Introduction to hyperbolic surfaces

Exercises IV

For 6 € [0,27), A > 0 and t € R, we consider

cos@ sinf A0 1 ¢t
Ko = [—sin& COSQ]’ Ax = [0 )\1] and N; = [0 1]'

Their corresponding Mobius transformations are pg, ¢ and T3 respectively. Recall that Mobius
transformations on H are orientation preserving isometries of H.

Let B and C be matrices in SL(2,R). Recall that B and C are similar to each other in
SL(2,R) if there is a matrix P € SL(2,R), such that B = PCP~!, (i.e. B can be obtained by
taking the conjugation of C' by P). In the following, by being similar, we always mean being
similar in SL(2,R).

1. Show that for any matrices B and C in SL(2,R), we have

(Easy) trB=trB!
(Normal) tr Btr C' = tr BC + tr BC™!
(Hint: Traces of matrices are invariant under conjugation.)
2. Let M € SL(2,R). We would like to check if M and M~! are similar to each other in a
geometric way.

a) (Easy) Show that for any geodesic, there is a Mobius transformation exchanging its
two end points.

(Hint: Ex III 3)

b) (Normal) Use a) to show that any matrix M associated to a hyperbolic Moébius
transformation is similar to its inverse M 1.

(Hint: Use a) on the axis of M to find a M&bius transformation, and consider its
associated matrix.)

c) (Hard) The orientation on H induces an orientation on each cycle and each horocycle
(described by giving a positive rotation direction). Moreover this orientation on a cycle
or a horocycle is preserved by orientation preserving isometries. Use this fact to show
that

i. If M = Ny, then M is similar to M1, if and only if t = 0.
ii. If M = Ky, then M is similar to M !, if and only if § € {0, 7/2, 7, 37/2}.

(Hint: Understand (i) the difference between the isometries of H induced by M and M1,
and (ii) the geometric meaning of taking conjugation)
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Let f be the Mo6bius transformation associated to M. We would like to use hyperbolic
geometry to find J(M) the Jordan normal form of M.

3. We consider the matrix



a) (Easy) Use the trace to show that M is hyperbolic.

b) (Normal) Compute its eigenvalues p and p~t with > 1.

¢) (Normal) Find the fixed points x; and z2 of f with x; < x9.

d) (Easy) Find the parabolic isometry T}, such that Ty(x1) = —T;(z2), and write down

the matrix corresponding N;.

e) (Hard) Find an elliptic isometry sending T3(x1) to 0 and T;(z2) to oo, and write down
its matrix B.

(Hint: Try to get the rotation around iy for an angle 6 from the rotation around i for
an angle 0)

f) (Easy) Compute P = BN; and verify that P satisfies:
PMP™' = J(M).

g) (Easy) Compare J(M) with A,,.
h) (Easy) Let Py = AyP. Show that for any A > 0, we have
PAMP' = J(M).

4. We consider the following 3 subgroups of SL(2,R):
K ={Ky|0€]|0,2n)},
A={A\ |2 >0},
N =[N, |t € R}.
The KAN decomposition (also called ITwasawa decomposition) of SL(2,R) states that: every

M € SL(2,R) can be written as a product KgA)N; in a unique way (i.e. 6, X\ and ¢ are
unique).

We would like to show this in a geometric way.

a) (Normal) By considering the algorithm that used for determining an isometry, show
that for any matrix M € SL(2,R) with tr M > 0, we can find matrices Ky, Ay and Ny,
such that M = KyA)\Ny, for some 6 € [0,7), A >0 and t € R.

b) (Easy) Show that K, = —Id. (Hence the associated Mobius transformation is the
identity map.)

¢) (Normal) Show that for any 6 € [0,27) and ¢ € R. If KyNV; preserves the vertical
geodesic Vj, then we have § =0, 7/2 or m and ¢ = 0.
(Hint: Check if it preserves the end points up to exchange them.)

d) (Normal) Use c) to conclude that if KgAyN; = A, where § € [0,27), A >0, p > 0 and
t € R, then we have §# =0, A =y and t = 0.

(Hint: A necessary condition for being equal is that they preserve the same axis without
exchanging the end points (i.e. the orientation on the axis).)

e) (Easy) Conclude that the KAN decomposition for any M € SL(2,R) is unique.
(Hint: K and N are subgroups of SL(2,R), hence are closed under multiplication.)



