
INTRODUCTION TO HYPERBOLIC SURFACES: SOLUTIONS

JUNMING ZHANG

This is an unofficial solution for the exercises of the short course, Introduction to hyperbolic
surfaces, which is organized by Qiongling Li in the summer of 2021. More information can be found
on http://www.cim.nankai.edu.cn/2021/0611/c11453a372030/page.htm.

1. EXERCISES I

We consider points and paths in the upper half plane H. We use lH and lE as notations for the
hyperbolic length and the Euclidean length respectively.

Exercise 1.1. (Easy) Let I denote the horizontal segment connecting i and 2 + i. Let y > 0, and γy
denote the path which is the union of the following three Euclidean segments:
• the vertical segment connecting i and iy,
• the horizontal segment connecting iy and 2 + iy,
• the vertical segment connecting 2 + i and 2 + iy.
a) Find a parametrization of I and a parametrization of γy .
b) Compute lH(I) and lH(γy).
c) Find y0 > 0, such that γy0 is the shortest among all γy’s for y > 0.

Solution.
a)

I(t) = i+ 2t t ∈ [0, 1],

γy(t) =


i[(y − 1)t+ 1] t ∈ [0, 1]

2(t− 1) + iy t ∈ (1, 2]

2 + i[(1− y)t+ 3y − 2] t ∈ (2, 3]

b)

lH(I) =

∫ 1

0

|I ′(t)|
ImI(t)

dt =

∫ 1

0

2dt = 2,

lH(γy) =

∫ 1

0

|γ′y(t)|
Imγy(t)

dt+

∫ 2

1

|γ′y(t)|
Imγy(t)

dt+

∫ 3

2

|γ′y(t)|
Imγy(t)

dt

=

∫ 1

0

|y − 1|
(y − 1)t+ 1

dt+

∫ 2

1

2

y
dt+

∫ 3

2

|1− y|
(1− y)t+ 3y − 2

dt

=2| log y|+ 2

y
.

c) When y > 1,
d

dy
lH(γy) =

2(y − 1)

y2
> 0,

and when 0 < y < 1,
d

dy
lH(γy) = −2(y + 1)

y2
< 0,

so y0 = 1 minimize lH(γy). �

Exercise 1.2. (Normal) Let I denote the horizontal segement connecting i and 2 + i as above. Let
y > 0, and ηy denote the path which is the union of the following two segments:
• the Euclidean segment connecting i and 1 + iy,
• the Euclidean segment connecting 1 + iy and 2 + i.
a) Find a parametrization of ηy .
b) Compute lH(ηy).
c) Compare lH(ηy) for y = 2 and lH(I).
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Solution.
a)

ηy(t) =

{
t+ i[(y − 1)t+ 1] t ∈ [0, 1]

t+ i[(1− y)t+ 2y − 1] t ∈ (1, 2]

b)

lH(ηy) =

∫ 1

0

|η′y(t)|
Imηy(t)

dt+

∫ 2

1

|η′y(t)|
Imηy(t)

dt

=

∫ 1

0

√
y2 − 2y + 2

(y − 1)t+ 1
dt+

∫ 2

1

√
y2 − 2y + 2

(1− y)t+ 2y − 1
dt

=
2
√
y2 − 2y + 2

y − 1
log y.

c) When y = 2, lH(ηy) = 2
√

2 log 2 < 2 = lH(I). �

Exercise 1.3. (Hard) Let N be a positive integer. Let IN denote the horizontal segment connecting
−N + i and N + i.

a) Compute lH(IN ).
b) Describe the geodesic γN connecting −N + i and N + i, and compute lH(γN ).
c) Find a function f : N+ → R, such that

lim
N→+∞

f(N)

lH(γN )
= 1.

Solution.
a) Set IN (t) := Nt+ i, where t ∈ [−1, 1], then

lH(IN ) =

∫ 1

−1

|I ′N (t)|
ImIN (t)

dt =

∫ 1

−1

N

1
dt = 2N.

b) γN is the minor arc of the circle centered at the origin with radius
√
N2 + 1 which connects

−N + i and N + i. Set θN := arctan
1

N
and γN (θ) :=

√
N2 + 1eiθ, where θ ∈ [θN , π − θN ], then

lH(γN ) =

∫ π−θN

θN

|γ′N (θ)|
ImγN (θ)

dθ =

∫ π−θN

θN

csc θdθ = 2 log(
√
N2 + 1 +N).

c) Let f := lH(γN ). �

Exercise 1.4. (Normal) Let w and z be two points in H. Let γ : [a, b] → H be a regular path
connecting w and z.

a) Show that for any y > 0, if for all t ∈ [a, b], we have Imγ(t) 6 y(i.e. γ is entirely below the
horizontal line Hy), then we have

lH(γ) >
lE(γ)

y
.

b) Let v = Imw. Show that for any y > v, if there exists a t ∈ [a, b], such that Imγ(t) > y(i.e. γ
crosses Hy), we have

lH(γ) >
∣∣∣log

y

v

∣∣∣ .
c) Use a) and b) to show that dH(w, z) = 0 if and only if w = z.

Solution.

a) lH(γ) =

∫ b

a

|γ′(t)|
Imγ(t)

dt >
∫ b

a

|γ′(t)|
y

dt =
1

y

∫ b

a

|γ′(t)|dt =
lE(γ)

y
.

b) Imγ : [a, b] → R is continuous so that there exists a t0 ∈ [a, b] such that Imγ(t0) = y. Thus
lH(γ) > lH(γ|[a,t0]) > dH(w,Hy) =

∣∣∣log
y

v

∣∣∣.
c) It’s obvious that w = z implies dH(w, z) = 0, so it’s suffices to prove the inverse direction.

Suppose w 6= z, then dE(w, z) 6= 0. Let R = Imw + Imz. Thus for each γ connects w and z,

lH(γ) > min

{
lE(γ)

R
, log

R

Imw

}
,

so dH(w, z) = inf
γ
lH(γ) > min

{
inf
γ

lE(γ)

R
, log

R

Imw

}
= min

{
dE(γ)

R
, log

R

Imw

}
> 0. �
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2. EXERCISES II

Let lE, lH and AH be the notations for the Euclidean length, the hyperbolic length and the hy-
perbolic area respectively. Let Hy be the horizontal line passing iy and Vx be the vertical geodesic
ending at x and∞.

Exercise 2.1. (Easy) Let C denote a circle in H with Euclidean center zE = x + iyE ∈ H, of
Euclidean radius r.

a) Compute the hyperbolic radius R of C in term of x, yE and r.
b) For each yE, find r such that lH(C) = lE(C).

