Introduction to hyperbolic surfaces

Exercises I

We consider points and paths in the upper half plane \mathbb{H} . We use $l_{\mathbb{H}}$ and $l_{\mathbb{E}}$ as notations for the hyperbolic length and the Euclidean length respectively.

- 1. (Easy) Let I denote the horizontal segment connecting i and 2+i. Let y>0, and γ_y denote the path which is the union of the following three Euclidean segments:
 - the vertical segment connecting i and iy,
 - the horizontal segment connecting iy and 2 + iy,
 - the vertical segment connecting 2+i and 2+iy.
 - a) Find a parametrization of I and a parametrization of γ_u .
 - b) Compute $l_{\mathbb{H}}(I)$ and $l_{\mathbb{H}}(\gamma_y)$.
 - c) Find $y_0 > 0$, such that γ_{y_0} is the shortest among all γ_y 's for y > 0.
- 2. (Normal) Let I denote the horizontal segment connecting i and 2+i as above. Let y>0, and η_y denote the path which is the union of the following two segments:
 - the Euclidean segment connecting i and 1 + iy,
 - the Euclidean segment connecting 1 + iy and 2 + i.
 - a) Find a parametrization of η_y .
 - b) Compute $l_{\mathbb{H}}(\eta_y)$.
 - c) Compare $l_{\mathbb{H}}(\eta_y)$ for y=2 and $l_{\mathbb{H}}(I)$.
- 3. (Hard) Let N be a positive integer. Let I_N denote the horizontal segment connecting -N+i and N+i.
 - a) Compute $l_{\mathbb{H}}(I_N)$.
 - b) Describe the geodesic γ_N connecting -N+i and N+i, and compute $l_{\mathbb{H}}(\gamma_N)$.
 - c) Find a function $f: \mathbb{N}_+ \to \mathbb{R}$, such that

$$\lim_{N \to +\infty} \frac{f(N)}{l_{\mathbb{H}}(\gamma_N)} = 1$$

- 4. (Normal) Let w and z be two points in \mathbb{H} . Let $\gamma:[a,b]\to\mathbb{H}$ be a regular path connecting w and z.
 - a) Show that for any y > 0, if for all $t \in [a, b]$, we have $\operatorname{Im} \gamma(t) \leq y$ (i.e γ is entirely below the horizontal line H_y), then we have

$$l_{\mathbb{H}}(\gamma) \ge \frac{l_{\mathbb{E}}(\gamma)}{y}$$

b) Let $v = \operatorname{Im} w$. Show that for any y > v, if there exists a $t \in [a, b]$, such that $\operatorname{Im} \gamma(t) > y$ (i.e. γ crosses H_y), we have

$$l_{\mathbb{H}}(\gamma) \ge \left|\log \frac{y}{v}\right|.$$

c) Use a) and b) to show that $d_{\mathbb{H}}(w,z)=0$ if and only if w=z.