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1. BAsiC RIEMANNIAN GEOMETRY
Exercise 1.1. Let y(t) = (t,y(t)), t € [0,1] be the curve defined by
tcos(Z), t#0
t) = 20 ’ 1.1
0 %7 T (1.1

Show that 7 is non-rectifiable.

Exercise 1.2. Let g be a Riemannian structure on U. Show that d, : U x U — [0, 00) gives
a metric structure on U such that (U, g) becomes a metric space.

Exercise 1.3. Show that any geodesic in R™ is a line segment. Then prove that (R™, dy) is
a length space. Under what condition of U is the space (U, dy) a length space?

Recall the definition of covariant derivative along a curve 7.

Definition 1.4 (Covariant derivative). For any smooth map I' : U — (R")* ® (R™)* that
maps every © € U to a bilinear map I', : R” x R* — R", the corresponding covariant
derivative X along 7 is defined by

VX = LX(0) 4 Ty (1), X). (12)

Exercise 1.5. In (1.2), assume that T is chosen such that Ty(u,v) = G, ' DG, (u)v for any
x € U. Let X,Y be C'-vector fields along v and let f : U — R be any C*-function. Show
that

(1) V(aX +5Y) =aV, X +5V,Y,
(2) Vo(fX)=f" X+ fV,X,
(3) %QW(X, Y) = gv(vaa Y) + (X, VWY).

Exercise 1.6. In geodesic normal coordinates centered at p € U, we denote
9ij = 9(0:,0;),  V,0; = I'k0%. (1.3)
Show that g;j(p) = 6;, F,f-“j(p) =0.
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Exercise 1.7. We define Z(X,Y)Z =V xVyZ —NyVxZ =NV xy)Z for X,Y,Z € X(U).
Show that % is tensorial and R = Z%.

Exercise 1.8. Let {x;}", be the geodesic normal coordinate system at p € U. Let v :
[0,1] = U be a geodesic with v(0) = p and +'(0) = o. Prove the following Taylor expansions:

(1) Let J(t) be a Jacobi field along v with J(0) =0 and J'(0) =v. Then

T2 = £ — %secp(a, v) -t + O(FF). (1.4)
(2) Let G = det(gi;). Then

VG =1~ %Ricij(p)mj + O(lzf). (1.5)
(3) Let B,(p) = {z € U|dy(z,p) < p}. Then

Vol(B:(p)) _ Sc(p) o 3

W—l—mr +O(r). (1.6)
(4) Let S,(p) = 0B,(p). Then

e ! (L7

Exercise 1.9. Consider the following warped product metrics on the 2-disc D C R2:
gy = dr* +sin®(r) - d6?, (1.8)
g = dr® +sinh?(r) - 6> (1.9)

Prove that secyy =1 and secy, = —1.

2. GEOMETRY OF RIEMANNIAN MANIFOLDS

Exercise 2.1. Let v :[0,1] — U be a curve. Let V be a linear connection on U. A wvector
field X is said to be parallel along v if VX (t) =0 for any t € [0,1]. Prove that for any
v € TyoU, there exists a unique parallel vector field X along v with X (0) = v.

Exercise 2.2. Let V be the Levi-Civita connection on (U, g). Prove the following Koszul
formula

29(VxY, 2) = X(9(Y, 2)) + Y (9(2, X)) = Z(9(X,Y))
+9(X, Y], 2) + 9(1Z, X],Y) = g([Y, Z], X). (2.1)

Exercise 2.3. Let M" be a differentiable n-manifold. Then dim(T,M™) = n for anyp € M™.

Exercise 2.4. Let (T? = R?/Zs, gpiat) be a flat torus. Write a geodesic v C T? which is
dense T?.

Exercise 2.5. Let ¢ : (U,g0) — (p(U),q0) be an isometry. Show that there exists an
isometry @ on R™ such that ¢ = @|y.

Exercise 2.6. Show that A(fg) = fAg+ gAf +29(Vf,Vg).
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Exercise 2.7. Let (M",g) and (N* h) be Riemannian manifolds. Then the Levi-Civita
connection V of (M™ x N* g @® h) satisfies

Vyiin(Xi 4+ X2) =V X1 + Vi, X, Xi+Y, e TM"®TNF i=1,2.  (2.2)

In particular, y(t) = (71(t),72(t)) is a geodesic if v1 and vo are geodesics on M™ and N*,
respectively.