Solution.
a) Let the hyperbolic center of C be yH. Since log

yH
yE − r

= R = log
yE + r

yH
, we get yH =√

(yE − r)(yE + r), R =
1

2
log

yE + r

yE − r
.

b) lH(C) = 2π sinh

(
1

2
log

yE + r

yE − r

)
and lE(C) = 2πr, hence lH(C) = lE(C) is equivalent to

r = 0 or r2 = y2E − 1. So such r > 0 exists only when yE > 1 and in this case r =
√
y2E − 1. �

Exercise 2.2. (Easy) Recall the definitions and some properties of the hyperbolic cosine function
and the hyperbolic sine functions: for x and y in R, we have

coshx =
ex + e−x

2
,

sinhx =
ex − e−x

2
,

1 = cosh2 x− sinh2 x,

cosh(x+ y) = coshx cosh y + sinhx sinh y,

sinh(x+ y) = coshx sinh y + sinhx cosh y.

These functions can be extended to C. Using eiθ = cos θ+ i sin θ to verify the following equalities:
a) For any θ ∈ [0, 2π], we have

sinh(iθ) = i sin θ,

cosh(iθ) = cos θ.

b) For any x ∈ R, we have
sin(ix) = i sinhx,

cos(ix) = coshx.

Solution.
a)

sinh(iθ) =
eiθ − e−iθ

2
=

(cos θ + i sin θ)− (cos θ − i sin θ)

2
= i sin θ,

cosh(iθ) =
eiθ + e−iθ

2
=

(cos θ + i sin θ + (cos θ − i sin θ)

2
= cos θ.

b)

sin(ix) =
(cos(ix) + i sin(ix))− (cos(ix)− i sin(ix))

2i
=
e−x − ex

2i
= i sinhx,

cos(ix) =
(cos(ix) + i sin(ix)) + (cos(ix)− i sin(ix))

2
=
e−x + ex

2
= coshx.

�

Exercise 2.3. (Easy) Let CR denote a circle in H of hyperbolic radius R. Let DR denote the closed
disk bounded by CR. Let l(R) = lH(CR) and A(R) = AH(DR).

a) Compute the following limits:

lim
R→0

l(R)−A(R).

lim
R→+∞

l(R)−A(R).

b) Verify the following equality.

(l(R))2 = 4πA(R) + (A(R))2
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Solution. l(R) = 2π sinhR, A(R) = 2π(coshR− 1). Thus
a)

lim
R→0

l(R)−A(R) = 2π lim
R→0

(sinhR− coshR+ 1) = 0,

lim
R→+∞

l(R)−A(R) = 2π lim
R→+∞

(sinhR− coshR+ 1) = 2π lim
R→+∞

(−e−R + 1) = 2π.

b)
4πA(R) + (A(R))2 = 8π2(coshR− 1) + 4π2(cosh2R+ 1− 2 coshR)

= 4π2 sinh2R

= (l(R))2.

�

Remark 2.1. We denote by l the hyperbolic length of a closed curve bounding a simply connected
region in H, and by A the area of this region. The isoperimetric inequality for hyperbolic plane is as
follows:

l2 > 4πA+A2.

Moreover, the equality holds if and only if the region is a disk.

Exercise 2.4. We would like to get the formula for the length of an arc in a circle, a horocycle or a
hypercycle, and compare them.

a) (Easy) Let C be a circle in H of hyperbolic radius R. Let c be an arc on C with central angle
θ. Compute the length of c in term of R and θ.

b) (Normal) We consider horocycles Hy’s with center∞. Let c be an arc on H1 between V0 and
Vx.

i. Compute the length of c in term of x.
ii. Compute the distance R between Hy and H1 in term of y.
iii. Let cy denote the horocycle arc on Hy between V0 and Vx. Compute the length of cy in

terms of R and x.
c) (Hard) Consider hypercycles of center V0. We denote by Lθ the hypercycle having angle θ with

V0. We consider the radius geodesics γr which is a geodesic with Euclidean center 0 and Euclidean
radius r.

i. Compute the distance R between Lθ and V0 in term of θ.
ii. Compute the distance d between γ1(r = 1) and γr in term of r.
iii. Compute the length of the arc c in Lθ between radius γ1 and γr, in terms of θ and r.
iv. Rewrite the length c in term of R and d.

Solution.
a) Without loss of generality, we could let the hyperbolic center of C be ai. Set

reiθ =
x+ yi+ ai

x+ yi− ai
and consider the coordinate transformation (x, y) 7→ (r, θ), we can get

x = a
2r sin θ

r2 − 2r cos θ + 1
, y = a

r2 − 1

r2 − 2r cos θ + 1
.

And from Euclidean geometry we know that C is the curve r =
eR + 1

eR − 1
, θ = θ, θ ∈ [0, 2π] and the

central angle of (r, θ1) and (r, θ2) on the hyperbolic circle C is |θ1 − θ2|. Then

dx = a
2 sin θ(1− r2)dr + 2r[cos θ(r2 + 1)− 2r]dθ

(r2 − 2r cos θ + 1)2
,

dy = a
−2 cos θ(r2 + 1)dr − 2r(r2 − 1) sin θdθ

(r2 − 2r cos θ + 1)2
.

Thus the hyperbolic length of the tangent vector of C is√√√√√√√4r2a2
[cos θ(r2 + 1)− 2r]2 + (r2 − 1)2 sin2 θ

(r2 − 2r cos θ + 1)4

a2
(r2 − 1)2

(r2 − 2r cos θ + 1)2

=
2r

r2 − 1
= sinhR.

Hence lH(c) = θ sinhR.
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b) i. It’s obvious that lH(c) = |x|.
ii. For any point z ∈ H1, dH(z,Hy) = | log y|, so R = dH(Hy, H1) = | log y|.

iii. lH(cy) =
|x|
y

, so when y > 1, lH(cy) = e−Rx and when y < 1, lH(cy) = eRx.

c) i. dH(V0, re
i(π2−θ)) = lH(γr) = − log

cos θ

sin θ + 1
, henceR = dH(V0, Lθ) = − log

cos θ

sin θ + 1
.

ii. The only geodesic which is orthogonal to both γ1 and γr is the segment connecting i and
ri, thus d = | log r|.

iii. Let c(t) = (rt+ 1− t)(sin θ + i cos θ), t ∈ [0, 1]. Then

lH(c) =

∫ 1

0

|r − 1|
(rt+ 1− t) cos θ

dt = | log r| sec θ.

iv. lH(c) = d coshR.
�

3. EXERCISES III

For x ∈ R, y > 0 and r > 0, we use Hy for the horizontal line passing iy, Vx for the vertical
geodesic with end point x and∞, and C(x, r) for the circular geodesic with Euclidean center x and
Euclidean radius r.

