j} \cap A_{k}\right)+\cdots$
for all positive integer.
For a measure to be the volume $\mu_{n}(A)$ of a solid A in the Euclidean space R^{n} we must add additional axioms to the definition of a measure.
(A3) : $\quad \mu(A)=\mu(g A), \quad$ for $g \in G=\operatorname{Iso}\left(R^{n}\right)$.
(The volume of a set A is independent of the position of A in R^{n}.)
(A4) :

$$
\mu_{n}(P)=x_{1} x_{2} \cdots x_{n},
$$

for a parallelotope P with orthogonal sides of length $x_{1}, x_{2}, \cdots, x_{n}$.

By these 4 axioms, we have the following formulas of a sphere S_{k} of radius (in n-dimensional space R^{n}):

$$
\begin{gathered}
\mu_{n}\left(S_{k}\right)=\frac{\pi^{n / 2} r^{n / 2}}{(n / 2)!}, \quad n \text { is even; } \\
\mu_{n}\left(S_{k}\right)=\frac{2^{n} \pi^{(n-1) / 2}((n-1) / 2)!r^{n}}{n!}, \quad n \text { is odd. }
\end{gathered}
$$

If we keep the first 3 axioms but tamper the forth axiom, the normalization axiom, what will happen?
The elementary symmetric functions of (the following polynomials in) n variables:

$$
\begin{gathered}
e_{1}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=x_{1}+x_{2}+\cdots+x_{n} \\
e_{2}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=x_{1} x_{2}+x_{1} x_{3}+\cdots+x_{n-1} x_{n} \\
\cdots \\
e_{n-1}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=x_{2} x_{3} \cdots x_{n}+\cdots+x_{1} x_{2} \cdots x_{n-1} \\
e_{n}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=x_{1} x_{2} \cdots x_{n}
\end{gathered}
$$

Letting $\mu_{k}=e_{k}\left(x_{1}, x_{2}, \cdots, x_{n}\right)(k=1,2, \cdots, n)$ will lead to n different invariant measure. Each of the n elementary symmetric functions of n variables leads to the definition of a new invariant measure which is a different generalization of the volume. These n measures are called the intrinsic measures.

The intrinsic measures are independent of each other, except for certain inequalities they satisfy. These inequalities generalized the classical isoperimetric inequality that relates area to volume. Mathematicians are presently studying these as yet unknown inequalities among the intrinsic volumes (geometric inequalities). We know very little about the intrinsic volumes and inequalities among them.

If we add another invariant measure:

$$
\mu_{0}(C)=1, \quad C \text { is non-empty convex set }
$$

and $\mu(\emptyset)=0$, then we have the Main Theorem of Geometric Probability:

The $n+1$ intrinsic volume $\mu_{0}, \mu_{1}, \cdots, \mu_{n}$ are a basis of the space of all continuous invariant measures defined on all finite unions of compact sets (Hadwiger, D. Klain).

10. Geometric Probability

Consider two compact convex sets A and B in R^{n}. Let B to be fixed and we randomly drop the rigid set A in the space R^{n}. What is the probability that A meets B. In other words, we keep B fixed and let A moving under the rigid motion $g \in I s o\left(R^{n}\right)$, find the invariant measure of those g such that $B \cap g A \neq \emptyset$. That is, to find the invariant measure $m\left\{g \in \operatorname{Iso}\left(R^{n}\right) \mid B \cap g A \neq \emptyset\right\}$. By Hadwiger's theorem of geometric probability, such an invariant measure equals a linear combination of the $n+1$ intrinsic volumes with coefficients independent of B. We determine these coefficients by taking suitable B 's (for example, let B be unit balls). This invariant measure is known as a kinematic formula.
One would like to identify these $n+1$ intrinsic volume with Minkowski quermassintegrales.

Thank you for your attention!