Exercise 2.8. Let p = (z1,y1) and ¢ = (xa,y2) be any points on the product manifold
(M™ x N* g@ h). Then

d?)@h(P, q) = df;(l’b@) + di(yla Ya). (2.3)

Exercise 2.9. Let (M™,g) be a Riemannian manifold. Show that for any r > 0, Scg. =
r72Sc,.. Then establish the similar rescaling relation for sectional and Ricci curvatures.

Exercise 2.10. Consider the Euclidean metric gy on R"* in polar coordinates gy = dr* +
r2gsn. Prove that secgn = +1.

Exercise 2.11. Let n : TM x ... x TM — C>®(M") be a tensor multilinear map on M",

-~

called a (0,r)-tensor field. Let X € X(M™). We define

exn(Yy,....Y,) = X(n(Ys,....Y, anh.. (X,Yi,..., X,). (2.4)

Exercise 2.12. Let n and ¢ be (0,7) and (0, s) tensor fields on M", repsectively. For any
X € X(M"™), show that

Lx(T®S)=(LxT)@S+T® (£x9). (2.5)
As a special case, £x(fT) = X(f) + f&xT for any f € C*(M™").
Exercise 2.13. Prove that in the above warped product metric, 2Hess(r) = £5.9 and
Hess(r) = (f - 0. f)h.
Exercise 2.14. Let (r,x1,...,%,_1) be local coordinates on (a,b)x N"~1. Prove the following

curvature identities for the warped product metric dr* + f*(r ) .
(1) Rf]ke = J2(r) Rigre + 2(r) (' (1) (hirhje — hichin).
(2) Rje, =0 and Ry, = =f(r) - /(r)gs-
(3) Secg(&,@) f2(r)(seen(9:,05) = (f'(r))?) and secy(0r,0;) = —f~(r) f"(r).
(4) Ricf; = Ricly — ((n = 2)(/'()* + F()1"(r) ) g
(5) R g =0 and Ric?, = —(n — 1) f~1(r) f"(r).

3. MORE EXAMPLES OF RIEMANNIAN STRUCTURES

Exercise 3.1. Let go = dr? + 1% - h be the cone metric of C(X). Show that £5.9 = 2g.

Exercise 3.2. Prove that a metric cone C(X) is smooth everywhere if and only if C'(X) is flat
which is equivalent to say the cross-section X is isometric to the round sphere of curvature
+1.

Exercise 3.3. Let (C(X), gc, z«) be a metric cone over a compact manifold (3, h), where z,
is the cone tip. Prove that away from the cone tip z., Ric,, = 0 iff Ric, = (n —2)h, and gc
1s flat iff sec, = +1.
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Exercise 3.4. Let Z = Susp,(X) with k € {—1,1}. Show that secs, = 1 if and only if
secy = k.

Exercise 3.5. Let M"™ be a differentiable manifold. Show that for any X,Y,Z € X(M™), we
have the following identities:

) [X Y] 21+ IV, 2], X] + [[2, X], Y] = 0.
As a result, X(M") is a Lie algebra (of infinite dimension,).
Exercise 3.6 (An alternative definition of Lie derivative). Let R be a (0,7) tensor field on
M™. Let X be a vector field with a flow ¢;. Then we define
d *
(QX,R,)p(Ul, e 7Ur> = % t:O(¢tRp<U1, ce ,’Ur)), (31)
where ¢;R(v1,...,v.) = R(Dde(v1), ..., Do(vy)) and v,. .., v, € T,M". Show that this

definition coincides with the previous one involving the Lie bracket.

Exercise 3.7. Let X € X(M). Show that £xg = 0 if and only if the flow of X is an
sometric action .

4. THE SPACE OF METRIC STRUCTURES

Exercise 4.1. Show that the tangent cone at any point in Riemannian n-manifold is iso-
metric to R™.

Exercise 4.2. Let (X,h) be any closed Riemannian manifold with diam,(X) < w. Let
(C(X),d¢c) be the metric cone over X with a vertex z.. Show that the tangent cone of C(X)
at p # z, is isometric to R™, and the tangent cone of C'(X) at z, is isometric to itself.

Exercise 4.3. Let (X,h) be any closed Riemannian manifold with diamp,(3) < w. Let
(Susp(X),dc) be the spherical suspension over ¥ with vertices z, and w,. Show that the
tangent cone of SuSpH(E) at any vertex s a metric cone.

Exercise 4.4. Show that the asymptotic cone of a complete non-compact metric space (X, d)
1s independent of the choice of the reference point p.

Exercise 4.5. Let (X,d) be a compact metric space. Show that for any ¢ > 0, there is a
finite e-net X (e) C X.

Exercise 4.6. Read Chapter 5 of Petersen’s textbook. Understand the concepts: conjugate
point, injectivity radius, and segment domain.
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