Exercise 3.1. Let x ∈ (0, 1). Let γx denote the circular geodesic with end points x and 1/x.
a) (Easy) Compute the formula for the reflection ιx of H along γx.
b) (Easy) Show that

lim
x→0+

ιx = ι0,

where ι0 is the reflection along V0, i.e. for any z ∈ H, we have

lim
x→0+

ιx(z) = ι0(z).

c) (Normal) Compute the distance d(x) between γx and V0.
d) (Normal) Let d0 > 0 be a constant. Find the hyperbolic isometry f such that
• the axis of f is C(0, 1);
• the translation distance l(f) of f is d0;
• the translation direction is from −1 to 1.

Solution.

a) ιx(z) =

x+ 1/x

2
z̄ − 1

z̄ − x+ 1/x

2

=
(x2 + 1)z̄ − 2x

2xz̄ − (x2 + 1)
.

b) For any z ∈ H, lim
x→0+

ιx(z) = lim
x→0+

(x2 + 1)z̄ − 2x

2xz̄ − (x2 + 1)
= −z̄ = ι0(z).

c) The only geodesic which is orthogonal to both V0 and γx is C(0, 1) and we can get the Eu-

clidean central angle of its arc between V0 and γx is θx := arctan
2x

1− x2
. Therefore,

d(x) = log
sin θx + 1

cos θx
= log

1 + x

1− x
.

d) f is the composition of the reflection along V0 and γx in order. And d0 = l(f) = 2d(x) tells

us x =
ed0/2 + 1

ed0/2 − 1
. Thus

f =
(x2 + 1)z + 2x

2xz + (x2 + 1)
,

where x =
ed0/2 + 1

ed0/2 − 1
. �

Exercise 3.2. Consider the parabolic isometry Tt.
a) (Easy) Find x ∈ R such that Vx = Tt(V0).
b) (Easy) Compute the length ly of the segment in Hy between Vx and V0.
c) (Easy) Show

lim
y→+∞

ly = 0,

and use it to conclude that the translation distance l(Tt) of Tt is 0.
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d) (Easy) Show that l(Tt) is not realizable, i.e. there is no z ∈ H such that l(Tt) = dH(z, Tt(z)).

Solution.
a) It’s trivial that x = 0 + t = t.
b) ly =

x

y
.

c)
lim

y→+∞
ly = lim

y→+∞

x

y
= 0,

and for any z =∈ H, dH(z, Tt(z)) =
t

Imz
, so

l(Tt) = inf
z∈H

dH(z, Tt(z)) = 0.

d) For any z ∈ H, dH(z, Tt(z)) =
t

Imz
> 0 = l(Tt), so l(Tt) is not realizable. �

Exercise 3.3. (Easy) Let z = x + iy ∈ H. Find the elliptic isometry whose fixed point is z with
rotation angle π.

Solution. We know that C(x, y) and Vx are two geodesics intersecting at z with intersection
angle

π

2
. So the composition of the two reflections along these two geodesics is what we need. For

instance, these reflections are

w 7→ xw̄ + y2 − x2

w̄ − x
,w 7→ −w̄ + 2x

respectively. Thus their composition

w 7→ −xw + y2 + x2

−w + x

is the transformation required. �

4. EXERCISES IV

For θ ∈ [0, 2π), λ > 0 and t ∈ R, we consider

Kθ =

[
cos θ sin θ
− sin θ cos θ

]
, Aλ =

[
λ 0
0 λ−1

]
andNt =

[
1 t
0 1

]
.

Their corresponding Möbius transformations are ρθ, φλ and Tt respectively. Recall that Möbius
transformations on H are orientation preserving isometries of H.

Let B and C be matrices in SL(2,R). Recall that B and C are similar to each other in SL(2,R)
if there is a matrix P ∈ SL(2,R), such that B = PCP−1, (i.e. B can be obtained by taking
the conjugation of C by P ). In the following, by being similar, we always mean being similar in
SL(2,R).

Exercise 4.1. Show that for any matrices B and C in SL(2,R), we have

(Easy) trB = trB−1,

(Normal) trBtrC = trBC + trBC−1.

Solution. Let B = (bij) and C = (cij), and then

B−1 =

[
b22 −b12
−b21 b11

]
, C−1 =

[
c22 −c12
−c21 c11

]
since detB = detC = 1, thus trB = b11 + b22 = trB−1 and trBC + trBC−1 = trB(C + C−1) =
trBtrC. �

Exercise 4.2. Let M ∈ SL(2,R). We would like to check if M and M−1 are similar to each other
in a geometric way.

a) (Easy) Show that for any geodesic, there is a Möbius transformation exchanging its two end
points.

b) (Normal) Use a) to show that any matrix M associated to a hyperbolic Möbius transformation
is similar to its inverse M−1.

c) (Hard) The orientation on H induces an orientation on each cycle and each horocycle (de-
scribed by giving a positive rotation direction). Moreover this orientation on a cycle or a horocycle
is preserved by orientation preserving isometries. Use this fact to show that
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i. If M = Nt, then M is similar to M−1, if and only if t = 0.
ii. If M = Kθ, then M is similar to M−1, if and only if θ ∈ {0, π}.

Solution.
a) If the end points are x1, x2 ∈ R, then

z 7→

x1 + x2
2

z − x21 + x22
2

z − x1 + x2
2

is a Möbius transformation required. If the end points are x ∈ R and∞, then

z 7→ − 1

z − x
+ x

is a Möbius transformation required.
b) Let the axis of the hyperbolic Möbius transformation f be γ and g be the transformation

we found in a). Then for any z ∈ γ, gfg−1(z) ∈ γ, dH(gfg−1(z), z) = dH(f−1(z), z) and
gfg−1 has the same translation direction with f−1, thus gfg−1 = f−1. This implies that if M
induces a hyperbolic Möbius transformation, M is similar to its inverse M−1 or −M−1. However,
trM−1 = trM > 2, which means M cannot be similar to −M−1, thus M is similar to M−1.

c) i. When t = 0, Nt = N−t. If Nt is similar to its inverse N−t when t 6= 0, there exists
a Möbius transformation such that PTt = T−tP . Consider any horocycle Hy , P (Hy) is also a
horizontal line and for any z ∈ Hy , P (z + t) = P (z) − t, which means P reserves the orientation
of Hy , contradiction.

ii. K0 = K−0, Kπ = K−π . When θ /∈ {0, π/2, π, 3π/2}, we can consider a cycle C
with hyperbolic center i, then Kθ induces the rotation on C with angle 2θ. If Kθ is similar to its
inverse K−θ, there exists a Möbius transformation such that Pρθ = ρ−θP and P (C) is also a cycle.
However, for an arbitrary z ∈ C, P (z), P (ρθ(z)) = ρ−θ(P (z)), P (ρ2θ(z)) = ρ2−θ(P (z)), thus z,
ρθ(z) and ρ2θ(z) will have different orientation with P (z), P (ρθ(z)) and P (ρ2θ(z)) (one is clockwise
and the other is counterclockwise) which means that P reserves the orientation of C, contradiction.
When θ = π/2 or θ = 3π/2, that means there exists a matrix

P =

[
a b
c d

]
∈ SL(2,R)

such that

P

[
0 1
−1 0

]
P−1 =

[
0 −1
1 0

]
.

However, that implies a2 + b2 = −1, also a contradiction. �

Exercise 4.3. We consider the matrix

M =

[
2 1
1 1

]
.

Let f be the Möbius transformation associated to M . We would like to use hyperbolic geometry to
find J(M) the Jordan normal form of M .

a) (Easy) Use the trace to show that M is hyperbolic.
b) (Normal) Compute its eigenvalues µ and µ−1 with µ > 1.
c) (Normal) Find the fixed points x1 and x2 of f with x1 < x2.
d) (Easy) Find the parabolic isometry Tt, such that Tt(x1) = −Tt(x2), and write down the matrix

corresponding Nt.
e) (Hard) Find an elliptic isometry sending Tt(x1) to 0 and Tt(x2) to ∞, and write down its

matrix B.
f) (Easy) Compute P = BNt and verify that P satisfies:

PMP−1 = J(M)

.
g) (Easy) Compare J(M) with Aµ.
h) (Easy) Let Pλ = AλP . Show that for any λ > 0, we have

PλMP−1λ = J(M)

.
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Solution.
a) trM = 2 + 1 = 3 > 2, hence M is hyperbolic.

b) det(xI2 −M) = x2 − 3x+ 1 =⇒ µ =
3 +
√

5

2
, µ−1 =

3−
√

5

2
.

c) z = f(z) =
2z + 1

z + 1
=⇒ x1 =

1−
√

5

2
, x2 =

1 +
√

5

2
.

d) Tt(x1) = −Tt(x2) =⇒ x1 + t = −(x2 + t) =⇒ t = −x1 + x2
2

= −1

2
.

Nt =

[
1 −1/2
0 1

]
.

e) It’s obvious that the rotation around
√

5

2
i with angle

π

2
is the isometry required. For instance,

it is

z 7→
z +

√
5

2

− 2√
5
z + 1

and its corresponding matrix is

B =

[ √
2/2

√
10/4

−
√

10/5
√

2/2

]
∈ SL(2,R)

f)

P = BNt =

[ √
2/2 (

√
10−

√
2)/4

−
√

10/5 (
√

10 + 5
√

2)/10

]
and

PMP−1 =

[
(3 +

√
5)/2 0

0 (3−
√

5)/2

]
= J(M)

g) J(M) = Aµ.
h) PλMP−1λ = AλJ(M)A−1λ = AλAµA

−1
λ = Aµ = J(M). �

Exercise 4.4. We consider the following 3 subgroups of SL(2,R):

K = {Kθ|θ ∈ [0, 2π)},
A = {Aλ|λ > 0},
N = {Nt|t ∈ R}.

The KAN decomposition (also called Iwasawa decomposition) of SL(2,R) states that: every M ∈
SL(2,R) can be written as a product KθAλNt in a unique way (i.e. θ, λ and t are unique).

We would like to show this in a geometric way.
a) (Normal) By considering the algorithm that used for determining an isometry, show that for any

matrixM ∈ SL(2,R) with trM > 0, we can find matricesKθ,Aλ andNt, such thatM = KθAλNt,
for some θ ∈ [0, π), λ > 0 and t ∈ R.

b) (Easy) Show that Kπ = −I2. (Hence the associated Möbius transformation is the identity
map.)

c) (Normal) Show that for any θ ∈ [0, 2π) and t ∈ R. If KθNt preserves the vertical geodesic
V0, then we have θ = 0, π/2, π or 3π/2 and t = 0.

d) (Normal) Use c) to conclude that if KθAλNt = Aµ, where θ ∈ [0, 2π), λ > 0, µ > 0 and
t ∈ R, then we have θ = 0, λ = µ and t = 0.

e) (Easy) Conclude that the KAN decomposition for any M ∈ SL(2,R) is unique.

Solution.
a) Let f be the isometry associated byM and f−1(0) = x, f−1(∞) = x′, f−1(i) = w = u+ iv.

Then f = ρθ0/2φv−1T−u, where θ0 = arctan
v

x+ x′

2
− u

< 2π. So M = Kθ0/2Av−1/2N−u or

M = −Kθ0/2Av−1/2N−u, but tr(Kθ0/2Av−1/2N−u) = cos
θ0
2

(v1/2 + v−1/2) > 0, hence M =

Kθ0/2Av−1/2N−u.
b) Trivial.
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c) KθNt sends∞ to − cot θ and 0 to
t cos θ + sin θ

−t sin θ + cos θ
. To keep the end points of V0, (θ, t) must

be (0, 0), (π/2, 0), (π, 0), or (3π/2, 0).
d) Aµ = KθAλNt = KθNλ2tAλ, so Aµλ−1 = KθNλ2t. Because Aµλ−1 keeps V0 and sends 0

to 0,∞ to∞, we can get (θ, λ2t) = (0, 0) or (π, 0) by c). Hence t = 0 due to λ 6= 0. When θ = π,
Aµ = −Aλ and it is a contradiction. When θ = 0, Aµ = Aλ, and it implies that λ = µ.

e) If there exists (θ1, λ1, t1), (θ2, λ2, t2) such that Kθ1Aλ1
Nt1 = Kθ2Aλ2

Nt2 , then

Kθ1−θ2Aλ1Nt1−t2 = Aλ2 .

By d) we can get (θ1, λ1, t1) = (θ2, λ2, t2). Hence the KAN decomposition is unique. �

5. EXERCISES V

Exercise 5.1. We consider the map fD(z) = (z − i)/(z + i) from H to D, and the matrix

AD =

[
1 −i
1 i

]
a) (Easy) Show that f can be extended to R̂, and sends R̂ to the unit circle.
b) (Easy) Show that ADSL(2,R)A−1D i.e.

i. For any matrix A ∈ SL(2,R), we have ADAA
−1
D ∈ U(1, 1);

ii. For any matrix B ∈ U(1, 1), there is a matrix A ∈ SL(2,R) such that ADAA
−1
D = B.

Solution.
a) fD(z) =

1− i/z
1 + i/z

, so for an arbitrary sequence {zn} ⊂ H where |zn| → +∞, fD(zn) → 1.

Thus we can take f(∞) = 1. And for any a ∈ R, fD(a) =
a2 − 1 + 2ai

a2 + 1
, so fD sends R̂ onto the

unit circle.
b) i. For any matrix

A =

[
a b
c d

]
∈ SL(2,R),

ADAA
−1
D =

 (a+ d) + (b− c)i
2

(a− d)− (b+ c)i

2
(a− d) + (b+ c)i

2

(a+ d)− (b− c)i
2

 ∈ U(1, 1).

ii. For any matrix

B =

[
z w
w̄ z̄

]
∈ U(1, 1),

from i we can know the matrix

A =

[
Re(z + w) Im(z − w)
Im(z + w) Re(z − w)

]
∈ SL(2,R)

satisfies ADAA
−1
D = B. �

Exercise 5.2. Let γ and η be a pair of disjoint geodesics.
a) (Normal) Using the extreme value theorem and the convexity of the distance function, show

that for any z ∈ γ the distance dH(z, η) can be realized by a unique point wz ∈ η.
b) (Normal) Using the extreme value theorem and the convexity of the distance function, show

that inf{dH(z, η)|z ∈ γ} can be realized by a unique point z0 ∈ γ.
c) (Easy) Conclude that the distance dH(γ, η) are realized by a unique pair of points (z0, wz0) ∈

γ × η.

Solution.
a) Let s be the arc length parameter of η and set f(s) = dH(z, η(s)). By the convexity of the

distance function we know that f is a convex function. For any M large enough, we can get an
interval [a, b] ⊂ R such that for any x ∈ R \ [a, b], f(x) > M . Then by the extreme value theorem,
f must have a minimum on [a, b], namely f(s0). By the convexity of f , f(s0) must be the global
minimum and s0 must be the unique point realize this minimum. Hence η(s0) is the required point.

b) Let t be the arc length parameter of γ and set g(t) = dH(γ(t), η). Then by the extreme value
theorem and the similar argument above, we can get there must be a t0 realize the minimum of g. If
there exist a t1 6= t0 also realize the minimum, then by the convexity of distance function, we have
g(λt0 + (1− λ)t1) < g(t0) for any λ ∈ (0, 1), a contradiction.
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c) For any (z, w) ∈ γ×η, dH(z, w) > dH(z, wz) > dH(z0, wz0). And by the uniqueness claimed
in a) and b), the ‘=’ holds if and only if (z, w) = (z0, wz0). �

Exercise 5.3. (Hard) Let z1, · · · , zn be n distinct points in H with n > 2. We define a function d
on H as follows:

d(z) =

n∑
j=1

dH(z, zj).

Using the extreme value theorem and the convexity of distance function, show that the infimum of
d(H) can be realized by a unique point in H.

Solution. Let B(z, r) denote the hyperbolic disc with center z and radius r. We can choose
R ∈ (d(z1),+∞) large enough such that

U :=

n⋃
j=1

B(zj , R)

is connected and simply connected. Then for any point z ∈ H \ Ū , d(z) > dH(z, z1) > R > d(z1),
so if the minimum exists, it must be realized in Ū . Use the extreme value theorem with d on Ū , we
can get the minimum can be indeed realized. If there exists two different points z 6= w realize the
minimum, then by the convexity of distance function, any point z′ lying on the geodesic segment
connecting z and w, there exists a λ ∈ (0, 1) such that

d(z′) =

n∑
j=1

dH(z′, zj) <

n∑
j=1

(λdH(z, zj) + (1− λ)dH(w, zj)) = λd(z) + (1− λ)d(w).

This makes a contradiction. �

Exercise 5.4. We would like to compute some trigonometry formulas:
a) (Easy) Let α ∈ (0, π). Consider the triangle with vertices z1 =∞, z2 = i and z3 = eiα. Let l

denote the length of the side I1. Use the distance formula to show:

cosh l sinα = 1.

b) (Normal) Let α, β ∈ (0, π). Consider the triangle with vertices z1 = ∞, z2 = eiα and
z3 = ei(π−β) with α < π − β. Let l denote the length of the side I1. Use a) to show the following
relations

cosh l =
1 + cosα cosβ

sinα sinβ
,

sinh l =
cosα+ cosβ

sinα sinβ
,

Solution.
a) l = dH(i, eiα) = log

cosα+ 1

sinα
, so

cosh l =

cosα+ 1

sinα
+

sinα

cosα+ 1
2

cosα+ 1

sinα
+

1− cosα

sinα
2

=
1

sinα
.

b) Let l1 = dH(z2, i) and l2 = dH(z3, i). By a) we can get cosh l1 = cscα, so sinh l1 = cotα.
And similarly, cosh l2 = cscβ and sinh l2 = cotβ. Hence

cosh l = cosh(l1 + l2) =
1 + cosα cosβ

sinα sinβ

and

sinh l = sinh(l1 + l2) =
cosα+ cosβ

sinα sinβ
.

�
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6. EXERCISES VI

Exercise 6.1. (Easy) Let θ = απ where α ∈ R \Q. Use definition to show that the group generated
by

ρθ =

[
cos θ sin θ
− sin θ cos θ

]
does not act properly discontinuously on H.

Solution. By α ∈ R \ Q we get the group Γ generated by ρθ is an infinite group. Let K be an
arbitrary hyperbolic circle with center i, then for any g ∈ Γ, g(K) = K, so

#{g ∈ Γ|g(K) ∩K 6= ∅} = +∞,

i.e. this action is not properly discontinuous. �

Exercise 6.2. Consider the action of Z2 on R2 given by

(m,n) : R2 → R2,

(x, y) 7→ (x+m, y + n).

Let T be the flat torus R2/Z2. LetD be the unit square determined by (0, 0), (1, 0), (0, 1) and (1, 1).
Let l(x, y) be the Euclidean line in R2 passing (0, 0) and (x, y).

a) (Normal) Using Z2 action to send all points in l(1, 2) to D. Draw the image.
b) (Normal) Using Z2 action to send all points in l(3, 2) to D. Draw the image.
c) (Hard) What is the algorithm to draw the image of l(p, q) with gcd(p, q) = 1 in D?
d) (Hard) What could we say about the image of the line l(1,

√
2).

Solution.
a) It’s the union of the Euclidean segments connecting the following pairs of points.

i. (0, 0) and (1/2, 1),
ii. (1/2, 0) and (1, 1).

b) It’s the union of the Euclidean segments connecting the following pairs of points.
i. (0, 0) and (1, 2/3),
ii. (0, 2/3) and (1/2, 1),
iii. (1/2, 0) and (1, 1/3),
iv. (0, 1/3) and (1, 1).

c) By the Bezout’s Theorem in Elementary Number Theory, there exist m,n ∈ Z such that
mp + nq = 1. Thus the image of l(p, q) in D is the union of p + q − 1 Euclidean segments whose
initial points are

(0, r/p), (s/q, 0),

where r ∈ [0, p− 1] ∩ Z, s ∈ [0, q − 1] ∩ Z, with slope q/p.
d) The image of l(1,

√
2) is dense in D because of a quick application of Dirichlet’s Approxima-

tion Theorem, i.e. there exists integers m,n such that
∣∣m√2− n

∣∣ < ε for any ε > 0. �

Exercise 6.3. Consider the matrices

A =

[
1 2
0 1

]
and B =

[
1 0
2 1

]
.

Let Γ = 〈A,B〉.
a) (Normal) Show that Γ is a discrete subgroup of SL(2,R), and conclude that it acts properly

discontinuously on H.
b) (Normal) Find a fundamental domain of for the Γ-action.
c) (Normal) Compute the area of the surface S = H/Γ.

Solution.
a) Because A,B are both in SL(2,Z), Γ is a subgroup of SL(2,Z) and also discrete by the

discreteness of Z. As a corollary, it acts properly continuously on H.
b) Consider the domain U which is bounded by four geodesics whose end points are the following

four pairs.
i. −1 and∞,
ii. ∞ and 1,
iii. 1 and 0,
iv. 0 and −1.
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Or namely, γ1, γ2, γ3, γ4. Let U1 be the domain which is bounded by γ1 and γ2, U2 be the domain
which is outside γ3 and γ4. Let f , g be the Möbius transformation induced by A, B respectively and
G1 = 〈f〉, G2 = 〈g〉. For each orbit of Γ, choose z be the point which is closest to i. Then

dH(z, i) 6 dH(f−1(z), i) = dH(z, i+ 2)

implies that Rez 6 1. We can deduce that z ∈ Ū by the similar argument with f , g, g−1. On the
other hand, consider any element gn · · · g1 ∈ Γ where gk ∈ Gik , gk 6= idH and ik 6= ik+1 for any k.
So g1(U) ⊂ g1(U1) ⊂ H \Ui1 , by induction and U1 ∪U2 = H, we can get gn · · · g1(U) ⊂ H \Uim ,
thus gn · · · g1(U) ∩ U = ∅. Therefore, U contains exact one elements in every orbit, i.e. it is a
fundamental domain.

c) The area of S is equal to the area of the fundamental domain, which is equal to 2π. �

Exercise 6.4. Let γ(x, x′) be a complete geodesic in H with end point x and x′ and oriented from x
to x′. a) (Normal) Find a pair of matrices A and B in SL(2,R) such that A sends γ(0, 1) to γ(∞, 2),
and B sends γ(0,∞) to γ(1, 2).

b) (Normal) Describe all solutions of a) using parameter(s). How many parameters are needed?
c) (Easy) For any (A,B) a solution of a), let Γ be the subgroup of SL(2,R) generated by A and

B. Let
S(A,B) = H/Γ(A,B).

Compute the area of S(A,B) for any solution (A,B) of a).

Solution.
a)

A =

[
3 −1
1 0

]
and B =

[
2 1
1 1

]
.

b) If A send 0 to∞ and 1 to 2, then

A =


s√
s− 2

−
√
s− 2

1√
s− 2

0

 .
If A send 0 to 2 and 1 to∞, B send, then

A =


s√

2− s
− 2√

2− s
1√

2− s
− 1√

2− s

 .
If B send 0 to 1 and∞ to 2, then

B =

2
√
t

1√
t√

t
1√
t

 .
If B send 0 to 2 and∞ to 1, then

B =

−
√
−t 2√

−t
−
√
−t 1√

−t

 .
Two parmeters are needed.
c) The area of S(A,B) is the area of the domain bounded by γ(0, 1), γ(∞, 2), γ(0,∞), γ(1, 2).

It is equal to 2π. �

7. EXERCISES VII

For n > 0 integer, we call a polygon an n-gon, if it has n vertices. We denote it by Pn.
For any n and g non-negative integers, we denote by Sg,n an oriented topological surface of

genus g with n boundary components. If there is no boundary components, we will simply denote
the surface by Sg .

We denote by Möb(H) the group of Möbius transformations on H.
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Exercise 7.1. For a surface S, we denote by χ(S) its Euler characteristic.
a) (Easy) Compute χ(Pn).
b) (Easy) Consider the construction of a flat torus S1 by gluing opposite sides of P4. Compute

χ(S1).
c) (Easy) Consider the construction of a genus g surface Sg using a 4g-gon. Compute χ(Sg).
d) (Normal) Let P4g be the polygon used to construct Sg . By cutting out a triangle in the interior,

we create a surface which is topological S0,2 a sphere with two holes. Using the same gluing pattern
as in c), we get the surface Sg . Compute χ(S0,2) and χ(Sg,1).

e) (Normal) By cutting out n disjoint triangles from P4g and keep the same gluing pattern as
in c), we construct surfaces S0,n+1 and Sg,n before and after the gluing. Compute χ(S0,n+1) and
χ(Sg,n).

f) (Hard) We consider gluing surfaces along boundary to get new surfaces.
i. Using e), for n > 1, show that χ(Sg,n) = χ(Sg+1,n−2).
ii. Using e), for n1 > 0 and n2 > 0, show that χ(Sg1,n1

) + χ(Sg2,n2
) = χ(Sg1+g2,n1+n2−2).

iii. Check both equalities still hold when either g, g1 or g2 is 0.
g) (Easy) Compute the number of pair of pants in a pants decomposition of Sg .
h) (Easy) Compute the number of curves used in a pair of pants decomposition of Sg .
i) (Easy) Based on the answers of the question g) and h), guess the answers of the same questions

for Sg,n with n > 0. Check if it is correct.

Solution.
a) χ(Pn) = n− n+ 1 = 1.
b) χ(S1) = 1− 2 + 1 = 0.
c) χ(Sg) = 1− 2g + 1 = 2− 2g.
d) χ(S0,2) = (4g + 3)− (4g + 3 + 1) + 1 = 0. χ(Sg,1) = 4− (2g + 4) + 1 = 1− 2g.
e) χ(S0,n+1) = (4g+3n)−(4g+3n+n)+1 = 1−n. χ(Sg,n) = (1+3n)−(2g+3n+n)+1 =

2− 2g − n.
f) i. χ(Sg,n) = 2− 2g − n = 2− 2(g + 1)− (n− 2) = χ(Sg+1,n−2).

ii. χ(Sg1,n1
) + χ(Sg2,n2

) = 2− 2(g1 + g2)− (n1 + n2 − 2) = χ(Sg1+g2,n1+n2−2).
iii. It’s obvious that when g = 0, n > 0, χ(Sg,n) = 2− 2g − n = 2− n by b) and e).

g) The Euler characteristic of a pants S0,3 is −1, and when we glue a pair of pants’ boundaries,
the number of vertices and edges will minus one together. So if the number of pants is m, then
m = −mχ(S0,3) = −χ(Sg) = 2g − 2.

h) Let the number of curves used in a pair of pants decomposition be k. Every curve is used two
times and every pants use three curves, hence 2k = 3(2g − 2) and k = 3g − 3.

i) The argument in g) and h) can be used similarly in these questions. If the number of pants is
m, then m = −mχ(S0,3) = −χ(Sg,n) = 2g − 2 + n. Let the number of new curves used in a pair
of pants decomposition be k. Then 2k + n = 3(2g − 2 + n) implies that k = 3g − 3 + n.

�

Exercise 7.2. a) (Easy) For any fours pairwise distinct points x1, x2, x3 and x4 in ∂H, we define
the cross ratio to be

B(x1, x2;x3, x4) =
(x1 − x4)(x2 − x3)

(x1 − x3)(x2 − x4)
.

Show that B is invariant under Möbius transformations, i.e. for any f ∈ Möb(H) we have:

B(x1, x2;x3, x4) = B(f(x1), f(x2); f(x3), f(x4)).

b) (Easy) Let η denote the geodesic ending at x1 and x2, and η′ denote the geodesic ending at x3
and x4. Show that

i. η intersects η′ if and only if B(x1, x2;x3, x4) < 0;
ii. η and η′ are disjoint if and only if B(x1, x2;x3, x4) > 0.

c) (Hard) Let f ∈ Möb(H) and γ be a geodesic ending at x and x′. Show that f is hyperbolic if
B(x, f(x′);x′, f(x)) < 0.

Solution.
a) Let f be

z 7→ az + b

cz + d
,
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then

B(f(x1), f(x2); f(x3), f(x4))

=

(
ax1 + b

cx1 + d
− ax4 + b

cx4 + d

)(
ax2 + b

cx2 + d
− ax3 + b

cx3 + d

)
(
ax1 + b

cx1 + d
− ax3 + b

cx3 + d

)(
ax2 + b

cx2 + d
− ax4 + b

cx4 + d

)
=

[(ax1 + b)(cx4 + d)− (ax4 + b)(cx1 + d)][(ax2 + b)(cx3 + d)− (ax3 + b)(cx2 + d)]

[(ax1 + b)(cx3 + d)− (ax3 + b)(cx1 + d)][(ax2 + b)(cx4 + d)− (ax4 + b)(cx2 + d)]

=
(ad− bc)2(x1 − x4)(x2 − x3)

(ad− bc)2(x1 − x3)(x2 − x4)

=B(x1, x2;x3, x4).

b) By a), we know that cross ratio is invariant under Möbius transformation, so without loss of
generality, we can suppose x3 = 0, x4 =∞. Then B(x1, x2;x3, x4) =

x2
x1

, hence

i. η intersects η′ if and only if x1x2 < 0, which is equivalent to
x2
x1

< 0.

i. η and η′ are disjoint if and only if x1x2 > 0, which is equivalent to
x2
x1

> 0.

c) Let f be

z 7→ az + b

cz + d
,

then
0 <B(x, f(x′);x′, f(x))

=
(x− f(x))(f(x′)− x′)
(x− x′)(f(x′)− f(x))

=
[cx2 + (d− a)x− b][cx′2 + (d− a)x′ − b]

(ad− bc)(x− x′)2
,

which means g(x) = cx2 + (d− a)x− b has two real zeroes. Thus f has two real fixed points, i.e.
f is hyperbolic. �

Exercise 7.3. (Normal) Consider the flat torus S1 = R2/Z2. Let l(x, y) be the line passing (0, 0)
and (x, y). The projection of l(x, y) to S1 is a simple geodesic, denoted by γ(x, y). Moreover,
γ(x, y) is closed if and only if (x, y) ∈ Z2. Let (p, q) and (r, s) be two distinct points in Z2.
Compute the intersection number between γ(p, q) and γ(r, s).

Solution. Consider all the lines parallel to l(p, q) and passes through a point in Z2, then every
intersection of this pencil of lines with the segment connecting (0, 0) and (r, s) associates one and
only one intersection between γ(p, q) and γ(r, s). On the other hand, every intersection between
γ(p, q) and γ(r, s) associate gcd(r, s) intersections between the pencil and the segment above. By
Bezout’s theorem in Elementary Number Theory, the above pencil of lines is evenly distributed at

intervals of
gcd(p, q)√
p2 + q2

. The distance between (r, s) and l(p, q) is equal to
|ps− qr|√
p2 + q2

, hence the

intersection number between γ(p, q) and γ(r, s) is equal to

|ps− qr|√
p2 + q2

gcd(p, q)√
p2 + q2

gcd(r, s)

=
|ps− qr|

gcd(p, q)gcd(r, s)
.

�

8. EXERCISES VIII

Let g > 0 and n > 0 be integers such that 2− 2g − n < 0. We denote by Sg a closed hyperbolic
surface of genus g, and by Sg,n a hyperbolic surface of genus g with n cusps.

Exercise 8.1. We would like to study short geodesics on hyperbolic surfaces of genus g.
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a) (Easy) Let p ∈ Sg . The injective radius Rp at p is the maximal positive real number such that
the interior of a hyperbolic disk of radius Rp can be mapped isometrically to the Rp-neighborhood
of p. Show that the exists a constant c1 > 0, such that for any Sg ,

min{Rp|p ∈ Sg} < c1.

b) (Easy) Use a) to show that there is a constant c2 > 0, such that on any Sg , there is a simple
closed geodesic shorter than c2.

c) (Normal) Use Collar lemma and b), show that there is a constant c3 > 0, such that on any Sg ,
there exists a simple closed geodesic γ which has a collar of area greater or equal to c3.

d) (Normal) Use Collar lemma to show that on any Sg , any two distinct simple closed geodesics
of length 1 must be disjoint.

Solution.
a) The hyperbolic area of Sg is equal to (4g − 4)π. Thus the area of Rp- neighborhood of p,

which is equal to 2π(coshRp − 1), must smaller than it. Hence coshRp < 2g − 1 and there exists
a constant c1 > 0 such that for any Sg and p, Rp < c1.

b) Let the length of the shortest simple closed geodesic γ on Sg be l, then l 6 2Rp for any p ∈ γ,
since there is a simple closed geodesic whose length is 2Rp on Sg . So l 6 2Rp < 2c1 =: c2.

c) Use the notation in Exercise 2.4.c). The collar bounded by γr, γR, V0, and Lθ (r < R) has
width

wθ := log cot
(π

4
− θ
)

and area

Aθ :=

∫ R

r

∫ π
2

π
2−θ

drdθ
r sin2 θ

= log
R

r
tan θ.

Let the shortest simple closed geodesic be γ with length l(γ). By Collar lemma and the discussion
above, γ has a collar with area

2l(γ) sinhwθ =
2l(γ)

sinh l(γ)
2

.

Because of
4x

sinhx
is decreasing monotonically with x when x > 0, so the area of its collar is greater

or equal to c3 :=
2c2

sinh c2
2

.

d) Let one of the geodesic whose length is 1 be γ and its collar be U . The only simple closed
geodesic in U is γ. If a geodesic enters and leaves U is the same boundary, then it does not intersect
with γ. If a geodesic enters and leaves U in the different boundary of U , then its length must longer

than the distance of two boundaries of U , which is equal to 2arcsinh
(

1

sinh 0.5

)
, which contradicts

to that its length is 1. If a geodesic only enters U but not leaves, then it must tend to γ and has an
infinite length, also a contradiction.

�

Exercise 8.2. (Hard) Let p be a cusp on Sg,n. If a horocycle H centered at p is embedded in Sg,n,
we call the part between H and its center p the cusp region, and denote it by Dp(r) where r is the
length of H . Use Collar Lemma for cusps to show that any complete geodesic on Sg,n intersecting
Dp(1) has self-intersections.

Solution. By Collar Lemma for cusps, the cusp region Dp(2) is isometry to the quotient of the
region in H with imaginary part larger than 1 under the action of z 7→ z + 2. In this viewpoint,
the boudary of Dp(1), a horocycle whose length is 1, is the projection of H√2. Without loss of
generality, we consider a complete geodesic γ passing through

√
2i, its Euclidean equation is γ :

x2+y2−2x0x = 2. Under the translation z 7→ z+2, it turns into γ′ : (x−2)2−2x0(x−2)+y2 = 2.
γ′ and γ intersects at the point (x0 + 1,

√
x20 + 1). Because

√
x20 + 1 > 1, the intersection lies in

Dp(2). Hence γ has a self-intersection. �

9. EXERCISES IX

Let D denote the open set in H bounded by three geodesics V1/2, V−1/2 and C(0, 1):

D = {z ∈ H|Rez ∈
(
−1

2
,

1

2

)
, |z| > 1}.
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We would like to show that D is a fundamental domain for PSL(2,Z) action on H. For our conve-
nience, we use SL(2,Z) during the proof.

Exercise 9.1. (Normal) Cosinder a matrix

A =

[
a b
c d

]
in SL(2,Z). Compute the imaginary part of A(z).

Solution. Let z = u+ iv, then

A(z) =
a(u+ iv) + b

c(u+ iv) + d
=

(au+ b)(cu+ d) + acv2 + iv

(cu+ d)2 + (cv)2
.

Hence
ImA(z) =

Imz
(c|z|)2 + 2cdRez + d2

.

�

Exercise 9.2. (Normal) Show that for z ∈ D, we have |cz + d| > 1.

Solution. For any z ∈ D, we have

|cz + d|2 = (c|z|)2 + 2cdRez + d2 > c2 + d2 + 2cdRez.

If cd = 0, then
|cz + d|2 > c2 + d2 > 1.

If cd > 0,
|cz + d|2 > c2 + d2 − cd = (c− d)2 + cd > cd > 1.

If cd < 0, then
|cz + d|2 > c2 + d2 + cd = (c+ d)2 − cd > −cd > 1.

Hence |cz + d| > 1 and the ‘=’ holds if and only if c = 0 and |d| = 1. �

Exercise 9.3. (Normal) Show that for any A ∈ SL(2,Z) and any z ∈ D, if A(z) ∈ D, then
A = ±I2.

Solution. By using Exercise 9.1 and Exercise 9.2, we can get

ImA(z) =
Imz

|cz + d|2
6 Imz.

However, in the other hand, Imz = ImA−1(A(z)) 6 ImA(z) by the same argument since A−1 ∈
SL(2,Z) as well. Thus ImA(z) = Imz and |cz+ d| = 1. That means c = 0 and |d| = 1, then A acts
as a translation z 7→ z + b/d. But |b/d| > 1 means A will send z outside D, hence b = 0. Finally,
A = ±I2. �

Exercise 9.4. Show that any point z ∈ H can always be sent to the region between V1/2 and V−1/2,
Rez ∈ [−1/2, 1/2].

Solution. Let n be the integer which is closest to Rez, then the transformation induced by[
1 −n
0 1

]
∈ SL(2,Z)

is what we need. �

Exercise 9.5. (Easy) Use Exercise 9.4 and the matrix

B =

[
0 1
−1 0

]
to show that any point z ∈ H with Imz >

√
3/2 can always be sent into D̄ by an element in SL(2,Z).

Solution. By Exercise 9.4, we can suppose Rez ∈ [−1/2, 1/2]. If z ∈ D̄ now, we have com-
pleted. If z /∈ D̄, then B(z) = −1/z ∈ D̄. �

Exercise 9.6. (Normal) Show that for any point z ∈ H with Rez ∈ [−1/2, 1/2] and Imz <
√

3/2,
we have ImB(z) > Imz.

Solution. By the condition we know |z| < 1, hence ImB(z) =
Imz
|z|2

< Imz. �
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Exercise 9.7. (Normal) Show that there exists a constant ε > 0, such that for any point z with

Rez ∈ [−1/2, 1/2] and
√

3

2
− ε < Imz <

√
3

2
,

we have

ImB(z) >

√
3

2

Solution. Set ε =

√
3− 1

2
, i.e.

1

2
< Imz <

√
3

2
. Then

ImB(z) =
Imz
|z|2
>

Imz
1
4 + (Imz)2

>

√
3
2

1
4 + 3

4

=

√
3

2

since
x

1
4 + x2

is decreasing monotonically with x when x >
1

2
. �

Exercise 9.8. (Hard) Let z be any point in H. We construct a sequence of points in H in the following
way.

a) Check if z ∈ D̄, if yes, stop; otherwise, apply[
1 n
0 1

]
,

for some n ∈ Z on z, so that Rez ∈ [−1/2, 1/2]. We denote the new point by z1. If z1 is in D̄, stop;
otherwise go to step b).

b) Apply B and we get z2 = B(z1). Check if z2 is in D̄. If yes, stop; otherwise back to a).
Show that this process will stop in finite time and we will get a point in D̄.

Solution. If this process will not stop in finite time, then we can get an infinite sequence {zn} ⊂ H
such that Imzn < Imzn+1 <

1

2
and Rezn ∈ [−1/2, 1/2]. Let the supremum of {Imzn} be y. Then

there exists a zn such that Imzn >
y

2
. Then

Imzn+1 = ImB(zn) =
Imzn
|zn|2

>
Imzn

1
4 + (Imzn)2

>
2y

y2 + 1
>

8

5
y > y

since
x

1
4 + x2

is increasing monotonically with x when 0 < x <
1

2
, contradiction. �

Exercise 9.9. (Easy) Conclude that D is a fundamental domain for PSL(2,Z)-action on H.

Solution. By Exercise 9.8, every orbit contains a point in D̄. By Exercise 9.3, every orbit contains
at most one point in D. Hence D is a fundamental domain. �
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